Beyond Catmull-Clark? A Survey of Advances in Subdivision Surface Methods

Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 31; H. 1; S. 42 - 61
1. Verfasser: Cashman, Thomas J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.02.2012
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why Catmull–Clark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research.
AbstractList Abstract Subdivision surfaces allow smooth free-form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why Catmull-Clark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research. [PUBLICATION ABSTRACT]
Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why Catmull–Clark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research.
Author Cashman, Thomas J.
Author_xml – sequence: 1
  givenname: Thomas J.
  surname: Cashman
  fullname: Cashman, Thomas J.
  organization: Faculty of Informatics, University of Lugano, Lugano, Switzerland thomas.cashman@usi.ch
BookMark eNqNkUFP3DAQhS1EJRbKf4g4cUlqx3HiHAAtoSxIlBYB4mh57bHwko2pnWx3_z0OW3HghC8ejd_3NPO8j3Y71wFCCcEZiefHIiNFWaW8ZHWWY0IynGNOs_UOmnw87KIJJrGuMGN7aD-EBca4qEo2QdfnsHGdThrZL4e2TZtW-pezZJrcD34Fm8SZZKpXslMQEtvF7lzblQ3WjbU3UkHyC_pnp8N39M3INsDh__sAPV7-fGiu0pvfs-tmepOqghCacslLw3KjpTF8XisOks0lobJkksZOUdbM6IqqOaN5jWtQimuVk1qD0ZoDPUDHW99X7_4OEHqxtEFB28oO3BAEwZRTTHNSROnRJ-nCDb6L04k6pxWjFR9Fp1uR8i4ED0Yo28s-bth7advoJ8agxUKMeYoxTzEGLd6DFutowD8ZvHq7lH7zFfRki_6zLWy-zIlmdjlWkU-3vA09rD_4-IWirOKC4ul2Jq7u_tTk4vZCUPoGBQKmKg
CitedBy_id crossref_primary_10_1016_j_cagd_2016_02_010
crossref_primary_10_1111_cgf_13025
crossref_primary_10_1111_cgf_13146
crossref_primary_10_1111_cgf_12448
crossref_primary_10_1016_j_cagd_2019_04_004
crossref_primary_10_1145_2487228_2487231
crossref_primary_10_1016_j_cagd_2023_102207
crossref_primary_10_1111_cgf_12461
crossref_primary_10_1016_j_cad_2013_06_013
crossref_primary_10_1016_j_gmod_2016_05_002
crossref_primary_10_1016_j_cad_2013_12_003
crossref_primary_10_1016_j_cagd_2024_102286
crossref_primary_10_1145_3072959_3073647
crossref_primary_10_1007_s00366_018_0579_5
crossref_primary_10_1007_s00371_015_1175_y
crossref_primary_10_1016_j_cagd_2016_02_005
crossref_primary_10_1016_j_cagd_2017_02_008
crossref_primary_10_1111_cgf_14381
crossref_primary_10_1016_j_cagd_2013_11_004
crossref_primary_10_1007_s11042_017_4439_x
crossref_primary_10_1016_j_cag_2016_12_001
crossref_primary_10_1016_j_cma_2016_01_005
crossref_primary_10_1145_3272127_3275007
crossref_primary_10_1111_cgf_12711
crossref_primary_10_1016_j_cad_2016_02_002
crossref_primary_10_1145_2766972
crossref_primary_10_1098_rsob_190057
crossref_primary_10_1109_TVCG_2020_2972877
Cites_doi 10.1111/1467-8659.00405
10.1111/1467-8659.1530409
10.1007/s003659910006
10.1007/3-540-45545-0_81
10.1137/S0036142996304346
10.1016/j.cagd.2008.06.005
10.1016/0010-4485(78)90110-0
10.1016/j.cagd.2009.07.006
10.1145/364338.364387
10.1007/978-3-7091-6444-0_17
10.1016/0167-8396(94)00007-F
10.1007/11802914_39
10.1016/j.cagd.2004.04.005
10.1016/j.jat.2008.10.012
10.1017/S0962492902000028
10.1145/1027411.1027417
10.1109/SMA.2001.923393
10.1145/1507149.1507174
10.1007/s00607-006-0207-x
10.1007/BF01219774
10.1016/j.cagd.2005.06.001
10.1109/SMI.2008.4547938
10.1016/j.cagd.2011.01.003
10.1109/TPAMI.1980.4766968
10.1016/j.cagd.2005.06.003
10.1016/j.cad.2004.10.008
10.1080/10867651.2004.10504898
10.1007/s00371-007-0173-0
10.1007/978-3-642-01591-5_10
10.1145/1057432.1057454
10.1080/16864360.2007.10738568
10.1007/s003659910016
10.1016/j.cagd.2010.04.002
10.1016/S0010-4485(02)00113-6
10.1145/1618452.1618497
10.1016/S0167-8396(01)00043-7
10.1145/1330511.1330519
10.1145/1289603.1289605
10.1007/s003659900063
10.1007/978-3-540-79246-8_3
10.1023/A:1018922530826
10.1145/1364901.1364946
10.1016/j.cagd.2007.12.002
10.1016/S0167-8396(01)00041-3
10.1016/j.cagd.2006.10.006
10.1109/VISUAL.2001.964529
10.1016/S0167-8396(01)00040-1
10.1145/1027411.1027415
10.1007/3-540-26808-1_11
10.1145/882262.882295
10.1023/A:1018945708536
10.1137/S003614299834263X
10.1145/1531326.1531354
10.1080/16864360.2006.10738487
10.1145/78956.78958
10.1016/j.cagd.2007.09.001
10.1007/978-3-7091-7484-5_7
10.1016/j.cagd.2008.05.002
10.1023/A:1016685104156
10.1016/S0167-8396(03)00026-8
10.1111/j.1467-8659.2007.01015.x
10.1145/1778765.1778857
10.1007/3-540-44842-X_40
10.1016/j.cagd.2003.08.001
10.1109/PG.2007.8
10.1007/978-3-642-11620-9_20
10.1007/s003710100149
10.1016/0010-4485(87)90234-X
10.1090/S0002-9939-96-03366-7
10.1145/263834.263851
10.1016/j.cagd.2004.04.003
10.1016/B978-0-12-438660-0.50065-0
10.1145/1805964.1805969
10.1111/1467-8659.t01-2-00647
10.1145/1531326.1531352
10.1111/j.1467-8659.2008.01277.x
10.1016/0010-4485(92)90057-H
10.1016/j.cagd.2011.08.002
10.1016/S0167-8396(01)00039-5
10.1145/1360612.1360678
10.1145/1141911.1141990
10.1007/11751540_11
10.1111/j.1467-8659.2004.00789.x
10.1016/S0167-8396(98)00051-X
10.1111/j.1467-8659.2008.01276.x
10.1145/504502.504505
10.1016/S1063-5203(03)00031-9
10.1145/1073204.1073304
10.1145/1057432.1057453
10.1145/1294685.1294699
10.1016/j.cagd.2004.04.006
10.1016/S0167-8396(01)00038-3
10.1016/0010-4485(78)90111-2
10.1016/j.cam.2005.05.035
10.1145/1037957.1037959
10.1016/0167-8396(87)90001-X
10.1016/S0167-8396(96)00029-5
10.1145/1409060.1409095
10.1007/s003710100148
10.1016/S0167-8396(01)00042-5
10.1145/1138450.1138455
10.1111/j.1467-8659.2006.00945.x
10.1016/j.cad.2006.12.008
10.1016/j.cagd.2007.06.001
10.1145/1236246.1236280
ContentType Journal Article
Copyright 2012 The Authors
Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
2012 The AuthorsComputer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 The Authors
Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
– notice: 2012 The AuthorsComputer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2011.02083.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 61
ExternalDocumentID 2596603191
10_1111_j_1467_8659_2011_02083_x
CGF2083
ark_67375_WNG_HQP91DND_3
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4113-8a86f52fdaff8b9c8ea5ba13a65a3f8b4695fd73cb532909ecc8dc219defdd8e3
IEDL.DBID DRFUL
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300836400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 12:10:48 EST 2025
Sun Nov 09 08:21:42 EST 2025
Tue Nov 18 21:00:05 EST 2025
Sat Nov 29 08:10:58 EST 2025
Sun Sep 21 06:23:54 EDT 2025
Sun Sep 21 06:17:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4113-8a86f52fdaff8b9c8ea5ba13a65a3f8b4695fd73cb532909ecc8dc219defdd8e3
Notes istex:0DD67406ED17A872959757DCF4EFC64CDA63484C
ArticleID:CGF2083
ark:/67375/WNG-HQP91DND-3
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 923753784
PQPubID 30877
PageCount 20
ParticipantIDs proquest_miscellaneous_1038303214
proquest_journals_923753784
crossref_citationtrail_10_1111_j_1467_8659_2011_02083_x
crossref_primary_10_1111_j_1467_8659_2011_02083_x
wiley_primary_10_1111_j_1467_8659_2011_02083_x_CGF2083
istex_primary_ark_67375_WNG_HQP91DND_3
PublicationCentury 2000
PublicationDate February 2012
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: February 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Umlauf G.: Analyzing the characteristic map of triangular subdivision schemes. Constructive Approximation 16, 1 (2000), 145-155.
Myles A., Ni T., Peters J.: Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets. Computer Graphics Forum 27, 5 (2008), 1365-1372.
Sabin M. A., Dodgson N. A., Hassan M. F., Ivrissimtzis I. P.: Curvature behaviours at extraordinary points of subdivision surfaces. Computer-Aided Design 35, 11 (2003), 1047-1051.
Ivrissimtzis I., Dodgson N., Sabin M.: A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design 21, 1 (2004), 99-109.
Karčiauskas K., Peters J., Reif U.: Shape characterization of subdivision surfaces-case studies. Computer Aided Geometric Design 21, 6 (2004), 601-614.
Shiue L. J., Jones I., Peters J.: A realtime GPU subdivision kernel. ACM Transactions on Graphics 24, 3 (2005), 1010-1015.
Loop C., Schaefer S.: Approximating Catmull-Clark subdivision surfaces with bicubic patches. ACM Transactions on Graphics 27, 1 (2008), 8:1-8:11.
Levin A.: Modified subdivision surfaces with continuous curvature. ACM Transactions on Graphics 25, 3 (2006), 1035-1040.
Loop C., Schaefer S., Ni T., Castaño I.: Approximating subdivision surfaces with Gregory patches for hardware tessellation. ACM Transactions on Graphics 28 (2009), 151:1-151:9.
Peters J., Shiue L. J.: Combining 4- and 3-direction subdivision. ACM Transactions on Graphics 23, 4 (2004), 980-1003.
Karčiauskas K., Peters J.: Bicubic polar subdivision. ACM Transactions on Graphics 26, 4 (2007), 14:1-14:6.
Wallner J., Dyn N.: Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Computer Aided Geometric Design 22, 7 (2005), 593-622.
Alexa M., Boubekeur T.: Subdivision shading. ACM Transactions on Graphics 27, 5 (2008), 142:1-142:4.
Boier-Martin I., Zorin D.: Differentiable parameterization of Catmull-Clark subdivision surfaces. In Proceedings of the Symposium on Geometry Processing (Nice, France, 2004), Eurographics, pp. 155-164.
Reif U., Schröder P.: Curvature integrability of subdivision surfaces. Advances in Computational Mathematics 14, 2 (2001), 157-174.
Cheng F., Yong J.: Subdivision depth computation for Catmull-Clark subdivision surfaces. Computer Aided Design & Applications 3, 1-4 (2006), 485-494.
Ni T., Castaño I., Peters J., Mitchell J., Schneider P., Verma V.: Efficient substitutes for subdivision surfaces. In ACM SIGGRAPH Courses (2009), pp. 13:1-13:107.
Zeng X., Chen X.: Computational formula of depth for Catmull-Clark subdivision surfaces. Journal of Computational and Applied Mathematics 195, 1-2 (2006), 252-262.
Zorin D., Kristjansson D.: Evaluation of piecewise smooth subdivision surfaces. The Visual Computer 18, 5 (2002), 299-315.
Yang X.: Surface interpolation of meshes by geometric subdivision. Computer-Aided Design 37, 5 (2005), 497-508.
Müller K., Reusche L., Fellner D.: Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Transactions on Graphics 25, 2 (2006), 268-292.
Oswald P., Schröder P.: Composite primal/dual -subdivision schemes. Computer Aided Geometric Design 20, 3 (2003), 135-164.
Dyn N., Levin D., Liu D.: Interpolatory convexity-preserving subdivision schemes for curves and surfaces Computer-Aided Design 24, 4 (1992), 211-216.
Myles A., Peters J.: Bi-3 C2 polar subdivision. ACM Transactions on Graphics 28, 3 (2009), 48:1-48:12.
Stewart I. F., Foisy A. R.: Arbitrary-degree subdivision with creases and attributes. Journal of Graphics Tools 9, 4 (2004), 3-17.
Ivrissimtzis I. P., Sabin M. A., Dodgson N. A.: On the support of recursive subdivision. ACM Transactions on Graphics 23, 4 (2004), 1043-1060.
Peters J., Reif U.: Shape characterization of subdivision surfaces-basic principles. Computer Aided Geometric Design 21, 6 (2004), 585-599.
Reif U.: A degree estimate for subdivision surfaces of higher regularity. Proceedings of the American Mathematical Society 124, 7 (1996), 2167-2174.
Augsdörfer U. H., Dodgson N. A., Sabin, M. A.: Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra. Computer Aided Geometric Design 28, 3 (2011), 198-211.
Stam J.: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. Computer Aided Geometric Design 18, 5 (2001), 383-396.
Augsdörfer U. H., Dodgson N. A., Sabin M. A.: Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra. Computer Aided Geometric Design 28, 3 (2011), 177-197.
Stam J., Loop C.: Quad/triangle subdivision. Computer Graphics Forum 22, 1 (2003), 79-85.
Karčiauskas K., Peters J.: On the curvature of guided surfaces. Computer Aided Geometric Design 25, 2 (2008), 69-79.
Levin A., Levin D.: Analysis of quasi-uniform subdivision. Applied and Computational Harmonic Analysis 15, 1 (2003), 18-32.
Karčiauskas K., Peters J.: Adjustable speed surface subdivision. Computer Aided Geometric Design 26, 9 (2009), 962-969.
Karčiauskas K., Peters J.: Guided spline surfaces. Computer Aided Geometric Design 26, 1 (2009), 105-116.
Morin G., Warren J., Weimer H.: A subdivision scheme for surfaces of revolution. Computer Aided Geometric Design 18, 5 (2001), 483-502.
Loop C.: Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18 (2002), 316-325.
Peters J., Reif U.: Subdivision Surfaces. Vol. 3 of Geometry and Computing. Springer, Berlin , Heidelberg , 2008.
Holt F.: Toward a curvature-continuous stationary subdivision algorithm. Zeitschrift für angewandte Mathematik und Mechanik 76 (1996), 423-424.
Kobbelt L.: Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Computer Graphics Forum 15, 3 (1996), 409-420.
Dyn N., Levin D.: Subdivision schemes in geometric modelling. Acta Numerica 11 (2002), 73-144.
Müller K., Fünfzig C., Reusche L., Hansford D., Farin G. E., Hagen H.: Dinus: Double insertion, nonuniform, stationary subdivision surfaces. ACM Transactions on Graphics 29 (2010), 25:1-25:21.
Schaefer S., Warren J.: On C2 triangle/quad subdivision. ACM Transactions on Graphics 24 (2005), 28-36.
Dyn N., Levin D., Gregory J. A.: A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4, 4 (1987), 257-268.
Doo D., Sabin M. A.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 6 (1978), 356-360.
Barthe L., Kobbelt L.: Subdivision scheme tuning around extraordinary vertices. Computer Aided Geometric Design 21, 6 (2004), 561-583.
Karčiauskas K., Peters J.: Surfaces with polar structure. Computing 79, 2 (2007), 309-315.
Maekawa T., Matsumoto Y., Namiki K.: Interpolation by geometric algorithm. Computer-Aided Design 39, 4 (2007), 313-323.
Zorin D., Schröder P.: A unified framework for pryimal/dual quadrilateral subdivision schemes. Computer Aided Geometric Design 18, 5 (2001), 429-454.
Cashman T. J., Augsdörfer U. H., Dodgson N. A., Sabin M. A.: NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Transactions on Graphics, 28, 3 (2009), 46:1-46:9.
Dodgson N., Sabin M., Southern R.: Preconditions on Geometrically Sensitive Subdivision Schemes. Tech. Rep. UCAM-CL-TR-691, University of Cambridge , 2007.
Li G., Ma W.: A method for constructing interpolatory subdivision schemes and blending subdivisions. Computer Graphics Forum 26, 2 (2007), 185-201.
Piegl L., Tiller W.: Curve and surface constructions using rational B-splines. Computer-Aided Design 19, 9 (1987), 485-498.
Wu X., Peters J.: Interference detection for subdivision surfaces. Computer Graphics Forum 23, 3 (2004), 577-584.
Dyn N., Levin D., Gregory J. A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9, 2 (1990), 160-169.
Litke N., Levin A., Schröder P.: Trimming for subdivision surfaces. Computer Aided Geometric Design 18, 5 (2001), 463-482.
Peters J., Reif U.: The simplest subdivision scheme for smoothing polyhedra. ACM Transactions on Graphics 16, 4 (1997), 420-431.
Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350-355.
Prautzsch H., Chen Q.: Analyzing midpoint subdivision. Computer Aided Geometric Design 28, 7 (2011), 407-419.
Peters J., Wu X.: The distance of a subdivision surface to its control polyhedron. Journal of Approximation Theory 161, 2 (2009), 491-507.
Zorin D.: A method for analysis of C1-continuity of subdivision surfaces. SIAM Journal on Numerical Analysis 37, 5 (2000), 1677-1708.
Karčiauskas K., Peters J.: Concentric tessellation maps and curvature continuous guided surfaces. Computer Aided Geometric Design 24, 2 (2007), 99-111.
He L., Schaefer S., Hormann K.: Parameterizing subdivision surfaces. ACM Transactions on Graphics 29, 4 (2010), 120:1-120:6.
Reif U.: TURBS-Topologically unrestricted rational B-splines. Constructive Approximation 14, 1 (1998), 57-77.
Schaefer S., Warren J.: Exact evaluation of limits and tangents for non-polynomial subdivision schemes. Computer Aided Geometric Design 25, 8 (2008), 607-620.
Huang Z., Wang G.: Improved error estimate for extraordinary Catmull-Clark subdivision surface patches. The Visual Computer 23, 12 (2007), 1005-1014.
Prautzsch H., Reif U.: Degree estimates for Ck-piecewise polynomial subdivision surfaces. Advances in Computational Mathematics 10, 2 (1999), 209-217.
Zorin D.: Smoothness of stationary subdivision on irregular meshes. Constructive Approximation 16, 3 (2000), 359-398.
Ginkel I., Umlauf G.: Symmetry of shape charts. Computer Aided Geometric Design 25, 3 (2008), 131-136.
Levin A.: Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16, 5 (1999), 345-354.
Tsitsiklis J. N., Blondel V. D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard-when not impossible-to compute and to approximate. Mathematics of Control, Signals, and Systems 10, 1 (1997),
2004; 21
2007; 39
2002; 18
1987; 4
2004; 23
2002; 11
2004; 9
2003; 15
2008; 3
2006; 4035
2006; 4077
1996; 76
2007; 79
2005; 22
1978
2005; 24
2000; 19
2000; 16
2001
2006; 23
2000
1997; 10
2010; 29
2007; 4647
1999; 16
1997; 14
2008; 27
2006; 25
2008; 25
1987
1997; 16
1999; 10
2007; 4
2009; 161
2001; 18
2011; 28
2005; 37
2007; 23
2001; 14
2007; 24
2010; 6
2007; 26
1998; 14
1998; 13
2010
1978; 10
2002; 334
1995; 12
1998
2009
2003; 35
2008
2006; 195
2007
1996
2006
2005
2006; 3
2004
1993
2003
2002
1991
1987; 19
1996; 124
1996; 15
2009; 26
2009; 28
1999
2008; 4975
2000; 37
1980; 2
1992; 24
1990; 9
2010; 5862
2003; 20
1998; 9
2003; 22
1998; 35
e_1_2_9_52_2
e_1_2_9_98_2
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_94_2
Warren J. (e_1_2_9_128_2) 2001
e_1_2_9_75_2
e_1_2_9_90_2
Lee A. (e_1_2_9_61_2) 2000
e_1_2_9_126_2
e_1_2_9_122_2
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_79_2
e_1_2_9_41_2
e_1_2_9_60_2
Karčiauskas K. (e_1_2_9_45_2) 2007; 26
e_1_2_9_83_2
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_6_2
e_1_2_9_119_2
e_1_2_9_2_2
e_1_2_9_111_2
Schaefer S. (e_1_2_9_116_2) 2003
e_1_2_9_115_2
e_1_2_9_134_2
Han B. (e_1_2_9_29_2) 2003
e_1_2_9_49_2
e_1_2_9_130_2
e_1_2_9_26_2
e_1_2_9_68_2
e_1_2_9_30_2
e_1_2_9_72_2
e_1_2_9_99_2
Zorin D. (e_1_2_9_138_2) 1996
e_1_2_9_34_2
e_1_2_9_95_2
e_1_2_9_53_2
e_1_2_9_91_2
e_1_2_9_129_2
e_1_2_9_102_2
e_1_2_9_125_2
Sabin M. (e_1_2_9_104_2) 2010
Biermann H. (e_1_2_9_8_2) 2000
e_1_2_9_38_2
e_1_2_9_15_2
e_1_2_9_57_2
Peters J. (e_1_2_9_81_2) 2002
e_1_2_9_19_2
Dodgson N. (e_1_2_9_25_2) 2007
e_1_2_9_88_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_84_2
e_1_2_9_5_2
e_1_2_9_118_2
e_1_2_9_110_2
e_1_2_9_133_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_69_2
e_1_2_9_73_2
Loop C. T. (e_1_2_9_62_2) 1987
e_1_2_9_50_2
Cheng F. (e_1_2_9_16_2) 2006
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_54_2
e_1_2_9_96_2
Zorin D. (e_1_2_9_137_2) 2000
e_1_2_9_109_2
e_1_2_9_92_2
e_1_2_9_101_2
e_1_2_9_105_2
Sederberg T. W. (e_1_2_9_121_2) 1998
e_1_2_9_124_2
Peters J. (e_1_2_9_80_2) 2000
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_120_2
Biermann H. (e_1_2_9_7_2) 2001
Bunnell M. (e_1_2_9_11_2) 2005
e_1_2_9_39_2
Sabin M. A. (e_1_2_9_106_2) 2003
e_1_2_9_89_2
e_1_2_9_20_2
e_1_2_9_66_2
e_1_2_9_43_2
e_1_2_9_85_2
Kobbelt L. (e_1_2_9_44_2) 2000
e_1_2_9_4_2
e_1_2_9_113_2
e_1_2_9_136_2
Ni T. (e_1_2_9_76_2) 2009
e_1_2_9_117_2
e_1_2_9_132_2
e_1_2_9_24_2
e_1_2_9_47_2
e_1_2_9_28_2
Halstead M. (e_1_2_9_31_2) 1993
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
Boier‐Martin I. (e_1_2_9_9_2) 2004
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_55_2
e_1_2_9_108_2
e_1_2_9_70_2
DeRose T. (e_1_2_9_18_2) 1998
Reif U. (e_1_2_9_100_2) 2007
e_1_2_9_127_2
Holt F. (e_1_2_9_32_2) 1996; 76
Schaefer S. (e_1_2_9_107_2) 2003
e_1_2_9_123_2
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_2
e_1_2_9_17_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_86_2
e_1_2_9_21_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_3_2
e_1_2_9_112_2
Peters J. (e_1_2_9_87_2) 2008
e_1_2_9_135_2
e_1_2_9_48_2
e_1_2_9_131_2
Stam J. (e_1_2_9_114_2) 1998
References_xml – reference: Alexa M., Boubekeur T.: Subdivision shading. ACM Transactions on Graphics 27, 5 (2008), 142:1-142:4.
– reference: Zorin D.: A method for analysis of C1-continuity of subdivision surfaces. SIAM Journal on Numerical Analysis 37, 5 (2000), 1677-1708.
– reference: Myles A., Ni T., Peters J.: Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets. Computer Graphics Forum 27, 5 (2008), 1365-1372.
– reference: Zeng X., Chen X.: Computational formula of depth for Catmull-Clark subdivision surfaces. Journal of Computational and Applied Mathematics 195, 1-2 (2006), 252-262.
– reference: Cheng F., Yong J.: Subdivision depth computation for Catmull-Clark subdivision surfaces. Computer Aided Design & Applications 3, 1-4 (2006), 485-494.
– reference: Sabin M. A., Dodgson N. A., Hassan M. F., Ivrissimtzis I. P.: Curvature behaviours at extraordinary points of subdivision surfaces. Computer-Aided Design 35, 11 (2003), 1047-1051.
– reference: Loop C., Schaefer S., Ni T., Castaño I.: Approximating subdivision surfaces with Gregory patches for hardware tessellation. ACM Transactions on Graphics 28 (2009), 151:1-151:9.
– reference: Schaefer S., Warren J.: On C2 triangle/quad subdivision. ACM Transactions on Graphics 24 (2005), 28-36.
– reference: Holt F.: Toward a curvature-continuous stationary subdivision algorithm. Zeitschrift für angewandte Mathematik und Mechanik 76 (1996), 423-424.
– reference: Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350-355.
– reference: Barthe L., Kobbelt L.: Subdivision scheme tuning around extraordinary vertices. Computer Aided Geometric Design 21, 6 (2004), 561-583.
– reference: Morin G., Warren J., Weimer H.: A subdivision scheme for surfaces of revolution. Computer Aided Geometric Design 18, 5 (2001), 483-502.
– reference: Karčiauskas K., Peters J.: Adjustable speed surface subdivision. Computer Aided Geometric Design 26, 9 (2009), 962-969.
– reference: Müller K., Fünfzig C., Reusche L., Hansford D., Farin G. E., Hagen H.: Dinus: Double insertion, nonuniform, stationary subdivision surfaces. ACM Transactions on Graphics 29 (2010), 25:1-25:21.
– reference: Kobbelt L.: Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Computer Graphics Forum 15, 3 (1996), 409-420.
– reference: Litke N., Levin A., Schröder P.: Trimming for subdivision surfaces. Computer Aided Geometric Design 18, 5 (2001), 463-482.
– reference: Myles A., Peters J.: Bi-3 C2 polar subdivision. ACM Transactions on Graphics 28, 3 (2009), 48:1-48:12.
– reference: Peters J., Reif U.: Subdivision Surfaces. Vol. 3 of Geometry and Computing. Springer, Berlin , Heidelberg , 2008.
– reference: Oswald P., Schröder P.: Composite primal/dual -subdivision schemes. Computer Aided Geometric Design 20, 3 (2003), 135-164.
– reference: Wu X., Peters J.: Interference detection for subdivision surfaces. Computer Graphics Forum 23, 3 (2004), 577-584.
– reference: Dyn N., Levin D., Gregory J. A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9, 2 (1990), 160-169.
– reference: Augsdörfer U. H., Dodgson N. A., Sabin M. A.: Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices. Computer Graphics Forum 25, 3 (2006), 263-272.
– reference: Tsitsiklis J. N., Blondel V. D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard-when not impossible-to compute and to approximate. Mathematics of Control, Signals, and Systems 10, 1 (1997), 31-40.
– reference: Piegl L., Tiller W.: Curve and surface constructions using rational B-splines. Computer-Aided Design 19, 9 (1987), 485-498.
– reference: Zorin D.: Smoothness of stationary subdivision on irregular meshes. Constructive Approximation 16, 3 (2000), 359-398.
– reference: Lai S., Cheng F.: Robust and error controllable Boolean operations on free-form solids represented by Catmull-Clark subdivision surfaces. Computer Aided Design and Applications 4, 1-4 (2007), 487-496.
– reference: Peters J., Wu X.: The distance of a subdivision surface to its control polyhedron. Journal of Approximation Theory 161, 2 (2009), 491-507.
– reference: Dyn N., Levin D.: Subdivision schemes in geometric modelling. Acta Numerica 11 (2002), 73-144.
– reference: Li G., Ma W.: A method for constructing interpolatory subdivision schemes and blending subdivisions. Computer Graphics Forum 26, 2 (2007), 185-201.
– reference: Schaefer S., Warren J.: Exact evaluation of limits and tangents for non-polynomial subdivision schemes. Computer Aided Geometric Design 25, 8 (2008), 607-620.
– reference: Yang X.: Surface interpolation of meshes by geometric subdivision. Computer-Aided Design 37, 5 (2005), 497-508.
– reference: Müller K., Reusche L., Fellner D.: Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Transactions on Graphics 25, 2 (2006), 268-292.
– reference: Peters J., Reif U.: Shape characterization of subdivision surfaces-basic principles. Computer Aided Geometric Design 21, 6 (2004), 585-599.
– reference: Stam J., Loop C.: Quad/triangle subdivision. Computer Graphics Forum 22, 1 (2003), 79-85.
– reference: Doo D., Sabin M. A.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 6 (1978), 356-360.
– reference: Peters J., Shiue L. J.: Combining 4- and 3-direction subdivision. ACM Transactions on Graphics 23, 4 (2004), 980-1003.
– reference: Zulti A., Levin A., Levin D., Teicher M.: C2 subdivision over triangulations with one extraordinary point. Computer Aided Geometric Design 23, 2 (2006), 157-178.
– reference: Boier-Martin I., Zorin D.: Differentiable parameterization of Catmull-Clark subdivision surfaces. In Proceedings of the Symposium on Geometry Processing (Nice, France, 2004), Eurographics, pp. 155-164.
– reference: Levin A., Levin D.: Analysis of quasi-uniform subdivision. Applied and Computational Harmonic Analysis 15, 1 (2003), 18-32.
– reference: Maekawa T., Matsumoto Y., Namiki K.: Interpolation by geometric algorithm. Computer-Aided Design 39, 4 (2007), 313-323.
– reference: Dyn N., Levin D., Gregory J. A.: A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4, 4 (1987), 257-268.
– reference: Karčiauskas K., Peters J.: Guided spline surfaces. Computer Aided Geometric Design 26, 1 (2009), 105-116.
– reference: Stewart I. F., Foisy A. R.: Arbitrary-degree subdivision with creases and attributes. Journal of Graphics Tools 9, 4 (2004), 3-17.
– reference: Huang Z., Deng J., Wang G.: A bound on the approximation of a Catmull-Clark subdivision surface by its limit mesh. Computer Aided Geometric Design 25, 7 (2008), 457-469.
– reference: Dodgson N., Sabin M., Southern R.: Preconditions on Geometrically Sensitive Subdivision Schemes. Tech. Rep. UCAM-CL-TR-691, University of Cambridge , 2007.
– reference: Wallner J., Dyn N.: Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Computer Aided Geometric Design 22, 7 (2005), 593-622.
– reference: Dyn N., Levin D., Liu D.: Interpolatory convexity-preserving subdivision schemes for curves and surfaces Computer-Aided Design 24, 4 (1992), 211-216.
– reference: Ni T., Castaño I., Peters J., Mitchell J., Schneider P., Verma V.: Efficient substitutes for subdivision surfaces. In ACM SIGGRAPH Courses (2009), pp. 13:1-13:107.
– reference: Peters J., Umlauf G.: Computing curvature bounds for bounded curvature subdivision. Computer Aided Geometric Design 18, 5 (2001), 455-461.
– reference: Shiue L. J., Jones I., Peters J.: A realtime GPU subdivision kernel. ACM Transactions on Graphics 24, 3 (2005), 1010-1015.
– reference: Karčiauskas K., Peters J.: Bicubic polar subdivision. ACM Transactions on Graphics 26, 4 (2007), 14:1-14:6.
– reference: Augsdörfer U. H., Dodgson N. A., Sabin M. A.: Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra. Computer Aided Geometric Design 28, 3 (2011), 177-197.
– reference: Ivrissimtzis I., Dodgson N., Sabin M.: A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design 21, 1 (2004), 99-109.
– reference: Reif U.: TURBS-Topologically unrestricted rational B-splines. Constructive Approximation 14, 1 (1998), 57-77.
– reference: Lane J. M., Riesenfeld R. F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 1 (1980), 35-46.
– reference: He L., Schaefer S., Hormann K.: Parameterizing subdivision surfaces. ACM Transactions on Graphics 29, 4 (2010), 120:1-120:6.
– reference: Velho L., Zorin D.: 4-8 Subdivision. Computer Aided Geometric Design 18, 5 (2001), 397-427.
– reference: Zorin D., Schröder P.: A unified framework for pryimal/dual quadrilateral subdivision schemes. Computer Aided Geometric Design 18, 5 (2001), 429-454.
– reference: Sederberg T. W., Zheng J., Bakenov A., Nasri A.: T-splines and T-NURCCs. ACM Transactions on Graphics 22, 3 (2003), 477-484.
– reference: Umlauf G.: Analyzing the characteristic map of triangular subdivision schemes. Constructive Approximation 16, 1 (2000), 145-155.
– reference: Ginkel I., Umlauf G.: Symmetry of shape charts. Computer Aided Geometric Design 25, 3 (2008), 131-136.
– reference: Reif U.: A degree estimate for subdivision surfaces of higher regularity. Proceedings of the American Mathematical Society 124, 7 (1996), 2167-2174.
– reference: Peters J., Reif U.: Analysis of algorithms generalizing B-spline subdivision. SIAM Journal on Numerical Analysis 35, 2 (1998), 728-748.
– reference: Reif U.: A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design 12, 2 (1995), 153-174.
– reference: Zorin D., Kristjansson D.: Evaluation of piecewise smooth subdivision surfaces. The Visual Computer 18, 5 (2002), 299-315.
– reference: Karčiauskas K., Peters J.: On the curvature of guided surfaces. Computer Aided Geometric Design 25, 2 (2008), 69-79.
– reference: Labsik U., Greiner G.: Interpolatory -subdivision. Computer Graphics Forum 19, 3 (2000), 131-138.
– reference: Reif U., Schröder P.: Curvature integrability of subdivision surfaces. Advances in Computational Mathematics 14, 2 (2001), 157-174.
– reference: Stam J.: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. Computer Aided Geometric Design 18, 5 (2001), 383-396.
– reference: Ivrissimtzis I. P., Sabin M. A., Dodgson N. A.: On the support of recursive subdivision. ACM Transactions on Graphics 23, 4 (2004), 1043-1060.
– reference: Karčiauskas K., Peters J.: Surfaces with polar structure. Computing 79, 2 (2007), 309-315.
– reference: Prautzsch H.: Smoothness of subdivision surfaces at extraordinary points. Advances in Computational Mathematics 9, 3 (1998), 377-389.
– reference: Karčiauskas K., Peters J.: Concentric tessellation maps and curvature continuous guided surfaces. Computer Aided Geometric Design 24, 2 (2007), 99-111.
– reference: Sederberg T. W., Finnigan G. T., Li X., Lin H., Ipson H.: Watertight trimmed NURBS. ACM Transactions on Graphics 27, 3 (2008), 79:1-79:8.
– reference: Huang Z., Wang G.: Improved error estimate for extraordinary Catmull-Clark subdivision surface patches. The Visual Computer 23, 12 (2007), 1005-1014.
– reference: Prautzsch H., Reif U.: Degree estimates for Ck-piecewise polynomial subdivision surfaces. Advances in Computational Mathematics 10, 2 (1999), 209-217.
– reference: Prautzsch H.: Freeform splines. Computer Aided Geometric Design 14, 3 (1997), 201-206.
– reference: Augsdörfer U. H., Dodgson N. A., Sabin, M. A.: Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra. Computer Aided Geometric Design 28, 3 (2011), 198-211.
– reference: Cashman T. J., Augsdörfer U. H., Dodgson N. A., Sabin M. A.: NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Transactions on Graphics, 28, 3 (2009), 46:1-46:9.
– reference: Loop C., Schaefer S.: Approximating Catmull-Clark subdivision surfaces with bicubic patches. ACM Transactions on Graphics 27, 1 (2008), 8:1-8:11.
– reference: Levin A.: Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16, 5 (1999), 345-354.
– reference: Levin A.: Modified subdivision surfaces with continuous curvature. ACM Transactions on Graphics 25, 3 (2006), 1035-1040.
– reference: Prautzsch H., Chen Q.: Analyzing midpoint subdivision. Computer Aided Geometric Design 28, 7 (2011), 407-419.
– reference: Peters J., Reif U.: The simplest subdivision scheme for smoothing polyhedra. ACM Transactions on Graphics 16, 4 (1997), 420-431.
– reference: Karčiauskas K., Peters J., Reif U.: Shape characterization of subdivision surfaces-case studies. Computer Aided Geometric Design 21, 6 (2004), 601-614.
– reference: Loop C.: Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18 (2002), 316-325.
– reference: Warren J., Weimer H.: Subdivision Methods for Geometric Design. Morgan Kaufmann, San Francisco , CA , USA , 2001.
– volume: 26
  start-page: 14:1
  issue: 4
  year: 2007
  end-page: 14:6
  article-title: Bicubic polar subdivision.
  publication-title: ACM Transactions on Graphics
– volume: 29
  start-page: 120:1
  issue: 4
  year: 2010
  end-page: 120:6
  article-title: Parameterizing subdivision surfaces
  publication-title: ACM Transactions on Graphics
– start-page: 161
  year: 2009
  end-page: 174
– volume: 28
  start-page: 48:1
  issue: 3
  year: 2009
  end-page: 48:12
  article-title: Bi‐3  polar subdivision
  publication-title: ACM Transactions on Graphics
– volume: 24
  start-page: 28
  year: 2005
  end-page: 36
  article-title: On C triangle/quad subdivision.
  publication-title: ACM Transactions on Graphics
– year: 2005
– volume: 21
  start-page: 601
  issue: 6
  year: 2004
  end-page: 614
  article-title: Shape characterization of subdivision surfaces—case studies
  publication-title: Computer Aided Geometric Design
– start-page: 189
  year: 1996
  end-page: 192
– volume: 4
  start-page: 487
  issue: 1–4
  year: 2007
  end-page: 496
  article-title: Robust and error controllable Boolean operations on free‐form solids represented by Catmull‐Clark subdivision surfaces
  publication-title: Computer Aided Design and Applications
– volume: 22
  start-page: 477
  issue: 3
  year: 2003
  end-page: 484
  article-title: T‐splines and T‐NURCCs.
  publication-title: ACM Transactions on Graphics
– volume: 25
  start-page: 457
  issue: 7
  year: 2008
  end-page: 469
  article-title: A bound on the approximation of a Catmull‐Clark subdivision surface by its limit mesh
  publication-title: Computer Aided Geometric Design
– start-page: 321
  year: 2008
  end-page: 326
– start-page: 85
  year: 2000
  end-page: 94
– volume: 24
  start-page: 1010
  issue: 3
  year: 2005
  end-page: 1015
  article-title: A realtime GPU subdivision kernel.
  publication-title: ACM Transactions on Graphics
– volume: 6
  year: 2010
– volume: 14
  start-page: 57
  issue: 1
  year: 1998
  end-page: 77
  article-title: TURBS—Topologically unrestricted rational B‐splines
  publication-title: Constructive Approximation
– volume: 24
  start-page: 211
  issue: 4
  year: 1992
  end-page: 216
  article-title: Interpolatory convexity‐preserving subdivision schemes for curves and surfaces
  publication-title: Computer-Aided Design
– start-page: 353
  year: 2003
  end-page: 362
– volume: 29
  start-page: 25:1
  year: 2010
  end-page: 25:21
  article-title: Dinus: Double insertion, nonuniform, stationary subdivision surfaces
  publication-title: ACM Transactions on Graphics
– volume: 39
  start-page: 313
  issue: 4
  year: 2007
  end-page: 323
  article-title: Interpolation by geometric algorithm
  publication-title: Computer-Aided Design
– volume: 18
  start-page: 316
  year: 2002
  end-page: 325
  article-title: Bounded curvature triangle mesh subdivision with the convex hull property
  publication-title: The Visual Computer
– start-page: 155
  year: 2004
  end-page: 164
  article-title: Differentiable parameterization of Catmull‐Clark subdivision surfaces
  publication-title: Proceedings of the Symposium on Geometry Processing
– volume: 2
  start-page: 35
  issue: 1
  year: 1980
  end-page: 46
  article-title: A theoretical development for the computer generation and display of piecewise polynomial surfaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 23
  start-page: 157
  issue: 2
  year: 2006
  end-page: 178
  article-title: subdivision over triangulations with one extraordinary point
  publication-title: Computer Aided Geometric Design
– volume: 18
  start-page: 463
  issue: 5
  year: 2001
  end-page: 482
  article-title: Trimming for subdivision surfaces
  publication-title: Computer Aided Geometric Design
– volume: 18
  start-page: 455
  issue: 5
  year: 2001
  end-page: 461
  article-title: Computing curvature bounds for bounded curvature subdivision
  publication-title: Computer Aided Geometric Design
– start-page: 159
  year: 2001
  end-page: 166
– volume: 9
  start-page: 377
  issue: 3
  year: 1998
  end-page: 389
  article-title: Smoothness of subdivision surfaces at extraordinary points
  publication-title: Advances in Computational Mathematics
– volume: 4
  start-page: 257
  issue: 4
  year: 1987
  end-page: 268
  article-title: A 4‐point interpolatory subdivision scheme for curve design
  publication-title: Computer Aided Geometric Design
– volume: 124
  start-page: 2167
  issue: 7
  year: 1996
  end-page: 2174
  article-title: A degree estimate for subdivision surfaces of higher regularity
  publication-title: Proceedings of the American Mathematical Society
– start-page: 165
  year: 2004
  end-page: 174
– volume: 18
  start-page: 299
  issue: 5
  year: 2002
  end-page: 315
  article-title: Evaluation of piecewise smooth subdivision surfaces
  publication-title: The Visual Computer
– volume: 27
  start-page: 142:1
  issue: 5
  year: 2008
  end-page: 142:4
  article-title: Subdivision shading
  publication-title: ACM Transactions on Graphics
– volume: 28
  start-page: 407
  issue: 7
  year: 2011
  end-page: 419
  article-title: Analyzing midpoint subdivision
  publication-title: Computer Aided Geometric Design
– year: 2007
– year: 1987
– start-page: 333
  year: 2001
  end-page: 340
– start-page: 91
  year: 2006
  end-page: 100
– volume: 11
  start-page: 73
  year: 2002
  end-page: 144
  article-title: Subdivision schemes in geometric modelling
  publication-title: Acta Numerica
– volume: 3
  year: 2008
– start-page: 698
  year: 2001
  end-page: 707
– start-page: 179
  year: 1999
  end-page: 186
– start-page: 155
  year: 2009
  end-page: 160
– volume: 10
  start-page: 31
  issue: 1
  year: 1997
  end-page: 40
  article-title: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate.
  publication-title: Mathematics of Control, Signals, and Systems
– volume: 28
  start-page: 46:1
  issue: 3
  year: 2009
  end-page: 46:9
  article-title: NURBS with extraordinary points: High‐degree, non‐uniform, rational subdivision schemes
  publication-title: ACM Transactions on Graphics
– volume: 35
  start-page: 728
  issue: 2
  year: 1998
  end-page: 748
  article-title: Analysis of algorithms generalizing B‐spline subdivision
  publication-title: SIAM Journal on Numerical Analysis
– start-page: 411
  year: 1991
  end-page: 414
– year: 2010
– start-page: 23:1
  year: 2000
  end-page: 23:194
– volume: 37
  start-page: 1677
  issue: 5
  year: 2000
  end-page: 1708
  article-title: A method for analysis of  ‐continuity of subdivision surfaces
  publication-title: SIAM Journal on Numerical Analysis
– volume: 23
  start-page: 980
  issue: 4
  year: 2004
  end-page: 1003
  article-title: Combining 4‐ and 3‐direction subdivision
  publication-title: ACM Transactions on Graphics
– start-page: 61
  year: 1996
  end-page: 70
– volume: 27
  start-page: 79:1
  issue: 3
  year: 2008
  end-page: 79:8
  article-title: Watertight trimmed NURBS.
  publication-title: ACM Transactions on Graphics
– volume: 10
  start-page: 356
  issue: 6
  year: 1978
  end-page: 360
  article-title: Behaviour of recursive division surfaces near extraordinary points
  publication-title: Computer-Aided Design
– volume: 21
  start-page: 585
  issue: 6
  year: 2004
  end-page: 599
  article-title: Shape characterization of subdivision surfaces—basic principles
  publication-title: Computer Aided Geometric Design
– volume: 21
  start-page: 99
  issue: 1
  year: 2004
  end-page: 109
  article-title: A generative classification of mesh refinement rules with lattice transformations.
  publication-title: Computer Aided Geometric Design
– volume: 4077
  start-page: 545
  year: 2006
  end-page: 552
– volume: 15
  start-page: 409
  issue: 3
  year: 1996
  end-page: 420
  article-title: Interpolatory subdivision on open quadrilateral nets with arbitrary topology.
  publication-title: Computer Graphics Forum
– volume: 16
  start-page: 345
  issue: 5
  year: 1999
  end-page: 354
  article-title: Combined subdivision schemes for the design of surfaces satisfying boundary conditions
  publication-title: Computer Aided Geometric Design
– start-page: 387
  year: 2003
  end-page: 396
– volume: 13
  start-page: 217
  year: 1998
  end-page: 224
– start-page: 263
  issue: 3
  year: 2006
  end-page: 272
  article-title: Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices
  publication-title: Computer Graphics Forum 25
– start-page: 373
  year: 2003
  end-page: 382
– volume: 5862
  start-page: 299
  year: 2010
  end-page: 315
– start-page: 387
  year: 1998
  end-page: 394
– start-page: 77
  year: 2007
  end-page: 84
– volume: 195
  start-page: 252
  year: 2006
  end-page: 262
  article-title: Computational formula of depth for Catmull‐Clark subdivision surfaces
  publication-title: Journal of Computational and Applied Mathematics
– volume: 4975
  start-page: 33
  year: 2008
  end-page: 46
– start-page: 1373
  year: 2008
  end-page: 1382
– volume: 25
  start-page: 268
  issue: 2
  year: 2006
  end-page: 292
  article-title: Extended subdivision surfaces: Building a bridge between NURBS and Catmull‐Clark surfaces
  publication-title: ACM Transactions on Graphics
– volume: 79
  start-page: 309
  issue: 2
  year: 2007
  end-page: 315
  article-title: Surfaces with polar structure.
  publication-title: Computing
– volume: 16
  start-page: 420
  issue: 4
  year: 1997
  end-page: 431
  article-title: The simplest subdivision scheme for smoothing polyhedra
  publication-title: ACM Transactions on Graphics
– year: 2001
– volume: 25
  start-page: 1035
  issue: 3
  year: 2006
  end-page: 1040
  article-title: Modified subdivision surfaces with continuous curvature
  publication-title: ACM Transactions on Graphics
– start-page: 31
  year: 2006
  end-page: 40
– volume: 26
  start-page: 185
  issue: 2
  year: 2007
  end-page: 201
  article-title: A method for constructing interpolatory subdivision schemes and blending subdivisions
  publication-title: Computer Graphics Forum
– volume: 23
  start-page: 577
  issue: 3
  year: 2004
  end-page: 584
  article-title: Interference detection for subdivision surfaces
  publication-title: Computer Graphics Forum
– volume: 15
  start-page: 18
  issue: 1
  year: 2003
  end-page: 32
  article-title: Analysis of quasi‐uniform subdivision
  publication-title: Applied and Computational Harmonic Analysis
– volume: 23
  start-page: 1005
  issue: 12
  year: 2007
  end-page: 1014
  article-title: Improved error estimate for extraordinary Catmull‐Clark subdivision surface patches
  publication-title: The Visual Computer
– volume: 19
  start-page: 131
  issue: 3
  year: 2000
  end-page: 138
  article-title: Interpolatory ‐subdivision
  publication-title: Computer Graphics Forum
– start-page: 11
  year: 2002
  end-page: 17
– volume: 35
  start-page: 1047
  issue: 11
  year: 2003
  end-page: 1051
  article-title: Curvature behaviours at extraordinary points of subdivision surfaces.
  publication-title: Computer-Aided Design
– volume: 27
  start-page: 8:1
  issue: 1
  year: 2008
  end-page: 8:11
  article-title: Approximating Catmull‐Clark subdivision surfaces with bicubic patches
  publication-title: ACM Transactions on Graphics
– volume: 161
  start-page: 491
  issue: 2
  year: 2009
  end-page: 507
  article-title: The distance of a subdivision surface to its control polyhedron
  publication-title: Journal of Approximation Theory
– volume: 20
  start-page: 135
  issue: 3
  year: 2003
  end-page: 164
  article-title: Composite primal/dual ‐subdivision schemes
  publication-title: Computer Aided Geometric Design
– volume: 18
  start-page: 397
  issue: 5
  year: 2001
  end-page: 427
  article-title: 4–8 Subdivision.
  publication-title: Computer Aided Geometric Design
– volume: 26
  start-page: 105
  issue: 1
  year: 2009
  end-page: 116
  article-title: Guided spline surfaces.
  publication-title: Computer Aided Geometric Design
– volume: 25
  start-page: 131
  issue: 3
  year: 2008
  end-page: 136
  article-title: Symmetry of shape charts
  publication-title: Computer Aided Geometric Design
– start-page: 163
  year: 2000
  end-page: 170
– volume: 18
  start-page: 483
  issue: 5
  year: 2001
  end-page: 502
  article-title: A subdivision scheme for surfaces of revolution
  publication-title: Computer Aided Geometric Design
– volume: 10
  start-page: 350
  issue: 6
  year: 1978
  end-page: 355
  article-title: Recursively generated B‐spline surfaces on arbitrary topological meshes
  publication-title: Computer-Aided Design
– volume: 28
  start-page: 198
  issue: 3
  year: 2011
  end-page: 211
  article-title: Artifact analysis on triangular box‐splines and subdivision surfaces defined by triangular polyhedra
  publication-title: Computer Aided Geometric Design
– volume: 25
  start-page: 607
  issue: 8
  year: 2008
  end-page: 620
  article-title: Exact evaluation of limits and tangents for non‐polynomial subdivision schemes.
  publication-title: Computer Aided Geometric Design
– volume: 14
  start-page: 157
  issue: 2
  year: 2001
  end-page: 174
  article-title: Curvature integrability of subdivision surfaces
  publication-title: Advances in Computational Mathematics
– volume: 76
  start-page: 423
  year: 1996
  end-page: 424
  article-title: Toward a curvature‐continuous stationary subdivision algorithm
  publication-title: Zeitschrift für angewandte Mathematik und Mechanik
– start-page: 3
  year: 2008
  end-page: 9
– volume: 28
  start-page: 151:1
  year: 2009
  end-page: 151:9
  article-title: Approximating subdivision surfaces with Gregory patches for hardware tessellation
  publication-title: ACM Transactions on Graphics
– volume: 37
  start-page: 497
  issue: 5
  year: 2005
  end-page: 508
  article-title: Surface interpolation of meshes by geometric subdivision
  publication-title: Computer-Aided Design
– volume: 9
  start-page: 160
  issue: 2
  year: 1990
  end-page: 169
  article-title: A butterfly subdivision scheme for surface interpolation with tension control
  publication-title: ACM Transactions on Graphics
– start-page: 187
  year: 2003
  end-page: 197
– volume: 22
  start-page: 79
  issue: 1
  year: 2003
  end-page: 85
  article-title: Quad/triangle subdivision.
  publication-title: Computer Graphics Forum
– volume: 4035
  start-page: 404
  year: 2006
  end-page: 416
– volume: 4647
  start-page: 364
  year: 2007
  end-page: 377
– start-page: 185
  year: 2001
  end-page: 194
– start-page: 203
  year: 2005
  end-page: 230
– volume: 26
  start-page: 962
  issue: 9
  year: 2009
  end-page: 969
  article-title: Adjustable speed surface subdivision.
  publication-title: Computer Aided Geometric Design
– volume: 9
  start-page: 3
  issue: 4
  year: 2004
  end-page: 17
  article-title: Arbitrary‐degree subdivision with creases and attributes.
  publication-title: Journal of Graphics Tools
– year: 2003
– volume: 24
  start-page: 99
  issue: 2
  year: 2007
  end-page: 111
  article-title: Concentric tessellation maps and curvature continuous guided surfaces.
  publication-title: Computer Aided Geometric Design
– start-page: 216
  year: 2001
  end-page: 225
– volume: 18
  start-page: 383
  issue: 5
  year: 2001
  end-page: 396
  article-title: On subdivision schemes generalizing uniform B‐spline surfaces of arbitrary degree.
  publication-title: Computer Aided Geometric Design
– start-page: 163
  year: 2006
  end-page: 171
– start-page: 103
  year: 2000
  end-page: 112
– volume: 10
  start-page: 209
  issue: 2
  year: 1999
  end-page: 217
  article-title: Degree estimates for ‐piecewise polynomial subdivision surfaces
  publication-title: Advances in Computational Mathematics
– volume: 28
  start-page: 177
  issue: 3
  year: 2011
  end-page: 197
  article-title: Artifact analysis on B‐splines, box‐splines and other surfaces defined by quadrilateral polyhedra
  publication-title: Computer Aided Geometric Design
– start-page: 233
  year: 2007
  end-page: 240
– volume: 25
  start-page: 69
  issue: 2
  year: 2008
  end-page: 79
  article-title: On the curvature of guided surfaces.
  publication-title: Computer Aided Geometric Design
– volume: 14
  start-page: 201
  issue: 3
  year: 1997
  end-page: 206
  article-title: Freeform splines
  publication-title: Computer Aided Geometric Design
– start-page: 321
  year: 2007
  end-page: 330
– volume: 334
  start-page: 55
  year: 2002
– volume: 18
  start-page: 429
  issue: 5
  year: 2001
  end-page: 454
  article-title: A unified framework for pryimal/dual quadrilateral subdivision schemes
  publication-title: Computer Aided Geometric Design
– start-page: 113
  year: 2000
  end-page: 120
– start-page: 85
  year: 1998
  end-page: 94
– volume: 23
  start-page: 1043
  issue: 4
  year: 2004
  end-page: 1060
  article-title: On the support of recursive subdivision.
  publication-title: ACM Transactions on Graphics
– volume: 21
  start-page: 561
  issue: 6
  year: 2004
  end-page: 583
  article-title: Subdivision scheme tuning around extraordinary vertices
  publication-title: Computer Aided Geometric Design
– start-page: 13:1
  year: 2009
  end-page: 13:107
  article-title: Efficient substitutes for subdivision surfaces
  publication-title: ACM SIGGRAPH Courses
– volume: 16
  start-page: 359
  issue: 3
  year: 2000
  end-page: 398
  article-title: Smoothness of stationary subdivision on irregular meshes
  publication-title: Constructive Approximation
– start-page: 255
  year: 2000
  end-page: 258
– volume: 27
  start-page: 1365
  issue: 5
  year: 2008
  end-page: 1372
  article-title: Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets
  publication-title: Computer Graphics Forum
– volume: 3
  start-page: 485
  issue: 1–4
  year: 2006
  end-page: 494
  article-title: Subdivision depth computation for Catmull‐Clark subdivision surfaces
  publication-title: Computer Aided Design & Applications
– start-page: 157
  year: 1978
  end-page: 165
– volume: 22
  start-page: 593
  issue: 7
  year: 2005
  end-page: 622
  article-title: Convergence and  analysis of subdivision schemes on manifolds by proximity
  publication-title: Computer Aided Geometric Design
– volume: 19
  start-page: 485
  issue: 9
  year: 1987
  end-page: 498
  article-title: Curve and surface constructions using rational B‐splines
  publication-title: Computer-Aided Design
– volume: 12
  start-page: 153
  issue: 2
  year: 1995
  end-page: 174
  article-title: A unified approach to subdivision algorithms near extraordinary vertices
  publication-title: Computer Aided Geometric Design
– volume: 16
  start-page: 145
  issue: 1
  year: 2000
  end-page: 155
  article-title: Analyzing the characteristic map of triangular subdivision schemes.
  publication-title: Constructive Approximation
– start-page: 35
  year: 1993
  end-page: 44
– start-page: 395
  year: 1998
  end-page: 404
– ident: e_1_2_9_57_2
  doi: 10.1111/1467-8659.00405
– ident: e_1_2_9_43_2
  doi: 10.1111/1467-8659.1530409
– ident: e_1_2_9_123_2
  doi: 10.1007/s003659910006
– ident: e_1_2_9_38_2
  doi: 10.1007/3-540-45545-0_81
– ident: e_1_2_9_23_2
– start-page: 353
  volume-title: Curve and Surface Fitting: Saint‐Malo 2002.
  year: 2003
  ident: e_1_2_9_106_2
– ident: e_1_2_9_84_2
  doi: 10.1137/S0036142996304346
– start-page: 103
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 2000
  ident: e_1_2_9_44_2
– volume-title: Preconditions on Geometrically Sensitive Subdivision Schemes
  year: 2007
  ident: e_1_2_9_25_2
– ident: e_1_2_9_119_2
  doi: 10.1016/j.cagd.2008.06.005
– ident: e_1_2_9_14_2
  doi: 10.1016/0010-4485(78)90110-0
– ident: e_1_2_9_49_2
  doi: 10.1016/j.cagd.2009.07.006
– ident: e_1_2_9_124_2
  doi: 10.1145/364338.364387
– volume-title: Subdivision Methods for Geometric Design
  year: 2001
  ident: e_1_2_9_128_2
– ident: e_1_2_9_93_2
  doi: 10.1007/978-3-7091-6444-0_17
– ident: e_1_2_9_97_2
  doi: 10.1016/0167-8396(94)00007-F
– ident: e_1_2_9_15_2
  doi: 10.1007/11802914_39
– ident: e_1_2_9_51_2
  doi: 10.1016/j.cagd.2004.04.005
– ident: e_1_2_9_95_2
  doi: 10.1016/j.jat.2008.10.012
– ident: e_1_2_9_19_2
  doi: 10.1017/S0962492902000028
– ident: e_1_2_9_39_2
  doi: 10.1145/1027411.1027417
– start-page: 85
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 1998
  ident: e_1_2_9_18_2
– ident: e_1_2_9_105_2
  doi: 10.1109/SMA.2001.923393
– ident: e_1_2_9_42_2
  doi: 10.1145/1507149.1507174
– ident: e_1_2_9_47_2
  doi: 10.1007/s00607-006-0207-x
– ident: e_1_2_9_122_2
  doi: 10.1007/BF01219774
– ident: e_1_2_9_132_2
  doi: 10.1016/j.cagd.2005.06.001
– ident: e_1_2_9_77_2
  doi: 10.1109/SMI.2008.4547938
– volume-title: Geometry and Computing
  year: 2010
  ident: e_1_2_9_104_2
– ident: e_1_2_9_27_2
– ident: e_1_2_9_5_2
  doi: 10.1016/j.cagd.2011.01.003
– ident: e_1_2_9_65_2
  doi: 10.1109/TPAMI.1980.4766968
– ident: e_1_2_9_126_2
  doi: 10.1016/j.cagd.2005.06.003
– ident: e_1_2_9_129_2
  doi: 10.1016/j.cad.2004.10.008
– ident: e_1_2_9_109_2
  doi: 10.1080/10867651.2004.10504898
– ident: e_1_2_9_52_2
– start-page: 255
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 2000
  ident: e_1_2_9_80_2
– ident: e_1_2_9_35_2
  doi: 10.1007/s00371-007-0173-0
– ident: e_1_2_9_40_2
  doi: 10.1007/978-3-642-01591-5_10
– ident: e_1_2_9_64_2
  doi: 10.1145/1057432.1057454
– ident: e_1_2_9_53_2
  doi: 10.1080/16864360.2007.10738568
– ident: e_1_2_9_134_2
  doi: 10.1007/s003659910016
– start-page: 13:1
  year: 2009
  ident: e_1_2_9_76_2
  article-title: Efficient substitutes for subdivision surfaces
  publication-title: ACM SIGGRAPH Courses
– ident: e_1_2_9_4_2
  doi: 10.1016/j.cagd.2010.04.002
– ident: e_1_2_9_108_2
  doi: 10.1016/S0010-4485(02)00113-6
– start-page: 85
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 2000
  ident: e_1_2_9_61_2
– ident: e_1_2_9_68_2
  doi: 10.1145/1618452.1618497
– ident: e_1_2_9_74_2
  doi: 10.1016/S0167-8396(01)00043-7
– ident: e_1_2_9_66_2
  doi: 10.1145/1330511.1330519
– start-page: 387
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 1998
  ident: e_1_2_9_121_2
– volume: 26
  start-page: 14:1
  issue: 4
  year: 2007
  ident: e_1_2_9_45_2
  article-title: Bicubic polar subdivision.
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/1289603.1289605
– ident: e_1_2_9_99_2
  doi: 10.1007/s003659900063
– ident: e_1_2_9_36_2
  doi: 10.1007/978-3-540-79246-8_3
– ident: e_1_2_9_85_2
  doi: 10.1023/A:1018922530826
– volume-title: Smooth Subdivision Surfaces Based on Triangles
  year: 1987
  ident: e_1_2_9_62_2
– ident: e_1_2_9_75_2
  doi: 10.1145/1364901.1364946
– ident: e_1_2_9_50_2
  doi: 10.1016/j.cagd.2007.12.002
– ident: e_1_2_9_94_2
  doi: 10.1016/S0167-8396(01)00041-3
– ident: e_1_2_9_46_2
  doi: 10.1016/j.cagd.2006.10.006
– ident: e_1_2_9_26_2
  doi: 10.1109/VISUAL.2001.964529
– volume-title: GPU Gems 2: Programming Techniques for High‐Performance Graphics and General‐Purpose Computation
  year: 2005
  ident: e_1_2_9_11_2
– ident: e_1_2_9_96_2
– ident: e_1_2_9_136_2
  doi: 10.1016/S0167-8396(01)00040-1
– ident: e_1_2_9_91_2
  doi: 10.1145/1027411.1027415
– ident: e_1_2_9_103_2
  doi: 10.1007/3-540-26808-1_11
– ident: e_1_2_9_120_2
  doi: 10.1145/882262.882295
– ident: e_1_2_9_89_2
  doi: 10.1023/A:1018945708536
– ident: e_1_2_9_133_2
  doi: 10.1137/S003614299834263X
– start-page: 189
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 1996
  ident: e_1_2_9_138_2
– ident: e_1_2_9_72_2
  doi: 10.1145/1531326.1531354
– ident: e_1_2_9_17_2
  doi: 10.1080/16864360.2006.10738487
– ident: e_1_2_9_21_2
  doi: 10.1145/78956.78958
– start-page: 373
  volume-title: Curve and Surface Fitting: Saint‐Malo 2002.
  year: 2003
  ident: e_1_2_9_116_2
– start-page: 113
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 2000
  ident: e_1_2_9_8_2
– ident: e_1_2_9_28_2
  doi: 10.1016/j.cagd.2007.09.001
– start-page: 55
  volume-title: Topics in Algebraic Geometry and Geometric Modeling: Workshop on Algebraic Geometry and Geometric Modeling
  year: 2002
  ident: e_1_2_9_81_2
– ident: e_1_2_9_90_2
  doi: 10.1007/978-3-7091-7484-5_7
– start-page: 395
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 1998
  ident: e_1_2_9_114_2
– ident: e_1_2_9_30_2
  doi: 10.1016/j.cagd.2008.05.002
– ident: e_1_2_9_101_2
  doi: 10.1023/A:1016685104156
– ident: e_1_2_9_78_2
  doi: 10.1016/S0167-8396(03)00026-8
– ident: e_1_2_9_60_2
  doi: 10.1111/j.1467-8659.2007.01015.x
– ident: e_1_2_9_33_2
  doi: 10.1145/1778765.1778857
– ident: e_1_2_9_56_2
  doi: 10.1007/3-540-44842-X_40
– start-page: 364
  volume-title: Lecture Notes in Computer Science
  year: 2007
  ident: e_1_2_9_100_2
– start-page: 404
  volume-title: Advances in Computer Graphics — CCI 2006
  year: 2006
  ident: e_1_2_9_16_2
– ident: e_1_2_9_37_2
  doi: 10.1016/j.cagd.2003.08.001
– ident: e_1_2_9_118_2
  doi: 10.1109/PG.2007.8
– start-page: 35
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 1993
  ident: e_1_2_9_31_2
– ident: e_1_2_9_82_2
  doi: 10.1007/978-3-642-11620-9_20
– ident: e_1_2_9_131_2
  doi: 10.1007/s003710100149
– ident: e_1_2_9_92_2
  doi: 10.1016/0010-4485(87)90234-X
– ident: e_1_2_9_98_2
  doi: 10.1090/S0002-9939-96-03366-7
– start-page: 187
  volume-title: Curve and Surface Fitting: Saint‐Malo 2002
  year: 2003
  ident: e_1_2_9_29_2
– ident: e_1_2_9_83_2
  doi: 10.1145/263834.263851
– volume-title: Geometry and Computing
  year: 2008
  ident: e_1_2_9_87_2
– ident: e_1_2_9_6_2
  doi: 10.1016/j.cagd.2004.04.003
– ident: e_1_2_9_102_2
  doi: 10.1016/B978-0-12-438660-0.50065-0
– ident: e_1_2_9_69_2
  doi: 10.1145/1805964.1805969
– ident: e_1_2_9_112_2
  doi: 10.1111/1467-8659.t01-2-00647
– ident: e_1_2_9_12_2
  doi: 10.1145/1531326.1531352
– ident: e_1_2_9_67_2
  doi: 10.1111/j.1467-8659.2008.01277.x
– start-page: 23:1
  volume-title: ACM SIGGRAPH Courses
  year: 2000
  ident: e_1_2_9_137_2
– volume: 76
  start-page: 423
  year: 1996
  ident: e_1_2_9_32_2
  article-title: Toward a curvature‐continuous stationary subdivision algorithm
  publication-title: Zeitschrift für angewandte Mathematik und Mechanik
– ident: e_1_2_9_13_2
– ident: e_1_2_9_22_2
  doi: 10.1016/0010-4485(92)90057-H
– ident: e_1_2_9_79_2
  doi: 10.1016/j.cagd.2011.08.002
– ident: e_1_2_9_125_2
  doi: 10.1016/S0167-8396(01)00039-5
– ident: e_1_2_9_110_2
  doi: 10.1145/1360612.1360678
– ident: e_1_2_9_55_2
  doi: 10.1145/1141911.1141990
– ident: e_1_2_9_113_2
  doi: 10.1007/11751540_11
– ident: e_1_2_9_127_2
  doi: 10.1111/j.1467-8659.2004.00789.x
– ident: e_1_2_9_54_2
  doi: 10.1016/S0167-8396(98)00051-X
– ident: e_1_2_9_71_2
  doi: 10.1111/j.1467-8659.2008.01276.x
– ident: e_1_2_9_10_2
  doi: 10.1145/504502.504505
– ident: e_1_2_9_58_2
  doi: 10.1016/S1063-5203(03)00031-9
– ident: e_1_2_9_111_2
  doi: 10.1145/1073204.1073304
– start-page: 155
  year: 2004
  ident: e_1_2_9_9_2
  article-title: Differentiable parameterization of Catmull‐Clark subdivision surfaces
  publication-title: Proceedings of the Symposium on Geometry Processing
  doi: 10.1145/1057432.1057453
– ident: e_1_2_9_41_2
  doi: 10.1145/1294685.1294699
– ident: e_1_2_9_86_2
  doi: 10.1016/j.cagd.2004.04.006
– start-page: 185
  volume-title: Computer Graphics Proceedings, Annual Conference Series
  year: 2001
  ident: e_1_2_9_7_2
– ident: e_1_2_9_115_2
  doi: 10.1016/S0167-8396(01)00038-3
– ident: e_1_2_9_24_2
  doi: 10.1016/0010-4485(78)90111-2
– ident: e_1_2_9_130_2
  doi: 10.1016/j.cam.2005.05.035
– ident: e_1_2_9_117_2
  doi: 10.1145/1037957.1037959
– ident: e_1_2_9_20_2
  doi: 10.1016/0167-8396(87)90001-X
– ident: e_1_2_9_88_2
  doi: 10.1016/S0167-8396(96)00029-5
– ident: e_1_2_9_135_2
– ident: e_1_2_9_2_2
  doi: 10.1145/1409060.1409095
– ident: e_1_2_9_63_2
  doi: 10.1007/s003710100148
– ident: e_1_2_9_59_2
  doi: 10.1016/S0167-8396(01)00042-5
– ident: e_1_2_9_73_2
  doi: 10.1145/1138450.1138455
– ident: e_1_2_9_3_2
  doi: 10.1111/j.1467-8659.2006.00945.x
– ident: e_1_2_9_70_2
  doi: 10.1016/j.cad.2006.12.008
– volume-title: A Factored Interpolatory Subdivision Scheme for Surfaces of Revolution
  year: 2003
  ident: e_1_2_9_107_2
– ident: e_1_2_9_48_2
  doi: 10.1016/j.cagd.2007.06.001
– ident: e_1_2_9_34_2
  doi: 10.1145/1236246.1236280
SSID ssj0004765
Score 2.215125
SecondaryResourceType review_article
Snippet Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth...
Abstract Subdivision surfaces allow smooth free-form surface modelling without topological constraints. They have become a fundamental representation for...
Subdivision surfaces allow smooth free-form surface modelling without topological constraints. They have become a fundamental representation for smooth...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Analysis
Animation
C2 continuity
Computer graphics
evaluation
I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling-Curve
Image processing systems
Modelling
polar subdivision
PTER framework
rendering approximation
Representations
smoothness analysis
solid and object representations
Splines
Strands
Studies
Subdivisions
surface
Topological manifolds
Topology
Title Beyond Catmull-Clark? A Survey of Advances in Subdivision Surface Methods
URI https://api.istex.fr/ark:/67375/WNG-HQP91DND-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2011.02083.x
https://www.proquest.com/docview/923753784
https://www.proquest.com/docview/1038303214
Volume 31
WOSCitedRecordID wos000300836400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swELcmuoftYTAYWteBjIT2lqmO49h-QlVLQdqo2AYab5b_SkgjRU2Lurd9B74hn2TnJC1U7AGhvUSR7YuSO59959z9DqF9J4OTOdNJoHDJpBOJEVokzEhuM2G94HWxCT4aiYsLedrEP8VcmBofYnngFjWjWq-jgmtTPlZykTPZIHGmYE58BnuyFXOswBFrDb4Pz7_eZ0nynC2QviOGzGpczz-ftbJZtSLf5yuW6EN7ttqQhuv_81M20JvGLMW9eh69RS98sYlePwAr3EJf6mQX3NfTK_Bb7_7cVrE9B7iHf8wmN_43Hgfcq0MKSnxZQKuJyV7xOC6OCNp6fFIVrC7fofPh4Vn_OGlKMSQ2I4QmIL48sDQ4HYIw0gqvmdGEahAzhRZwsllwnFrDaCq7EiaGcBZWQ-eDc8LTbbRWjAv_HmFodRKMEugwGQlMGtIVgQRJdehS6duIL3iubINTHstl_FIr_gpXkV0qsktV7FLzNiJLyusaq-MJNJ8qsS4JgHEx1o0z9XN0pI6_nUoyGA0UbaPOQu6qUfNSgXUM7h4XWRvtLXtBP-NPF1348axUEYAezISUwJi8mgRPfjfVPxrGuw_PJeygV9Cc1kHmH9HadDLzO-ilvZlelpPdRj_-AsapDUk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CLRLwwLhNdOMSJMRbUB3Hsf00Ve26onXRgE3szXJ8kSZBOjXtNN74D_zD_RKOk7SsgocJ8RJFvkTJOT72Z-ec7wC8tdJbmTEde4qXVFoRF0KLmBWSm1QYJ3iTbILnuTg7k8dtOqAQC9PwQ6wP3IJl1PN1MPBwIP2nlYuMyZaKM0E88R4BZTfNKBcd6I4-jU-nv8MkecZWVN-BRGbTseevz9pYrbpB8FcbUPQmoK1XpPHWf_2WR_CwBabRoBlJj-GOK5_Agxt0hU_hsAl3iYZ68Q0ffP3jZ-3dsxcNos_L-aX7Hs18NGicCqrovMTSIoR7hQO50MJr46KjOmV19QxOx_snw0ncJmOITUoIjVGBmWeJt9p7UUgjnGaFJlSjoimW4DabecupKRhNZF_i0BDW4HxonbdWOLoNnXJWuucQYamVCEuwokiJZ7IgfeGJl1T7PpWuB3wldGVapvKQMOOr2tixcBXEpYK4VC0uddUDsu550bB13KLPu1qv6w4ouODtxpn6kh-oycdjSUb5SNEe7K4Ur1pDrxTiY9zwcZH24M26Fi00_HbRpZstKxUo6BEoJATbZPUouPW7qeHBONzt_GvH13BvcnI0VdMP-eEu3McmSeNy_gI6i_nSvYS75nJxXs1ftcbyC_d2ETk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KbinNoemTbtKHCqU3l5VlWdIpLLtxUpKa7SM0NyFbEgRab1jvhvTW_9B_mF_Ske3dZmkPofRijKQx9oxG-kaeB8Brq7xVKTeRZ3hJlJVRIY2MeKFEmcjSSdEWmxB5Lk9P1bQrBxRiYdr8EOsDt6AZzXodFNydW_-nlsuUqy4VZ4x44i0Cyn7CFU960J98zE6Of4dJipSvUn2HJDKbjj1_fdbGbtUPjL_cgKLXAW2zI2Xb__Vb7sO9DpiSUTuTHsAtVz2ErWvpCh_BURvuQsZm8Q0t16sfPxvvnj0yIp-W8wv3ncw8GbVOBTU5q7C1COFe4UAujPCmdOR9U7K6fgwn2f7n8WHUFWOIyoRSFqEAU89jb433slCldIYXhjKDgmbYgmY291awsuAsVkOFU0PaEtdD67y10rEn0KtmlXsKBFutQliCHUVCPVcFHUpPvWLGD5lyAxArpuuyy1QeCmZ81RsWi9CBXTqwSzfs0pcDoGvK8zZbxw1o3jRyXRMg44K3m-D6S36gDz9MFZ3kE80GsLsSvO4UvdaIj9HgEzIZwKt1L2po-O1iKjdb1jqkoEegEFMckzaz4MbvpscHWbjb-VfCl3BnOsn08bv8aBfu4oi49Th_Br3FfOmew-3yYnFWz190uvILZnwQtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Catmull-Clark%3F+A+Survey+of+Advances+in+Subdivision+Surface+Methods&rft.jtitle=Computer+graphics+forum&rft.au=Cashman%2C+Thomas+J&rft.date=2012-02-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=31&rft.issue=1&rft.spage=42&rft.epage=61&rft_id=info:doi/10.1111%2Fj.1467-8659.2011.02083.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon