Beyond Catmull-Clark? A Survey of Advances in Subdivision Surface Methods
Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years...
Gespeichert in:
| Veröffentlicht in: | Computer graphics forum Jg. 31; H. 1; S. 42 - 61 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.02.2012
|
| Schlagworte: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why Catmull–Clark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research. |
|---|---|
| AbstractList | Abstract Subdivision surfaces allow smooth free-form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why Catmull-Clark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research. [PUBLICATION ABSTRACT] Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This survey summarizes research on subdivision surfaces over the last 15 years in three major strands: analysis, integration into existing systems and the development of new schemes. We also examine the reason for the low adoption of new schemes with theoretical advantages, explain why Catmull–Clark surfaces have become a de facto standard in geometric modelling, and conclude by identifying directions for future research. |
| Author | Cashman, Thomas J. |
| Author_xml | – sequence: 1 givenname: Thomas J. surname: Cashman fullname: Cashman, Thomas J. organization: Faculty of Informatics, University of Lugano, Lugano, Switzerland thomas.cashman@usi.ch |
| BookMark | eNqNkUFP3DAQhS1EJRbKf4g4cUlqx3HiHAAtoSxIlBYB4mh57bHwko2pnWx3_z0OW3HghC8ejd_3NPO8j3Y71wFCCcEZiefHIiNFWaW8ZHWWY0IynGNOs_UOmnw87KIJJrGuMGN7aD-EBca4qEo2QdfnsHGdThrZL4e2TZtW-pezZJrcD34Fm8SZZKpXslMQEtvF7lzblQ3WjbU3UkHyC_pnp8N39M3INsDh__sAPV7-fGiu0pvfs-tmepOqghCacslLw3KjpTF8XisOks0lobJkksZOUdbM6IqqOaN5jWtQimuVk1qD0ZoDPUDHW99X7_4OEHqxtEFB28oO3BAEwZRTTHNSROnRJ-nCDb6L04k6pxWjFR9Fp1uR8i4ED0Yo28s-bth7advoJ8agxUKMeYoxTzEGLd6DFutowD8ZvHq7lH7zFfRki_6zLWy-zIlmdjlWkU-3vA09rD_4-IWirOKC4ul2Jq7u_tTk4vZCUPoGBQKmKg |
| CitedBy_id | crossref_primary_10_1016_j_cagd_2016_02_010 crossref_primary_10_1111_cgf_13025 crossref_primary_10_1111_cgf_13146 crossref_primary_10_1111_cgf_12448 crossref_primary_10_1016_j_cagd_2019_04_004 crossref_primary_10_1145_2487228_2487231 crossref_primary_10_1016_j_cagd_2023_102207 crossref_primary_10_1111_cgf_12461 crossref_primary_10_1016_j_cad_2013_06_013 crossref_primary_10_1016_j_gmod_2016_05_002 crossref_primary_10_1016_j_cad_2013_12_003 crossref_primary_10_1016_j_cagd_2024_102286 crossref_primary_10_1145_3072959_3073647 crossref_primary_10_1007_s00366_018_0579_5 crossref_primary_10_1007_s00371_015_1175_y crossref_primary_10_1016_j_cagd_2016_02_005 crossref_primary_10_1016_j_cagd_2017_02_008 crossref_primary_10_1111_cgf_14381 crossref_primary_10_1016_j_cagd_2013_11_004 crossref_primary_10_1007_s11042_017_4439_x crossref_primary_10_1016_j_cag_2016_12_001 crossref_primary_10_1016_j_cma_2016_01_005 crossref_primary_10_1145_3272127_3275007 crossref_primary_10_1111_cgf_12711 crossref_primary_10_1016_j_cad_2016_02_002 crossref_primary_10_1145_2766972 crossref_primary_10_1098_rsob_190057 crossref_primary_10_1109_TVCG_2020_2972877 |
| Cites_doi | 10.1111/1467-8659.00405 10.1111/1467-8659.1530409 10.1007/s003659910006 10.1007/3-540-45545-0_81 10.1137/S0036142996304346 10.1016/j.cagd.2008.06.005 10.1016/0010-4485(78)90110-0 10.1016/j.cagd.2009.07.006 10.1145/364338.364387 10.1007/978-3-7091-6444-0_17 10.1016/0167-8396(94)00007-F 10.1007/11802914_39 10.1016/j.cagd.2004.04.005 10.1016/j.jat.2008.10.012 10.1017/S0962492902000028 10.1145/1027411.1027417 10.1109/SMA.2001.923393 10.1145/1507149.1507174 10.1007/s00607-006-0207-x 10.1007/BF01219774 10.1016/j.cagd.2005.06.001 10.1109/SMI.2008.4547938 10.1016/j.cagd.2011.01.003 10.1109/TPAMI.1980.4766968 10.1016/j.cagd.2005.06.003 10.1016/j.cad.2004.10.008 10.1080/10867651.2004.10504898 10.1007/s00371-007-0173-0 10.1007/978-3-642-01591-5_10 10.1145/1057432.1057454 10.1080/16864360.2007.10738568 10.1007/s003659910016 10.1016/j.cagd.2010.04.002 10.1016/S0010-4485(02)00113-6 10.1145/1618452.1618497 10.1016/S0167-8396(01)00043-7 10.1145/1330511.1330519 10.1145/1289603.1289605 10.1007/s003659900063 10.1007/978-3-540-79246-8_3 10.1023/A:1018922530826 10.1145/1364901.1364946 10.1016/j.cagd.2007.12.002 10.1016/S0167-8396(01)00041-3 10.1016/j.cagd.2006.10.006 10.1109/VISUAL.2001.964529 10.1016/S0167-8396(01)00040-1 10.1145/1027411.1027415 10.1007/3-540-26808-1_11 10.1145/882262.882295 10.1023/A:1018945708536 10.1137/S003614299834263X 10.1145/1531326.1531354 10.1080/16864360.2006.10738487 10.1145/78956.78958 10.1016/j.cagd.2007.09.001 10.1007/978-3-7091-7484-5_7 10.1016/j.cagd.2008.05.002 10.1023/A:1016685104156 10.1016/S0167-8396(03)00026-8 10.1111/j.1467-8659.2007.01015.x 10.1145/1778765.1778857 10.1007/3-540-44842-X_40 10.1016/j.cagd.2003.08.001 10.1109/PG.2007.8 10.1007/978-3-642-11620-9_20 10.1007/s003710100149 10.1016/0010-4485(87)90234-X 10.1090/S0002-9939-96-03366-7 10.1145/263834.263851 10.1016/j.cagd.2004.04.003 10.1016/B978-0-12-438660-0.50065-0 10.1145/1805964.1805969 10.1111/1467-8659.t01-2-00647 10.1145/1531326.1531352 10.1111/j.1467-8659.2008.01277.x 10.1016/0010-4485(92)90057-H 10.1016/j.cagd.2011.08.002 10.1016/S0167-8396(01)00039-5 10.1145/1360612.1360678 10.1145/1141911.1141990 10.1007/11751540_11 10.1111/j.1467-8659.2004.00789.x 10.1016/S0167-8396(98)00051-X 10.1111/j.1467-8659.2008.01276.x 10.1145/504502.504505 10.1016/S1063-5203(03)00031-9 10.1145/1073204.1073304 10.1145/1057432.1057453 10.1145/1294685.1294699 10.1016/j.cagd.2004.04.006 10.1016/S0167-8396(01)00038-3 10.1016/0010-4485(78)90111-2 10.1016/j.cam.2005.05.035 10.1145/1037957.1037959 10.1016/0167-8396(87)90001-X 10.1016/S0167-8396(96)00029-5 10.1145/1409060.1409095 10.1007/s003710100148 10.1016/S0167-8396(01)00042-5 10.1145/1138450.1138455 10.1111/j.1467-8659.2006.00945.x 10.1016/j.cad.2006.12.008 10.1016/j.cagd.2007.06.001 10.1145/1236246.1236280 |
| ContentType | Journal Article |
| Copyright | 2012 The Authors
Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd. 2012 The AuthorsComputer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd. |
| Copyright_xml | – notice: 2012 The Authors
Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd. – notice: 2012 The AuthorsComputer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/j.1467-8659.2011.02083.x |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 61 |
| ExternalDocumentID | 2596603191 10_1111_j_1467_8659_2011_02083_x CGF2083 ark_67375_WNG_HQP91DND_3 |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c4113-8a86f52fdaff8b9c8ea5ba13a65a3f8b4695fd73cb532909ecc8dc219defdd8e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300836400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Nov 09 12:10:48 EST 2025 Sun Nov 09 08:21:42 EST 2025 Tue Nov 18 21:00:05 EST 2025 Sat Nov 29 08:10:58 EST 2025 Sun Sep 21 06:23:54 EDT 2025 Sun Sep 21 06:17:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4113-8a86f52fdaff8b9c8ea5ba13a65a3f8b4695fd73cb532909ecc8dc219defdd8e3 |
| Notes | istex:0DD67406ED17A872959757DCF4EFC64CDA63484C ArticleID:CGF2083 ark:/67375/WNG-HQP91DND-3 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 923753784 |
| PQPubID | 30877 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1038303214 proquest_journals_923753784 crossref_citationtrail_10_1111_j_1467_8659_2011_02083_x crossref_primary_10_1111_j_1467_8659_2011_02083_x wiley_primary_10_1111_j_1467_8659_2011_02083_x_CGF2083 istex_primary_ark_67375_WNG_HQP91DND_3 |
| PublicationCentury | 2000 |
| PublicationDate | February 2012 |
| PublicationDateYYYYMMDD | 2012-02-01 |
| PublicationDate_xml | – month: 02 year: 2012 text: February 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2012 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Umlauf G.: Analyzing the characteristic map of triangular subdivision schemes. Constructive Approximation 16, 1 (2000), 145-155. Myles A., Ni T., Peters J.: Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets. Computer Graphics Forum 27, 5 (2008), 1365-1372. Sabin M. A., Dodgson N. A., Hassan M. F., Ivrissimtzis I. P.: Curvature behaviours at extraordinary points of subdivision surfaces. Computer-Aided Design 35, 11 (2003), 1047-1051. Ivrissimtzis I., Dodgson N., Sabin M.: A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design 21, 1 (2004), 99-109. Karčiauskas K., Peters J., Reif U.: Shape characterization of subdivision surfaces-case studies. Computer Aided Geometric Design 21, 6 (2004), 601-614. Shiue L. J., Jones I., Peters J.: A realtime GPU subdivision kernel. ACM Transactions on Graphics 24, 3 (2005), 1010-1015. Loop C., Schaefer S.: Approximating Catmull-Clark subdivision surfaces with bicubic patches. ACM Transactions on Graphics 27, 1 (2008), 8:1-8:11. Levin A.: Modified subdivision surfaces with continuous curvature. ACM Transactions on Graphics 25, 3 (2006), 1035-1040. Loop C., Schaefer S., Ni T., Castaño I.: Approximating subdivision surfaces with Gregory patches for hardware tessellation. ACM Transactions on Graphics 28 (2009), 151:1-151:9. Peters J., Shiue L. J.: Combining 4- and 3-direction subdivision. ACM Transactions on Graphics 23, 4 (2004), 980-1003. Karčiauskas K., Peters J.: Bicubic polar subdivision. ACM Transactions on Graphics 26, 4 (2007), 14:1-14:6. Wallner J., Dyn N.: Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Computer Aided Geometric Design 22, 7 (2005), 593-622. Alexa M., Boubekeur T.: Subdivision shading. ACM Transactions on Graphics 27, 5 (2008), 142:1-142:4. Boier-Martin I., Zorin D.: Differentiable parameterization of Catmull-Clark subdivision surfaces. In Proceedings of the Symposium on Geometry Processing (Nice, France, 2004), Eurographics, pp. 155-164. Reif U., Schröder P.: Curvature integrability of subdivision surfaces. Advances in Computational Mathematics 14, 2 (2001), 157-174. Cheng F., Yong J.: Subdivision depth computation for Catmull-Clark subdivision surfaces. Computer Aided Design & Applications 3, 1-4 (2006), 485-494. Ni T., Castaño I., Peters J., Mitchell J., Schneider P., Verma V.: Efficient substitutes for subdivision surfaces. In ACM SIGGRAPH Courses (2009), pp. 13:1-13:107. Zeng X., Chen X.: Computational formula of depth for Catmull-Clark subdivision surfaces. Journal of Computational and Applied Mathematics 195, 1-2 (2006), 252-262. Zorin D., Kristjansson D.: Evaluation of piecewise smooth subdivision surfaces. The Visual Computer 18, 5 (2002), 299-315. Yang X.: Surface interpolation of meshes by geometric subdivision. Computer-Aided Design 37, 5 (2005), 497-508. Müller K., Reusche L., Fellner D.: Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Transactions on Graphics 25, 2 (2006), 268-292. Oswald P., Schröder P.: Composite primal/dual -subdivision schemes. Computer Aided Geometric Design 20, 3 (2003), 135-164. Dyn N., Levin D., Liu D.: Interpolatory convexity-preserving subdivision schemes for curves and surfaces Computer-Aided Design 24, 4 (1992), 211-216. Myles A., Peters J.: Bi-3 C2 polar subdivision. ACM Transactions on Graphics 28, 3 (2009), 48:1-48:12. Stewart I. F., Foisy A. R.: Arbitrary-degree subdivision with creases and attributes. Journal of Graphics Tools 9, 4 (2004), 3-17. Ivrissimtzis I. P., Sabin M. A., Dodgson N. A.: On the support of recursive subdivision. ACM Transactions on Graphics 23, 4 (2004), 1043-1060. Peters J., Reif U.: Shape characterization of subdivision surfaces-basic principles. Computer Aided Geometric Design 21, 6 (2004), 585-599. Reif U.: A degree estimate for subdivision surfaces of higher regularity. Proceedings of the American Mathematical Society 124, 7 (1996), 2167-2174. Augsdörfer U. H., Dodgson N. A., Sabin, M. A.: Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra. Computer Aided Geometric Design 28, 3 (2011), 198-211. Stam J.: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. Computer Aided Geometric Design 18, 5 (2001), 383-396. Augsdörfer U. H., Dodgson N. A., Sabin M. A.: Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra. Computer Aided Geometric Design 28, 3 (2011), 177-197. Stam J., Loop C.: Quad/triangle subdivision. Computer Graphics Forum 22, 1 (2003), 79-85. Karčiauskas K., Peters J.: On the curvature of guided surfaces. Computer Aided Geometric Design 25, 2 (2008), 69-79. Levin A., Levin D.: Analysis of quasi-uniform subdivision. Applied and Computational Harmonic Analysis 15, 1 (2003), 18-32. Karčiauskas K., Peters J.: Adjustable speed surface subdivision. Computer Aided Geometric Design 26, 9 (2009), 962-969. Karčiauskas K., Peters J.: Guided spline surfaces. Computer Aided Geometric Design 26, 1 (2009), 105-116. Morin G., Warren J., Weimer H.: A subdivision scheme for surfaces of revolution. Computer Aided Geometric Design 18, 5 (2001), 483-502. Loop C.: Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18 (2002), 316-325. Peters J., Reif U.: Subdivision Surfaces. Vol. 3 of Geometry and Computing. Springer, Berlin , Heidelberg , 2008. Holt F.: Toward a curvature-continuous stationary subdivision algorithm. Zeitschrift für angewandte Mathematik und Mechanik 76 (1996), 423-424. Kobbelt L.: Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Computer Graphics Forum 15, 3 (1996), 409-420. Dyn N., Levin D.: Subdivision schemes in geometric modelling. Acta Numerica 11 (2002), 73-144. Müller K., Fünfzig C., Reusche L., Hansford D., Farin G. E., Hagen H.: Dinus: Double insertion, nonuniform, stationary subdivision surfaces. ACM Transactions on Graphics 29 (2010), 25:1-25:21. Schaefer S., Warren J.: On C2 triangle/quad subdivision. ACM Transactions on Graphics 24 (2005), 28-36. Dyn N., Levin D., Gregory J. A.: A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4, 4 (1987), 257-268. Doo D., Sabin M. A.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 6 (1978), 356-360. Barthe L., Kobbelt L.: Subdivision scheme tuning around extraordinary vertices. Computer Aided Geometric Design 21, 6 (2004), 561-583. Karčiauskas K., Peters J.: Surfaces with polar structure. Computing 79, 2 (2007), 309-315. Maekawa T., Matsumoto Y., Namiki K.: Interpolation by geometric algorithm. Computer-Aided Design 39, 4 (2007), 313-323. Zorin D., Schröder P.: A unified framework for pryimal/dual quadrilateral subdivision schemes. Computer Aided Geometric Design 18, 5 (2001), 429-454. Cashman T. J., Augsdörfer U. H., Dodgson N. A., Sabin M. A.: NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Transactions on Graphics, 28, 3 (2009), 46:1-46:9. Dodgson N., Sabin M., Southern R.: Preconditions on Geometrically Sensitive Subdivision Schemes. Tech. Rep. UCAM-CL-TR-691, University of Cambridge , 2007. Li G., Ma W.: A method for constructing interpolatory subdivision schemes and blending subdivisions. Computer Graphics Forum 26, 2 (2007), 185-201. Piegl L., Tiller W.: Curve and surface constructions using rational B-splines. Computer-Aided Design 19, 9 (1987), 485-498. Wu X., Peters J.: Interference detection for subdivision surfaces. Computer Graphics Forum 23, 3 (2004), 577-584. Dyn N., Levin D., Gregory J. A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9, 2 (1990), 160-169. Litke N., Levin A., Schröder P.: Trimming for subdivision surfaces. Computer Aided Geometric Design 18, 5 (2001), 463-482. Peters J., Reif U.: The simplest subdivision scheme for smoothing polyhedra. ACM Transactions on Graphics 16, 4 (1997), 420-431. Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350-355. Prautzsch H., Chen Q.: Analyzing midpoint subdivision. Computer Aided Geometric Design 28, 7 (2011), 407-419. Peters J., Wu X.: The distance of a subdivision surface to its control polyhedron. Journal of Approximation Theory 161, 2 (2009), 491-507. Zorin D.: A method for analysis of C1-continuity of subdivision surfaces. SIAM Journal on Numerical Analysis 37, 5 (2000), 1677-1708. Karčiauskas K., Peters J.: Concentric tessellation maps and curvature continuous guided surfaces. Computer Aided Geometric Design 24, 2 (2007), 99-111. He L., Schaefer S., Hormann K.: Parameterizing subdivision surfaces. ACM Transactions on Graphics 29, 4 (2010), 120:1-120:6. Reif U.: TURBS-Topologically unrestricted rational B-splines. Constructive Approximation 14, 1 (1998), 57-77. Schaefer S., Warren J.: Exact evaluation of limits and tangents for non-polynomial subdivision schemes. Computer Aided Geometric Design 25, 8 (2008), 607-620. Huang Z., Wang G.: Improved error estimate for extraordinary Catmull-Clark subdivision surface patches. The Visual Computer 23, 12 (2007), 1005-1014. Prautzsch H., Reif U.: Degree estimates for Ck-piecewise polynomial subdivision surfaces. Advances in Computational Mathematics 10, 2 (1999), 209-217. Zorin D.: Smoothness of stationary subdivision on irregular meshes. Constructive Approximation 16, 3 (2000), 359-398. Ginkel I., Umlauf G.: Symmetry of shape charts. Computer Aided Geometric Design 25, 3 (2008), 131-136. Levin A.: Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16, 5 (1999), 345-354. Tsitsiklis J. N., Blondel V. D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard-when not impossible-to compute and to approximate. Mathematics of Control, Signals, and Systems 10, 1 (1997), 2004; 21 2007; 39 2002; 18 1987; 4 2004; 23 2002; 11 2004; 9 2003; 15 2008; 3 2006; 4035 2006; 4077 1996; 76 2007; 79 2005; 22 1978 2005; 24 2000; 19 2000; 16 2001 2006; 23 2000 1997; 10 2010; 29 2007; 4647 1999; 16 1997; 14 2008; 27 2006; 25 2008; 25 1987 1997; 16 1999; 10 2007; 4 2009; 161 2001; 18 2011; 28 2005; 37 2007; 23 2001; 14 2007; 24 2010; 6 2007; 26 1998; 14 1998; 13 2010 1978; 10 2002; 334 1995; 12 1998 2009 2003; 35 2008 2006; 195 2007 1996 2006 2005 2006; 3 2004 1993 2003 2002 1991 1987; 19 1996; 124 1996; 15 2009; 26 2009; 28 1999 2008; 4975 2000; 37 1980; 2 1992; 24 1990; 9 2010; 5862 2003; 20 1998; 9 2003; 22 1998; 35 e_1_2_9_52_2 e_1_2_9_98_2 e_1_2_9_71_2 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_94_2 Warren J. (e_1_2_9_128_2) 2001 e_1_2_9_75_2 e_1_2_9_90_2 Lee A. (e_1_2_9_61_2) 2000 e_1_2_9_126_2 e_1_2_9_122_2 e_1_2_9_103_2 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_79_2 e_1_2_9_41_2 e_1_2_9_60_2 Karčiauskas K. (e_1_2_9_45_2) 2007; 26 e_1_2_9_83_2 e_1_2_9_22_2 e_1_2_9_64_2 e_1_2_9_6_2 e_1_2_9_119_2 e_1_2_9_2_2 e_1_2_9_111_2 Schaefer S. (e_1_2_9_116_2) 2003 e_1_2_9_115_2 e_1_2_9_134_2 Han B. (e_1_2_9_29_2) 2003 e_1_2_9_49_2 e_1_2_9_130_2 e_1_2_9_26_2 e_1_2_9_68_2 e_1_2_9_30_2 e_1_2_9_72_2 e_1_2_9_99_2 Zorin D. (e_1_2_9_138_2) 1996 e_1_2_9_34_2 e_1_2_9_95_2 e_1_2_9_53_2 e_1_2_9_91_2 e_1_2_9_129_2 e_1_2_9_102_2 e_1_2_9_125_2 Sabin M. (e_1_2_9_104_2) 2010 Biermann H. (e_1_2_9_8_2) 2000 e_1_2_9_38_2 e_1_2_9_15_2 e_1_2_9_57_2 Peters J. (e_1_2_9_81_2) 2002 e_1_2_9_19_2 Dodgson N. (e_1_2_9_25_2) 2007 e_1_2_9_88_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_84_2 e_1_2_9_5_2 e_1_2_9_118_2 e_1_2_9_110_2 e_1_2_9_133_2 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_69_2 e_1_2_9_73_2 Loop C. T. (e_1_2_9_62_2) 1987 e_1_2_9_50_2 Cheng F. (e_1_2_9_16_2) 2006 e_1_2_9_77_2 e_1_2_9_12_2 e_1_2_9_54_2 e_1_2_9_96_2 Zorin D. (e_1_2_9_137_2) 2000 e_1_2_9_109_2 e_1_2_9_92_2 e_1_2_9_101_2 e_1_2_9_105_2 Sederberg T. W. (e_1_2_9_121_2) 1998 e_1_2_9_124_2 Peters J. (e_1_2_9_80_2) 2000 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_120_2 Biermann H. (e_1_2_9_7_2) 2001 Bunnell M. (e_1_2_9_11_2) 2005 e_1_2_9_39_2 Sabin M. A. (e_1_2_9_106_2) 2003 e_1_2_9_89_2 e_1_2_9_20_2 e_1_2_9_66_2 e_1_2_9_43_2 e_1_2_9_85_2 Kobbelt L. (e_1_2_9_44_2) 2000 e_1_2_9_4_2 e_1_2_9_113_2 e_1_2_9_136_2 Ni T. (e_1_2_9_76_2) 2009 e_1_2_9_117_2 e_1_2_9_132_2 e_1_2_9_24_2 e_1_2_9_47_2 e_1_2_9_28_2 Halstead M. (e_1_2_9_31_2) 1993 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_97_2 Boier‐Martin I. (e_1_2_9_9_2) 2004 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_55_2 e_1_2_9_108_2 e_1_2_9_70_2 DeRose T. (e_1_2_9_18_2) 1998 Reif U. (e_1_2_9_100_2) 2007 e_1_2_9_127_2 Holt F. (e_1_2_9_32_2) 1996; 76 Schaefer S. (e_1_2_9_107_2) 2003 e_1_2_9_123_2 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_36_2 e_1_2_9_17_2 e_1_2_9_40_2 e_1_2_9_63_2 e_1_2_9_86_2 e_1_2_9_21_2 e_1_2_9_67_2 e_1_2_9_82_2 e_1_2_9_3_2 e_1_2_9_112_2 Peters J. (e_1_2_9_87_2) 2008 e_1_2_9_135_2 e_1_2_9_48_2 e_1_2_9_131_2 Stam J. (e_1_2_9_114_2) 1998 |
| References_xml | – reference: Alexa M., Boubekeur T.: Subdivision shading. ACM Transactions on Graphics 27, 5 (2008), 142:1-142:4. – reference: Zorin D.: A method for analysis of C1-continuity of subdivision surfaces. SIAM Journal on Numerical Analysis 37, 5 (2000), 1677-1708. – reference: Myles A., Ni T., Peters J.: Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets. Computer Graphics Forum 27, 5 (2008), 1365-1372. – reference: Zeng X., Chen X.: Computational formula of depth for Catmull-Clark subdivision surfaces. Journal of Computational and Applied Mathematics 195, 1-2 (2006), 252-262. – reference: Cheng F., Yong J.: Subdivision depth computation for Catmull-Clark subdivision surfaces. Computer Aided Design & Applications 3, 1-4 (2006), 485-494. – reference: Sabin M. A., Dodgson N. A., Hassan M. F., Ivrissimtzis I. P.: Curvature behaviours at extraordinary points of subdivision surfaces. Computer-Aided Design 35, 11 (2003), 1047-1051. – reference: Loop C., Schaefer S., Ni T., Castaño I.: Approximating subdivision surfaces with Gregory patches for hardware tessellation. ACM Transactions on Graphics 28 (2009), 151:1-151:9. – reference: Schaefer S., Warren J.: On C2 triangle/quad subdivision. ACM Transactions on Graphics 24 (2005), 28-36. – reference: Holt F.: Toward a curvature-continuous stationary subdivision algorithm. Zeitschrift für angewandte Mathematik und Mechanik 76 (1996), 423-424. – reference: Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350-355. – reference: Barthe L., Kobbelt L.: Subdivision scheme tuning around extraordinary vertices. Computer Aided Geometric Design 21, 6 (2004), 561-583. – reference: Morin G., Warren J., Weimer H.: A subdivision scheme for surfaces of revolution. Computer Aided Geometric Design 18, 5 (2001), 483-502. – reference: Karčiauskas K., Peters J.: Adjustable speed surface subdivision. Computer Aided Geometric Design 26, 9 (2009), 962-969. – reference: Müller K., Fünfzig C., Reusche L., Hansford D., Farin G. E., Hagen H.: Dinus: Double insertion, nonuniform, stationary subdivision surfaces. ACM Transactions on Graphics 29 (2010), 25:1-25:21. – reference: Kobbelt L.: Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Computer Graphics Forum 15, 3 (1996), 409-420. – reference: Litke N., Levin A., Schröder P.: Trimming for subdivision surfaces. Computer Aided Geometric Design 18, 5 (2001), 463-482. – reference: Myles A., Peters J.: Bi-3 C2 polar subdivision. ACM Transactions on Graphics 28, 3 (2009), 48:1-48:12. – reference: Peters J., Reif U.: Subdivision Surfaces. Vol. 3 of Geometry and Computing. Springer, Berlin , Heidelberg , 2008. – reference: Oswald P., Schröder P.: Composite primal/dual -subdivision schemes. Computer Aided Geometric Design 20, 3 (2003), 135-164. – reference: Wu X., Peters J.: Interference detection for subdivision surfaces. Computer Graphics Forum 23, 3 (2004), 577-584. – reference: Dyn N., Levin D., Gregory J. A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9, 2 (1990), 160-169. – reference: Augsdörfer U. H., Dodgson N. A., Sabin M. A.: Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices. Computer Graphics Forum 25, 3 (2006), 263-272. – reference: Tsitsiklis J. N., Blondel V. D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard-when not impossible-to compute and to approximate. Mathematics of Control, Signals, and Systems 10, 1 (1997), 31-40. – reference: Piegl L., Tiller W.: Curve and surface constructions using rational B-splines. Computer-Aided Design 19, 9 (1987), 485-498. – reference: Zorin D.: Smoothness of stationary subdivision on irregular meshes. Constructive Approximation 16, 3 (2000), 359-398. – reference: Lai S., Cheng F.: Robust and error controllable Boolean operations on free-form solids represented by Catmull-Clark subdivision surfaces. Computer Aided Design and Applications 4, 1-4 (2007), 487-496. – reference: Peters J., Wu X.: The distance of a subdivision surface to its control polyhedron. Journal of Approximation Theory 161, 2 (2009), 491-507. – reference: Dyn N., Levin D.: Subdivision schemes in geometric modelling. Acta Numerica 11 (2002), 73-144. – reference: Li G., Ma W.: A method for constructing interpolatory subdivision schemes and blending subdivisions. Computer Graphics Forum 26, 2 (2007), 185-201. – reference: Schaefer S., Warren J.: Exact evaluation of limits and tangents for non-polynomial subdivision schemes. Computer Aided Geometric Design 25, 8 (2008), 607-620. – reference: Yang X.: Surface interpolation of meshes by geometric subdivision. Computer-Aided Design 37, 5 (2005), 497-508. – reference: Müller K., Reusche L., Fellner D.: Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Transactions on Graphics 25, 2 (2006), 268-292. – reference: Peters J., Reif U.: Shape characterization of subdivision surfaces-basic principles. Computer Aided Geometric Design 21, 6 (2004), 585-599. – reference: Stam J., Loop C.: Quad/triangle subdivision. Computer Graphics Forum 22, 1 (2003), 79-85. – reference: Doo D., Sabin M. A.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 6 (1978), 356-360. – reference: Peters J., Shiue L. J.: Combining 4- and 3-direction subdivision. ACM Transactions on Graphics 23, 4 (2004), 980-1003. – reference: Zulti A., Levin A., Levin D., Teicher M.: C2 subdivision over triangulations with one extraordinary point. Computer Aided Geometric Design 23, 2 (2006), 157-178. – reference: Boier-Martin I., Zorin D.: Differentiable parameterization of Catmull-Clark subdivision surfaces. In Proceedings of the Symposium on Geometry Processing (Nice, France, 2004), Eurographics, pp. 155-164. – reference: Levin A., Levin D.: Analysis of quasi-uniform subdivision. Applied and Computational Harmonic Analysis 15, 1 (2003), 18-32. – reference: Maekawa T., Matsumoto Y., Namiki K.: Interpolation by geometric algorithm. Computer-Aided Design 39, 4 (2007), 313-323. – reference: Dyn N., Levin D., Gregory J. A.: A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4, 4 (1987), 257-268. – reference: Karčiauskas K., Peters J.: Guided spline surfaces. Computer Aided Geometric Design 26, 1 (2009), 105-116. – reference: Stewart I. F., Foisy A. R.: Arbitrary-degree subdivision with creases and attributes. Journal of Graphics Tools 9, 4 (2004), 3-17. – reference: Huang Z., Deng J., Wang G.: A bound on the approximation of a Catmull-Clark subdivision surface by its limit mesh. Computer Aided Geometric Design 25, 7 (2008), 457-469. – reference: Dodgson N., Sabin M., Southern R.: Preconditions on Geometrically Sensitive Subdivision Schemes. Tech. Rep. UCAM-CL-TR-691, University of Cambridge , 2007. – reference: Wallner J., Dyn N.: Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Computer Aided Geometric Design 22, 7 (2005), 593-622. – reference: Dyn N., Levin D., Liu D.: Interpolatory convexity-preserving subdivision schemes for curves and surfaces Computer-Aided Design 24, 4 (1992), 211-216. – reference: Ni T., Castaño I., Peters J., Mitchell J., Schneider P., Verma V.: Efficient substitutes for subdivision surfaces. In ACM SIGGRAPH Courses (2009), pp. 13:1-13:107. – reference: Peters J., Umlauf G.: Computing curvature bounds for bounded curvature subdivision. Computer Aided Geometric Design 18, 5 (2001), 455-461. – reference: Shiue L. J., Jones I., Peters J.: A realtime GPU subdivision kernel. ACM Transactions on Graphics 24, 3 (2005), 1010-1015. – reference: Karčiauskas K., Peters J.: Bicubic polar subdivision. ACM Transactions on Graphics 26, 4 (2007), 14:1-14:6. – reference: Augsdörfer U. H., Dodgson N. A., Sabin M. A.: Artifact analysis on B-splines, box-splines and other surfaces defined by quadrilateral polyhedra. Computer Aided Geometric Design 28, 3 (2011), 177-197. – reference: Ivrissimtzis I., Dodgson N., Sabin M.: A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design 21, 1 (2004), 99-109. – reference: Reif U.: TURBS-Topologically unrestricted rational B-splines. Constructive Approximation 14, 1 (1998), 57-77. – reference: Lane J. M., Riesenfeld R. F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 1 (1980), 35-46. – reference: He L., Schaefer S., Hormann K.: Parameterizing subdivision surfaces. ACM Transactions on Graphics 29, 4 (2010), 120:1-120:6. – reference: Velho L., Zorin D.: 4-8 Subdivision. Computer Aided Geometric Design 18, 5 (2001), 397-427. – reference: Zorin D., Schröder P.: A unified framework for pryimal/dual quadrilateral subdivision schemes. Computer Aided Geometric Design 18, 5 (2001), 429-454. – reference: Sederberg T. W., Zheng J., Bakenov A., Nasri A.: T-splines and T-NURCCs. ACM Transactions on Graphics 22, 3 (2003), 477-484. – reference: Umlauf G.: Analyzing the characteristic map of triangular subdivision schemes. Constructive Approximation 16, 1 (2000), 145-155. – reference: Ginkel I., Umlauf G.: Symmetry of shape charts. Computer Aided Geometric Design 25, 3 (2008), 131-136. – reference: Reif U.: A degree estimate for subdivision surfaces of higher regularity. Proceedings of the American Mathematical Society 124, 7 (1996), 2167-2174. – reference: Peters J., Reif U.: Analysis of algorithms generalizing B-spline subdivision. SIAM Journal on Numerical Analysis 35, 2 (1998), 728-748. – reference: Reif U.: A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design 12, 2 (1995), 153-174. – reference: Zorin D., Kristjansson D.: Evaluation of piecewise smooth subdivision surfaces. The Visual Computer 18, 5 (2002), 299-315. – reference: Karčiauskas K., Peters J.: On the curvature of guided surfaces. Computer Aided Geometric Design 25, 2 (2008), 69-79. – reference: Labsik U., Greiner G.: Interpolatory -subdivision. Computer Graphics Forum 19, 3 (2000), 131-138. – reference: Reif U., Schröder P.: Curvature integrability of subdivision surfaces. Advances in Computational Mathematics 14, 2 (2001), 157-174. – reference: Stam J.: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. Computer Aided Geometric Design 18, 5 (2001), 383-396. – reference: Ivrissimtzis I. P., Sabin M. A., Dodgson N. A.: On the support of recursive subdivision. ACM Transactions on Graphics 23, 4 (2004), 1043-1060. – reference: Karčiauskas K., Peters J.: Surfaces with polar structure. Computing 79, 2 (2007), 309-315. – reference: Prautzsch H.: Smoothness of subdivision surfaces at extraordinary points. Advances in Computational Mathematics 9, 3 (1998), 377-389. – reference: Karčiauskas K., Peters J.: Concentric tessellation maps and curvature continuous guided surfaces. Computer Aided Geometric Design 24, 2 (2007), 99-111. – reference: Sederberg T. W., Finnigan G. T., Li X., Lin H., Ipson H.: Watertight trimmed NURBS. ACM Transactions on Graphics 27, 3 (2008), 79:1-79:8. – reference: Huang Z., Wang G.: Improved error estimate for extraordinary Catmull-Clark subdivision surface patches. The Visual Computer 23, 12 (2007), 1005-1014. – reference: Prautzsch H., Reif U.: Degree estimates for Ck-piecewise polynomial subdivision surfaces. Advances in Computational Mathematics 10, 2 (1999), 209-217. – reference: Prautzsch H.: Freeform splines. Computer Aided Geometric Design 14, 3 (1997), 201-206. – reference: Augsdörfer U. H., Dodgson N. A., Sabin, M. A.: Artifact analysis on triangular box-splines and subdivision surfaces defined by triangular polyhedra. Computer Aided Geometric Design 28, 3 (2011), 198-211. – reference: Cashman T. J., Augsdörfer U. H., Dodgson N. A., Sabin M. A.: NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Transactions on Graphics, 28, 3 (2009), 46:1-46:9. – reference: Loop C., Schaefer S.: Approximating Catmull-Clark subdivision surfaces with bicubic patches. ACM Transactions on Graphics 27, 1 (2008), 8:1-8:11. – reference: Levin A.: Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16, 5 (1999), 345-354. – reference: Levin A.: Modified subdivision surfaces with continuous curvature. ACM Transactions on Graphics 25, 3 (2006), 1035-1040. – reference: Prautzsch H., Chen Q.: Analyzing midpoint subdivision. Computer Aided Geometric Design 28, 7 (2011), 407-419. – reference: Peters J., Reif U.: The simplest subdivision scheme for smoothing polyhedra. ACM Transactions on Graphics 16, 4 (1997), 420-431. – reference: Karčiauskas K., Peters J., Reif U.: Shape characterization of subdivision surfaces-case studies. Computer Aided Geometric Design 21, 6 (2004), 601-614. – reference: Loop C.: Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18 (2002), 316-325. – reference: Warren J., Weimer H.: Subdivision Methods for Geometric Design. Morgan Kaufmann, San Francisco , CA , USA , 2001. – volume: 26 start-page: 14:1 issue: 4 year: 2007 end-page: 14:6 article-title: Bicubic polar subdivision. publication-title: ACM Transactions on Graphics – volume: 29 start-page: 120:1 issue: 4 year: 2010 end-page: 120:6 article-title: Parameterizing subdivision surfaces publication-title: ACM Transactions on Graphics – start-page: 161 year: 2009 end-page: 174 – volume: 28 start-page: 48:1 issue: 3 year: 2009 end-page: 48:12 article-title: Bi‐3 polar subdivision publication-title: ACM Transactions on Graphics – volume: 24 start-page: 28 year: 2005 end-page: 36 article-title: On C triangle/quad subdivision. publication-title: ACM Transactions on Graphics – year: 2005 – volume: 21 start-page: 601 issue: 6 year: 2004 end-page: 614 article-title: Shape characterization of subdivision surfaces—case studies publication-title: Computer Aided Geometric Design – start-page: 189 year: 1996 end-page: 192 – volume: 4 start-page: 487 issue: 1–4 year: 2007 end-page: 496 article-title: Robust and error controllable Boolean operations on free‐form solids represented by Catmull‐Clark subdivision surfaces publication-title: Computer Aided Design and Applications – volume: 22 start-page: 477 issue: 3 year: 2003 end-page: 484 article-title: T‐splines and T‐NURCCs. publication-title: ACM Transactions on Graphics – volume: 25 start-page: 457 issue: 7 year: 2008 end-page: 469 article-title: A bound on the approximation of a Catmull‐Clark subdivision surface by its limit mesh publication-title: Computer Aided Geometric Design – start-page: 321 year: 2008 end-page: 326 – start-page: 85 year: 2000 end-page: 94 – volume: 24 start-page: 1010 issue: 3 year: 2005 end-page: 1015 article-title: A realtime GPU subdivision kernel. publication-title: ACM Transactions on Graphics – volume: 6 year: 2010 – volume: 14 start-page: 57 issue: 1 year: 1998 end-page: 77 article-title: TURBS—Topologically unrestricted rational B‐splines publication-title: Constructive Approximation – volume: 24 start-page: 211 issue: 4 year: 1992 end-page: 216 article-title: Interpolatory convexity‐preserving subdivision schemes for curves and surfaces publication-title: Computer-Aided Design – start-page: 353 year: 2003 end-page: 362 – volume: 29 start-page: 25:1 year: 2010 end-page: 25:21 article-title: Dinus: Double insertion, nonuniform, stationary subdivision surfaces publication-title: ACM Transactions on Graphics – volume: 39 start-page: 313 issue: 4 year: 2007 end-page: 323 article-title: Interpolation by geometric algorithm publication-title: Computer-Aided Design – volume: 18 start-page: 316 year: 2002 end-page: 325 article-title: Bounded curvature triangle mesh subdivision with the convex hull property publication-title: The Visual Computer – start-page: 155 year: 2004 end-page: 164 article-title: Differentiable parameterization of Catmull‐Clark subdivision surfaces publication-title: Proceedings of the Symposium on Geometry Processing – volume: 2 start-page: 35 issue: 1 year: 1980 end-page: 46 article-title: A theoretical development for the computer generation and display of piecewise polynomial surfaces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 23 start-page: 157 issue: 2 year: 2006 end-page: 178 article-title: subdivision over triangulations with one extraordinary point publication-title: Computer Aided Geometric Design – volume: 18 start-page: 463 issue: 5 year: 2001 end-page: 482 article-title: Trimming for subdivision surfaces publication-title: Computer Aided Geometric Design – volume: 18 start-page: 455 issue: 5 year: 2001 end-page: 461 article-title: Computing curvature bounds for bounded curvature subdivision publication-title: Computer Aided Geometric Design – start-page: 159 year: 2001 end-page: 166 – volume: 9 start-page: 377 issue: 3 year: 1998 end-page: 389 article-title: Smoothness of subdivision surfaces at extraordinary points publication-title: Advances in Computational Mathematics – volume: 4 start-page: 257 issue: 4 year: 1987 end-page: 268 article-title: A 4‐point interpolatory subdivision scheme for curve design publication-title: Computer Aided Geometric Design – volume: 124 start-page: 2167 issue: 7 year: 1996 end-page: 2174 article-title: A degree estimate for subdivision surfaces of higher regularity publication-title: Proceedings of the American Mathematical Society – start-page: 165 year: 2004 end-page: 174 – volume: 18 start-page: 299 issue: 5 year: 2002 end-page: 315 article-title: Evaluation of piecewise smooth subdivision surfaces publication-title: The Visual Computer – volume: 27 start-page: 142:1 issue: 5 year: 2008 end-page: 142:4 article-title: Subdivision shading publication-title: ACM Transactions on Graphics – volume: 28 start-page: 407 issue: 7 year: 2011 end-page: 419 article-title: Analyzing midpoint subdivision publication-title: Computer Aided Geometric Design – year: 2007 – year: 1987 – start-page: 333 year: 2001 end-page: 340 – start-page: 91 year: 2006 end-page: 100 – volume: 11 start-page: 73 year: 2002 end-page: 144 article-title: Subdivision schemes in geometric modelling publication-title: Acta Numerica – volume: 3 year: 2008 – start-page: 698 year: 2001 end-page: 707 – start-page: 179 year: 1999 end-page: 186 – start-page: 155 year: 2009 end-page: 160 – volume: 10 start-page: 31 issue: 1 year: 1997 end-page: 40 article-title: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate. publication-title: Mathematics of Control, Signals, and Systems – volume: 28 start-page: 46:1 issue: 3 year: 2009 end-page: 46:9 article-title: NURBS with extraordinary points: High‐degree, non‐uniform, rational subdivision schemes publication-title: ACM Transactions on Graphics – volume: 35 start-page: 728 issue: 2 year: 1998 end-page: 748 article-title: Analysis of algorithms generalizing B‐spline subdivision publication-title: SIAM Journal on Numerical Analysis – start-page: 411 year: 1991 end-page: 414 – year: 2010 – start-page: 23:1 year: 2000 end-page: 23:194 – volume: 37 start-page: 1677 issue: 5 year: 2000 end-page: 1708 article-title: A method for analysis of ‐continuity of subdivision surfaces publication-title: SIAM Journal on Numerical Analysis – volume: 23 start-page: 980 issue: 4 year: 2004 end-page: 1003 article-title: Combining 4‐ and 3‐direction subdivision publication-title: ACM Transactions on Graphics – start-page: 61 year: 1996 end-page: 70 – volume: 27 start-page: 79:1 issue: 3 year: 2008 end-page: 79:8 article-title: Watertight trimmed NURBS. publication-title: ACM Transactions on Graphics – volume: 10 start-page: 356 issue: 6 year: 1978 end-page: 360 article-title: Behaviour of recursive division surfaces near extraordinary points publication-title: Computer-Aided Design – volume: 21 start-page: 585 issue: 6 year: 2004 end-page: 599 article-title: Shape characterization of subdivision surfaces—basic principles publication-title: Computer Aided Geometric Design – volume: 21 start-page: 99 issue: 1 year: 2004 end-page: 109 article-title: A generative classification of mesh refinement rules with lattice transformations. publication-title: Computer Aided Geometric Design – volume: 4077 start-page: 545 year: 2006 end-page: 552 – volume: 15 start-page: 409 issue: 3 year: 1996 end-page: 420 article-title: Interpolatory subdivision on open quadrilateral nets with arbitrary topology. publication-title: Computer Graphics Forum – volume: 16 start-page: 345 issue: 5 year: 1999 end-page: 354 article-title: Combined subdivision schemes for the design of surfaces satisfying boundary conditions publication-title: Computer Aided Geometric Design – start-page: 387 year: 2003 end-page: 396 – volume: 13 start-page: 217 year: 1998 end-page: 224 – start-page: 263 issue: 3 year: 2006 end-page: 272 article-title: Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices publication-title: Computer Graphics Forum 25 – start-page: 373 year: 2003 end-page: 382 – volume: 5862 start-page: 299 year: 2010 end-page: 315 – start-page: 387 year: 1998 end-page: 394 – start-page: 77 year: 2007 end-page: 84 – volume: 195 start-page: 252 year: 2006 end-page: 262 article-title: Computational formula of depth for Catmull‐Clark subdivision surfaces publication-title: Journal of Computational and Applied Mathematics – volume: 4975 start-page: 33 year: 2008 end-page: 46 – start-page: 1373 year: 2008 end-page: 1382 – volume: 25 start-page: 268 issue: 2 year: 2006 end-page: 292 article-title: Extended subdivision surfaces: Building a bridge between NURBS and Catmull‐Clark surfaces publication-title: ACM Transactions on Graphics – volume: 79 start-page: 309 issue: 2 year: 2007 end-page: 315 article-title: Surfaces with polar structure. publication-title: Computing – volume: 16 start-page: 420 issue: 4 year: 1997 end-page: 431 article-title: The simplest subdivision scheme for smoothing polyhedra publication-title: ACM Transactions on Graphics – year: 2001 – volume: 25 start-page: 1035 issue: 3 year: 2006 end-page: 1040 article-title: Modified subdivision surfaces with continuous curvature publication-title: ACM Transactions on Graphics – start-page: 31 year: 2006 end-page: 40 – volume: 26 start-page: 185 issue: 2 year: 2007 end-page: 201 article-title: A method for constructing interpolatory subdivision schemes and blending subdivisions publication-title: Computer Graphics Forum – volume: 23 start-page: 577 issue: 3 year: 2004 end-page: 584 article-title: Interference detection for subdivision surfaces publication-title: Computer Graphics Forum – volume: 15 start-page: 18 issue: 1 year: 2003 end-page: 32 article-title: Analysis of quasi‐uniform subdivision publication-title: Applied and Computational Harmonic Analysis – volume: 23 start-page: 1005 issue: 12 year: 2007 end-page: 1014 article-title: Improved error estimate for extraordinary Catmull‐Clark subdivision surface patches publication-title: The Visual Computer – volume: 19 start-page: 131 issue: 3 year: 2000 end-page: 138 article-title: Interpolatory ‐subdivision publication-title: Computer Graphics Forum – start-page: 11 year: 2002 end-page: 17 – volume: 35 start-page: 1047 issue: 11 year: 2003 end-page: 1051 article-title: Curvature behaviours at extraordinary points of subdivision surfaces. publication-title: Computer-Aided Design – volume: 27 start-page: 8:1 issue: 1 year: 2008 end-page: 8:11 article-title: Approximating Catmull‐Clark subdivision surfaces with bicubic patches publication-title: ACM Transactions on Graphics – volume: 161 start-page: 491 issue: 2 year: 2009 end-page: 507 article-title: The distance of a subdivision surface to its control polyhedron publication-title: Journal of Approximation Theory – volume: 20 start-page: 135 issue: 3 year: 2003 end-page: 164 article-title: Composite primal/dual ‐subdivision schemes publication-title: Computer Aided Geometric Design – volume: 18 start-page: 397 issue: 5 year: 2001 end-page: 427 article-title: 4–8 Subdivision. publication-title: Computer Aided Geometric Design – volume: 26 start-page: 105 issue: 1 year: 2009 end-page: 116 article-title: Guided spline surfaces. publication-title: Computer Aided Geometric Design – volume: 25 start-page: 131 issue: 3 year: 2008 end-page: 136 article-title: Symmetry of shape charts publication-title: Computer Aided Geometric Design – start-page: 163 year: 2000 end-page: 170 – volume: 18 start-page: 483 issue: 5 year: 2001 end-page: 502 article-title: A subdivision scheme for surfaces of revolution publication-title: Computer Aided Geometric Design – volume: 10 start-page: 350 issue: 6 year: 1978 end-page: 355 article-title: Recursively generated B‐spline surfaces on arbitrary topological meshes publication-title: Computer-Aided Design – volume: 28 start-page: 198 issue: 3 year: 2011 end-page: 211 article-title: Artifact analysis on triangular box‐splines and subdivision surfaces defined by triangular polyhedra publication-title: Computer Aided Geometric Design – volume: 25 start-page: 607 issue: 8 year: 2008 end-page: 620 article-title: Exact evaluation of limits and tangents for non‐polynomial subdivision schemes. publication-title: Computer Aided Geometric Design – volume: 14 start-page: 157 issue: 2 year: 2001 end-page: 174 article-title: Curvature integrability of subdivision surfaces publication-title: Advances in Computational Mathematics – volume: 76 start-page: 423 year: 1996 end-page: 424 article-title: Toward a curvature‐continuous stationary subdivision algorithm publication-title: Zeitschrift für angewandte Mathematik und Mechanik – start-page: 3 year: 2008 end-page: 9 – volume: 28 start-page: 151:1 year: 2009 end-page: 151:9 article-title: Approximating subdivision surfaces with Gregory patches for hardware tessellation publication-title: ACM Transactions on Graphics – volume: 37 start-page: 497 issue: 5 year: 2005 end-page: 508 article-title: Surface interpolation of meshes by geometric subdivision publication-title: Computer-Aided Design – volume: 9 start-page: 160 issue: 2 year: 1990 end-page: 169 article-title: A butterfly subdivision scheme for surface interpolation with tension control publication-title: ACM Transactions on Graphics – start-page: 187 year: 2003 end-page: 197 – volume: 22 start-page: 79 issue: 1 year: 2003 end-page: 85 article-title: Quad/triangle subdivision. publication-title: Computer Graphics Forum – volume: 4035 start-page: 404 year: 2006 end-page: 416 – volume: 4647 start-page: 364 year: 2007 end-page: 377 – start-page: 185 year: 2001 end-page: 194 – start-page: 203 year: 2005 end-page: 230 – volume: 26 start-page: 962 issue: 9 year: 2009 end-page: 969 article-title: Adjustable speed surface subdivision. publication-title: Computer Aided Geometric Design – volume: 9 start-page: 3 issue: 4 year: 2004 end-page: 17 article-title: Arbitrary‐degree subdivision with creases and attributes. publication-title: Journal of Graphics Tools – year: 2003 – volume: 24 start-page: 99 issue: 2 year: 2007 end-page: 111 article-title: Concentric tessellation maps and curvature continuous guided surfaces. publication-title: Computer Aided Geometric Design – start-page: 216 year: 2001 end-page: 225 – volume: 18 start-page: 383 issue: 5 year: 2001 end-page: 396 article-title: On subdivision schemes generalizing uniform B‐spline surfaces of arbitrary degree. publication-title: Computer Aided Geometric Design – start-page: 163 year: 2006 end-page: 171 – start-page: 103 year: 2000 end-page: 112 – volume: 10 start-page: 209 issue: 2 year: 1999 end-page: 217 article-title: Degree estimates for ‐piecewise polynomial subdivision surfaces publication-title: Advances in Computational Mathematics – volume: 28 start-page: 177 issue: 3 year: 2011 end-page: 197 article-title: Artifact analysis on B‐splines, box‐splines and other surfaces defined by quadrilateral polyhedra publication-title: Computer Aided Geometric Design – start-page: 233 year: 2007 end-page: 240 – volume: 25 start-page: 69 issue: 2 year: 2008 end-page: 79 article-title: On the curvature of guided surfaces. publication-title: Computer Aided Geometric Design – volume: 14 start-page: 201 issue: 3 year: 1997 end-page: 206 article-title: Freeform splines publication-title: Computer Aided Geometric Design – start-page: 321 year: 2007 end-page: 330 – volume: 334 start-page: 55 year: 2002 – volume: 18 start-page: 429 issue: 5 year: 2001 end-page: 454 article-title: A unified framework for pryimal/dual quadrilateral subdivision schemes publication-title: Computer Aided Geometric Design – start-page: 113 year: 2000 end-page: 120 – start-page: 85 year: 1998 end-page: 94 – volume: 23 start-page: 1043 issue: 4 year: 2004 end-page: 1060 article-title: On the support of recursive subdivision. publication-title: ACM Transactions on Graphics – volume: 21 start-page: 561 issue: 6 year: 2004 end-page: 583 article-title: Subdivision scheme tuning around extraordinary vertices publication-title: Computer Aided Geometric Design – start-page: 13:1 year: 2009 end-page: 13:107 article-title: Efficient substitutes for subdivision surfaces publication-title: ACM SIGGRAPH Courses – volume: 16 start-page: 359 issue: 3 year: 2000 end-page: 398 article-title: Smoothness of stationary subdivision on irregular meshes publication-title: Constructive Approximation – start-page: 255 year: 2000 end-page: 258 – volume: 27 start-page: 1365 issue: 5 year: 2008 end-page: 1372 article-title: Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets publication-title: Computer Graphics Forum – volume: 3 start-page: 485 issue: 1–4 year: 2006 end-page: 494 article-title: Subdivision depth computation for Catmull‐Clark subdivision surfaces publication-title: Computer Aided Design & Applications – start-page: 157 year: 1978 end-page: 165 – volume: 22 start-page: 593 issue: 7 year: 2005 end-page: 622 article-title: Convergence and analysis of subdivision schemes on manifolds by proximity publication-title: Computer Aided Geometric Design – volume: 19 start-page: 485 issue: 9 year: 1987 end-page: 498 article-title: Curve and surface constructions using rational B‐splines publication-title: Computer-Aided Design – volume: 12 start-page: 153 issue: 2 year: 1995 end-page: 174 article-title: A unified approach to subdivision algorithms near extraordinary vertices publication-title: Computer Aided Geometric Design – volume: 16 start-page: 145 issue: 1 year: 2000 end-page: 155 article-title: Analyzing the characteristic map of triangular subdivision schemes. publication-title: Constructive Approximation – start-page: 35 year: 1993 end-page: 44 – start-page: 395 year: 1998 end-page: 404 – ident: e_1_2_9_57_2 doi: 10.1111/1467-8659.00405 – ident: e_1_2_9_43_2 doi: 10.1111/1467-8659.1530409 – ident: e_1_2_9_123_2 doi: 10.1007/s003659910006 – ident: e_1_2_9_38_2 doi: 10.1007/3-540-45545-0_81 – ident: e_1_2_9_23_2 – start-page: 353 volume-title: Curve and Surface Fitting: Saint‐Malo 2002. year: 2003 ident: e_1_2_9_106_2 – ident: e_1_2_9_84_2 doi: 10.1137/S0036142996304346 – start-page: 103 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 2000 ident: e_1_2_9_44_2 – volume-title: Preconditions on Geometrically Sensitive Subdivision Schemes year: 2007 ident: e_1_2_9_25_2 – ident: e_1_2_9_119_2 doi: 10.1016/j.cagd.2008.06.005 – ident: e_1_2_9_14_2 doi: 10.1016/0010-4485(78)90110-0 – ident: e_1_2_9_49_2 doi: 10.1016/j.cagd.2009.07.006 – ident: e_1_2_9_124_2 doi: 10.1145/364338.364387 – volume-title: Subdivision Methods for Geometric Design year: 2001 ident: e_1_2_9_128_2 – ident: e_1_2_9_93_2 doi: 10.1007/978-3-7091-6444-0_17 – ident: e_1_2_9_97_2 doi: 10.1016/0167-8396(94)00007-F – ident: e_1_2_9_15_2 doi: 10.1007/11802914_39 – ident: e_1_2_9_51_2 doi: 10.1016/j.cagd.2004.04.005 – ident: e_1_2_9_95_2 doi: 10.1016/j.jat.2008.10.012 – ident: e_1_2_9_19_2 doi: 10.1017/S0962492902000028 – ident: e_1_2_9_39_2 doi: 10.1145/1027411.1027417 – start-page: 85 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 1998 ident: e_1_2_9_18_2 – ident: e_1_2_9_105_2 doi: 10.1109/SMA.2001.923393 – ident: e_1_2_9_42_2 doi: 10.1145/1507149.1507174 – ident: e_1_2_9_47_2 doi: 10.1007/s00607-006-0207-x – ident: e_1_2_9_122_2 doi: 10.1007/BF01219774 – ident: e_1_2_9_132_2 doi: 10.1016/j.cagd.2005.06.001 – ident: e_1_2_9_77_2 doi: 10.1109/SMI.2008.4547938 – volume-title: Geometry and Computing year: 2010 ident: e_1_2_9_104_2 – ident: e_1_2_9_27_2 – ident: e_1_2_9_5_2 doi: 10.1016/j.cagd.2011.01.003 – ident: e_1_2_9_65_2 doi: 10.1109/TPAMI.1980.4766968 – ident: e_1_2_9_126_2 doi: 10.1016/j.cagd.2005.06.003 – ident: e_1_2_9_129_2 doi: 10.1016/j.cad.2004.10.008 – ident: e_1_2_9_109_2 doi: 10.1080/10867651.2004.10504898 – ident: e_1_2_9_52_2 – start-page: 255 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 2000 ident: e_1_2_9_80_2 – ident: e_1_2_9_35_2 doi: 10.1007/s00371-007-0173-0 – ident: e_1_2_9_40_2 doi: 10.1007/978-3-642-01591-5_10 – ident: e_1_2_9_64_2 doi: 10.1145/1057432.1057454 – ident: e_1_2_9_53_2 doi: 10.1080/16864360.2007.10738568 – ident: e_1_2_9_134_2 doi: 10.1007/s003659910016 – start-page: 13:1 year: 2009 ident: e_1_2_9_76_2 article-title: Efficient substitutes for subdivision surfaces publication-title: ACM SIGGRAPH Courses – ident: e_1_2_9_4_2 doi: 10.1016/j.cagd.2010.04.002 – ident: e_1_2_9_108_2 doi: 10.1016/S0010-4485(02)00113-6 – start-page: 85 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 2000 ident: e_1_2_9_61_2 – ident: e_1_2_9_68_2 doi: 10.1145/1618452.1618497 – ident: e_1_2_9_74_2 doi: 10.1016/S0167-8396(01)00043-7 – ident: e_1_2_9_66_2 doi: 10.1145/1330511.1330519 – start-page: 387 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 1998 ident: e_1_2_9_121_2 – volume: 26 start-page: 14:1 issue: 4 year: 2007 ident: e_1_2_9_45_2 article-title: Bicubic polar subdivision. publication-title: ACM Transactions on Graphics doi: 10.1145/1289603.1289605 – ident: e_1_2_9_99_2 doi: 10.1007/s003659900063 – ident: e_1_2_9_36_2 doi: 10.1007/978-3-540-79246-8_3 – ident: e_1_2_9_85_2 doi: 10.1023/A:1018922530826 – volume-title: Smooth Subdivision Surfaces Based on Triangles year: 1987 ident: e_1_2_9_62_2 – ident: e_1_2_9_75_2 doi: 10.1145/1364901.1364946 – ident: e_1_2_9_50_2 doi: 10.1016/j.cagd.2007.12.002 – ident: e_1_2_9_94_2 doi: 10.1016/S0167-8396(01)00041-3 – ident: e_1_2_9_46_2 doi: 10.1016/j.cagd.2006.10.006 – ident: e_1_2_9_26_2 doi: 10.1109/VISUAL.2001.964529 – volume-title: GPU Gems 2: Programming Techniques for High‐Performance Graphics and General‐Purpose Computation year: 2005 ident: e_1_2_9_11_2 – ident: e_1_2_9_96_2 – ident: e_1_2_9_136_2 doi: 10.1016/S0167-8396(01)00040-1 – ident: e_1_2_9_91_2 doi: 10.1145/1027411.1027415 – ident: e_1_2_9_103_2 doi: 10.1007/3-540-26808-1_11 – ident: e_1_2_9_120_2 doi: 10.1145/882262.882295 – ident: e_1_2_9_89_2 doi: 10.1023/A:1018945708536 – ident: e_1_2_9_133_2 doi: 10.1137/S003614299834263X – start-page: 189 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 1996 ident: e_1_2_9_138_2 – ident: e_1_2_9_72_2 doi: 10.1145/1531326.1531354 – ident: e_1_2_9_17_2 doi: 10.1080/16864360.2006.10738487 – ident: e_1_2_9_21_2 doi: 10.1145/78956.78958 – start-page: 373 volume-title: Curve and Surface Fitting: Saint‐Malo 2002. year: 2003 ident: e_1_2_9_116_2 – start-page: 113 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 2000 ident: e_1_2_9_8_2 – ident: e_1_2_9_28_2 doi: 10.1016/j.cagd.2007.09.001 – start-page: 55 volume-title: Topics in Algebraic Geometry and Geometric Modeling: Workshop on Algebraic Geometry and Geometric Modeling year: 2002 ident: e_1_2_9_81_2 – ident: e_1_2_9_90_2 doi: 10.1007/978-3-7091-7484-5_7 – start-page: 395 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 1998 ident: e_1_2_9_114_2 – ident: e_1_2_9_30_2 doi: 10.1016/j.cagd.2008.05.002 – ident: e_1_2_9_101_2 doi: 10.1023/A:1016685104156 – ident: e_1_2_9_78_2 doi: 10.1016/S0167-8396(03)00026-8 – ident: e_1_2_9_60_2 doi: 10.1111/j.1467-8659.2007.01015.x – ident: e_1_2_9_33_2 doi: 10.1145/1778765.1778857 – ident: e_1_2_9_56_2 doi: 10.1007/3-540-44842-X_40 – start-page: 364 volume-title: Lecture Notes in Computer Science year: 2007 ident: e_1_2_9_100_2 – start-page: 404 volume-title: Advances in Computer Graphics — CCI 2006 year: 2006 ident: e_1_2_9_16_2 – ident: e_1_2_9_37_2 doi: 10.1016/j.cagd.2003.08.001 – ident: e_1_2_9_118_2 doi: 10.1109/PG.2007.8 – start-page: 35 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 1993 ident: e_1_2_9_31_2 – ident: e_1_2_9_82_2 doi: 10.1007/978-3-642-11620-9_20 – ident: e_1_2_9_131_2 doi: 10.1007/s003710100149 – ident: e_1_2_9_92_2 doi: 10.1016/0010-4485(87)90234-X – ident: e_1_2_9_98_2 doi: 10.1090/S0002-9939-96-03366-7 – start-page: 187 volume-title: Curve and Surface Fitting: Saint‐Malo 2002 year: 2003 ident: e_1_2_9_29_2 – ident: e_1_2_9_83_2 doi: 10.1145/263834.263851 – volume-title: Geometry and Computing year: 2008 ident: e_1_2_9_87_2 – ident: e_1_2_9_6_2 doi: 10.1016/j.cagd.2004.04.003 – ident: e_1_2_9_102_2 doi: 10.1016/B978-0-12-438660-0.50065-0 – ident: e_1_2_9_69_2 doi: 10.1145/1805964.1805969 – ident: e_1_2_9_112_2 doi: 10.1111/1467-8659.t01-2-00647 – ident: e_1_2_9_12_2 doi: 10.1145/1531326.1531352 – ident: e_1_2_9_67_2 doi: 10.1111/j.1467-8659.2008.01277.x – start-page: 23:1 volume-title: ACM SIGGRAPH Courses year: 2000 ident: e_1_2_9_137_2 – volume: 76 start-page: 423 year: 1996 ident: e_1_2_9_32_2 article-title: Toward a curvature‐continuous stationary subdivision algorithm publication-title: Zeitschrift für angewandte Mathematik und Mechanik – ident: e_1_2_9_13_2 – ident: e_1_2_9_22_2 doi: 10.1016/0010-4485(92)90057-H – ident: e_1_2_9_79_2 doi: 10.1016/j.cagd.2011.08.002 – ident: e_1_2_9_125_2 doi: 10.1016/S0167-8396(01)00039-5 – ident: e_1_2_9_110_2 doi: 10.1145/1360612.1360678 – ident: e_1_2_9_55_2 doi: 10.1145/1141911.1141990 – ident: e_1_2_9_113_2 doi: 10.1007/11751540_11 – ident: e_1_2_9_127_2 doi: 10.1111/j.1467-8659.2004.00789.x – ident: e_1_2_9_54_2 doi: 10.1016/S0167-8396(98)00051-X – ident: e_1_2_9_71_2 doi: 10.1111/j.1467-8659.2008.01276.x – ident: e_1_2_9_10_2 doi: 10.1145/504502.504505 – ident: e_1_2_9_58_2 doi: 10.1016/S1063-5203(03)00031-9 – ident: e_1_2_9_111_2 doi: 10.1145/1073204.1073304 – start-page: 155 year: 2004 ident: e_1_2_9_9_2 article-title: Differentiable parameterization of Catmull‐Clark subdivision surfaces publication-title: Proceedings of the Symposium on Geometry Processing doi: 10.1145/1057432.1057453 – ident: e_1_2_9_41_2 doi: 10.1145/1294685.1294699 – ident: e_1_2_9_86_2 doi: 10.1016/j.cagd.2004.04.006 – start-page: 185 volume-title: Computer Graphics Proceedings, Annual Conference Series year: 2001 ident: e_1_2_9_7_2 – ident: e_1_2_9_115_2 doi: 10.1016/S0167-8396(01)00038-3 – ident: e_1_2_9_24_2 doi: 10.1016/0010-4485(78)90111-2 – ident: e_1_2_9_130_2 doi: 10.1016/j.cam.2005.05.035 – ident: e_1_2_9_117_2 doi: 10.1145/1037957.1037959 – ident: e_1_2_9_20_2 doi: 10.1016/0167-8396(87)90001-X – ident: e_1_2_9_88_2 doi: 10.1016/S0167-8396(96)00029-5 – ident: e_1_2_9_135_2 – ident: e_1_2_9_2_2 doi: 10.1145/1409060.1409095 – ident: e_1_2_9_63_2 doi: 10.1007/s003710100148 – ident: e_1_2_9_59_2 doi: 10.1016/S0167-8396(01)00042-5 – ident: e_1_2_9_73_2 doi: 10.1145/1138450.1138455 – ident: e_1_2_9_3_2 doi: 10.1111/j.1467-8659.2006.00945.x – ident: e_1_2_9_70_2 doi: 10.1016/j.cad.2006.12.008 – volume-title: A Factored Interpolatory Subdivision Scheme for Surfaces of Revolution year: 2003 ident: e_1_2_9_107_2 – ident: e_1_2_9_48_2 doi: 10.1016/j.cagd.2007.06.001 – ident: e_1_2_9_34_2 doi: 10.1145/1236246.1236280 |
| SSID | ssj0004765 |
| Score | 2.215125 |
| SecondaryResourceType | review_article |
| Snippet | Subdivision surfaces allow smooth free‐form surface modelling without topological constraints. They have become a fundamental representation for smooth... Abstract Subdivision surfaces allow smooth free-form surface modelling without topological constraints. They have become a fundamental representation for... Subdivision surfaces allow smooth free-form surface modelling without topological constraints. They have become a fundamental representation for smooth... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 42 |
| SubjectTerms | Analysis Animation C2 continuity Computer graphics evaluation I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling-Curve Image processing systems Modelling polar subdivision PTER framework rendering approximation Representations smoothness analysis solid and object representations Splines Strands Studies Subdivisions surface Topological manifolds Topology |
| Title | Beyond Catmull-Clark? A Survey of Advances in Subdivision Surface Methods |
| URI | https://api.istex.fr/ark:/67375/WNG-HQP91DND-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2011.02083.x https://www.proquest.com/docview/923753784 https://www.proquest.com/docview/1038303214 |
| Volume | 31 |
| WOSCitedRecordID | wos000300836400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swELcmuoftYTAYWteBjIT2lqmO49h-QlVLQdqo2AYab5b_SkgjRU2Lurd9B74hn2TnJC1U7AGhvUSR7YuSO59959z9DqF9J4OTOdNJoHDJpBOJEVokzEhuM2G94HWxCT4aiYsLedrEP8VcmBofYnngFjWjWq-jgmtTPlZykTPZIHGmYE58BnuyFXOswBFrDb4Pz7_eZ0nynC2QviOGzGpczz-ftbJZtSLf5yuW6EN7ttqQhuv_81M20JvGLMW9eh69RS98sYlePwAr3EJf6mQX3NfTK_Bb7_7cVrE9B7iHf8wmN_43Hgfcq0MKSnxZQKuJyV7xOC6OCNp6fFIVrC7fofPh4Vn_OGlKMSQ2I4QmIL48sDQ4HYIw0gqvmdGEahAzhRZwsllwnFrDaCq7EiaGcBZWQ-eDc8LTbbRWjAv_HmFodRKMEugwGQlMGtIVgQRJdehS6duIL3iubINTHstl_FIr_gpXkV0qsktV7FLzNiJLyusaq-MJNJ8qsS4JgHEx1o0z9XN0pI6_nUoyGA0UbaPOQu6qUfNSgXUM7h4XWRvtLXtBP-NPF1348axUEYAezISUwJi8mgRPfjfVPxrGuw_PJeygV9Cc1kHmH9HadDLzO-ilvZlelpPdRj_-AsapDUk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CLRLwwLhNdOMSJMRbUB3Hsf00Ve26onXRgE3szXJ8kSZBOjXtNN74D_zD_RKOk7SsgocJ8RJFvkTJOT72Z-ec7wC8tdJbmTEde4qXVFoRF0KLmBWSm1QYJ3iTbILnuTg7k8dtOqAQC9PwQ6wP3IJl1PN1MPBwIP2nlYuMyZaKM0E88R4BZTfNKBcd6I4-jU-nv8MkecZWVN-BRGbTseevz9pYrbpB8FcbUPQmoK1XpPHWf_2WR_CwBabRoBlJj-GOK5_Agxt0hU_hsAl3iYZ68Q0ffP3jZ-3dsxcNos_L-aX7Hs18NGicCqrovMTSIoR7hQO50MJr46KjOmV19QxOx_snw0ncJmOITUoIjVGBmWeJt9p7UUgjnGaFJlSjoimW4DabecupKRhNZF_i0BDW4HxonbdWOLoNnXJWuucQYamVCEuwokiJZ7IgfeGJl1T7PpWuB3wldGVapvKQMOOr2tixcBXEpYK4VC0uddUDsu550bB13KLPu1qv6w4ouODtxpn6kh-oycdjSUb5SNEe7K4Ur1pDrxTiY9zwcZH24M26Fi00_HbRpZstKxUo6BEoJATbZPUouPW7qeHBONzt_GvH13BvcnI0VdMP-eEu3McmSeNy_gI6i_nSvYS75nJxXs1ftcbyC_d2ETk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KbinNoemTbtKHCqU3l5VlWdIpLLtxUpKa7SM0NyFbEgRab1jvhvTW_9B_mF_Ske3dZmkPofRijKQx9oxG-kaeB8Brq7xVKTeRZ3hJlJVRIY2MeKFEmcjSSdEWmxB5Lk9P1bQrBxRiYdr8EOsDt6AZzXodFNydW_-nlsuUqy4VZ4x44i0Cyn7CFU960J98zE6Of4dJipSvUn2HJDKbjj1_fdbGbtUPjL_cgKLXAW2zI2Xb__Vb7sO9DpiSUTuTHsAtVz2ErWvpCh_BURvuQsZm8Q0t16sfPxvvnj0yIp-W8wv3ncw8GbVOBTU5q7C1COFe4UAujPCmdOR9U7K6fgwn2f7n8WHUFWOIyoRSFqEAU89jb433slCldIYXhjKDgmbYgmY291awsuAsVkOFU0PaEtdD67y10rEn0KtmlXsKBFutQliCHUVCPVcFHUpPvWLGD5lyAxArpuuyy1QeCmZ81RsWi9CBXTqwSzfs0pcDoGvK8zZbxw1o3jRyXRMg44K3m-D6S36gDz9MFZ3kE80GsLsSvO4UvdaIj9HgEzIZwKt1L2po-O1iKjdb1jqkoEegEFMckzaz4MbvpscHWbjb-VfCl3BnOsn08bv8aBfu4oi49Th_Br3FfOmew-3yYnFWz190uvILZnwQtA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Catmull-Clark%3F+A+Survey+of+Advances+in+Subdivision+Surface+Methods&rft.jtitle=Computer+graphics+forum&rft.au=Cashman%2C+Thomas+J&rft.date=2012-02-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=31&rft.issue=1&rft.spage=42&rft.epage=61&rft_id=info:doi/10.1111%2Fj.1467-8659.2011.02083.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |