DenseUNet: densely connected UNet for electron microscopy image segmentation

Electron microscopy (EM) image segmentation plays an important role in computer-aided diagnosis of specific pathogens or disease. However, EM image segmentation is a laborious task and needs to impose experts knowledge, which can take up valuable time from research. Convolutional neural network (CNN...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET image processing Ročník 14; číslo 12; s. 2682 - 2689
Hlavní autori: Cao, Yue, Liu, Shigang, Peng, Yali, Li, Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 16.10.2020
Predmet:
ISSN:1751-9659, 1751-9667
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electron microscopy (EM) image segmentation plays an important role in computer-aided diagnosis of specific pathogens or disease. However, EM image segmentation is a laborious task and needs to impose experts knowledge, which can take up valuable time from research. Convolutional neural network (CNN)-based methods have been proposed for EM image segmentation and achieved considerable progress. Among those CNN-based methods, UNet is regarded as the state-of-the-art method. However, the UNet usually has millions of parameters to increase training difficulty and is limited by the issue of vanishing gradients. To address those problems, the authors present a novel highly parameter efficient method called DenseUNet, which is inspired by the approach that takes particular advantage of recent advances in both UNet and DenseNet. In addition, they successfully apply the weighted loss, which enables us to boost the performance of segmentation. They conduct several comparative experiments on the ISBI 2012 EM dataset. The experimental results show that their method can achieve state-of-the-art results on EM image segmentation without any further post-processing module or pre-training. Moreover, due to smart design of the model, their approach has much less parameters than currently published encoder–decoder architecture variants for this dataset.
AbstractList Electron microscopy (EM) image segmentation plays an important role in computer‐aided diagnosis of specific pathogens or disease. However, EM image segmentation is a laborious task and needs to impose experts knowledge, which can take up valuable time from research. Convolutional neural network (CNN)‐based methods have been proposed for EM image segmentation and achieved considerable progress. Among those CNN‐based methods, UNet is regarded as the state‐of‐the‐art method. However, the UNet usually has millions of parameters to increase training difficulty and is limited by the issue of vanishing gradients. To address those problems, the authors present a novel highly parameter efficient method called DenseUNet, which is inspired by the approach that takes particular advantage of recent advances in both UNet and DenseNet. In addition, they successfully apply the weighted loss, which enables us to boost the performance of segmentation. They conduct several comparative experiments on the ISBI 2012 EM dataset. The experimental results show that their method can achieve state‐of‐the‐art results on EM image segmentation without any further post‐processing module or pre‐training. Moreover, due to smart design of the model, their approach has much less parameters than currently published encoder–decoder architecture variants for this dataset.
Author Li, Jun
Liu, Shigang
Cao, Yue
Peng, Yali
Author_xml – sequence: 1
  givenname: Yue
  surname: Cao
  fullname: Cao, Yue
  organization: 2School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
– sequence: 2
  givenname: Shigang
  orcidid: 0000-0003-0162-3595
  surname: Liu
  fullname: Liu, Shigang
  organization: 2School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
– sequence: 3
  givenname: Yali
  orcidid: 0000-0002-0055-3081
  surname: Peng
  fullname: Peng, Yali
  email: pengyl@snnu.edu.cn
  organization: 2School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
– sequence: 4
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: 3School of Computer Science and Technology, Nanjing Normal University, Nanjing 210046, People's Republic of China
BookMark eNqFkN9LwzAQgINMcJv-Ab711YfO_GjSdm86Nx0MFdmeQ0mvI6NLSlqR_vcmVERE5lOOu_vuLt8EjYw1gNA1wTOCk_xWQxfrxs0oJvmMcJqeoTFJOYlzIdLRd8zzCzRp2wPGPMcZH6PNA5gWds_QzaMyhHUfKWsMqA7KKOSjyroIap9w1kRHrZxtlW36SB-LPUQt7I9guqLT1lyi86qoW7j6eqdot1puF0_x5uVxvbjbxCohhMaEi5xRQRIoKkEISQRjPGEsoypjKskxK7MSqBIcSgwU-xpVRZkpSiuegGBTlA5zwy2tg0oqPVzQuULXkmAZpEgvRXopMkiRQYonyS-ycf4frj_JzAfmQ9fQ_w_I9esbvV9hmmbUw_EAh7aDfXfGizm57OaP_vVyG6b-2NGUFfsEs16XmA
CitedBy_id crossref_primary_10_1007_s11227_024_06710_9
crossref_primary_10_1016_j_bspc_2025_108277
crossref_primary_10_3390_geomatics5010009
crossref_primary_10_1007_s11227_024_06005_z
crossref_primary_10_3390_s24051708
crossref_primary_10_1016_j_bspc_2021_103063
crossref_primary_10_1016_j_cag_2025_104239
crossref_primary_10_1002_mp_15268
crossref_primary_10_1111_mice_12832
crossref_primary_10_1002_mp_16636
crossref_primary_10_3390_sym16040468
crossref_primary_10_7717_peerj_cs_1751
crossref_primary_10_1038_s41597_024_03005_9
crossref_primary_10_1016_j_procs_2023_10_643
crossref_primary_10_1016_j_patcog_2025_112155
crossref_primary_10_1016_j_compbiomed_2022_106033
crossref_primary_10_1002_pat_6506
crossref_primary_10_1016_j_artmed_2025_103133
crossref_primary_10_1007_s11227_025_07794_7
crossref_primary_10_1016_j_biosystemseng_2021_11_016
crossref_primary_10_1016_j_dsp_2024_104637
crossref_primary_10_1109_ACCESS_2023_3326843
crossref_primary_10_3389_fenvs_2024_1443512
crossref_primary_10_3390_app13137583
crossref_primary_10_1109_ACCESS_2024_3404224
crossref_primary_10_1007_s11042_022_12413_1
crossref_primary_10_1371_journal_pone_0325424
crossref_primary_10_1017_S2633903X22000046
crossref_primary_10_1109_ACCESS_2024_3374108
crossref_primary_10_1016_j_uclim_2025_102415
crossref_primary_10_3390_a16110521
crossref_primary_10_1007_s42235_024_00562_y
crossref_primary_10_3233_XST_230413
crossref_primary_10_1016_j_bbe_2023_02_002
crossref_primary_10_1109_ACCESS_2021_3130035
crossref_primary_10_1177_00405175231198266
crossref_primary_10_1016_j_bspc_2025_108213
crossref_primary_10_1109_TMI_2024_3474028
crossref_primary_10_1109_ACCESS_2023_3294179
crossref_primary_10_1007_s11760_022_02388_9
crossref_primary_10_1109_LSENS_2022_3184521
crossref_primary_10_3233_HIS_240024
crossref_primary_10_1109_JSTARS_2022_3226524
crossref_primary_10_1038_s41598_022_18646_2
crossref_primary_10_1016_j_eswa_2022_116588
crossref_primary_10_1109_TAI_2023_3296687
crossref_primary_10_1155_2021_6679603
crossref_primary_10_3390_rs15225342
crossref_primary_10_3390_s25082361
crossref_primary_10_1109_TPAMI_2023_3322735
crossref_primary_10_3390_rs16193622
crossref_primary_10_1038_s41746_025_01753_5
crossref_primary_10_1016_j_media_2023_102920
crossref_primary_10_1109_ACCESS_2024_3502766
crossref_primary_10_1038_s41597_022_01918_x
crossref_primary_10_1016_j_compbiomed_2024_108933
crossref_primary_10_1002_jbio_202300149
crossref_primary_10_1007_s41870_023_01461_x
crossref_primary_10_1109_ACCESS_2022_3211501
crossref_primary_10_1109_ACCESS_2024_3365577
crossref_primary_10_1093_mam_ozaf047
crossref_primary_10_1007_s42235_025_00711_x
crossref_primary_10_1016_j_eswa_2024_126370
crossref_primary_10_1364_AO_462450
crossref_primary_10_1007_s40192_023_00305_7
crossref_primary_10_1016_j_ejmp_2025_104993
crossref_primary_10_3390_sym15101850
crossref_primary_10_1109_ACCESS_2024_3411099
Cites_doi 10.1109/IJCNN.2016.7727258
10.1007/978-3-319-46976-8_19
10.1109/TPAMI.2018.2877660
10.1007/s11042-018-6995-0
10.1109/CVPRW.2018.00121
10.1109/CVPR.2016.90
10.1109/TGRS.2019.2930682
10.1016/j.jneumeth.2014.01.022
10.1016/j.sigpro.2015.09.033
10.1016/j.sigpro.2018.01.013
10.1109/JSTARS.2018.2869376
10.1016/j.ins.2019.11.019
10.1016/j.neucom.2018.12.075
10.1109/JSTSP.2018.2873990
10.1109/CVPR.2019.00177
10.1109/TGRS.2019.2904868
10.1109/TGRS.2019.2961141
10.1109/TVCG.2018.2832136
10.1109/TIP.2018.2839891
10.1109/CVPR.2017.243
10.1016/j.ins.2018.01.023
10.1109/TNNLS.2019.2908982
10.1016/j.media.2017.11.005
10.3390/sym10100467
10.1016/j.jocs.2019.03.003
10.1109/ISMS.2016.14
10.1007/978-3-319-24574-4_28
10.1109/TIP.2019.2959741
10.1016/j.patrec.2018.09.008
10.1109/TCYB.2018.2804326
10.1142/S0218488598000094
10.1109/TMM.2018.2867742
10.1016/j.patcog.2011.11.019
10.1109/TIP.2018.2867740
10.1007/978-3-319-10404-1_13
10.1016/j.neucom.2019.05.103
10.1016/j.asoc.2018.04.015
10.1109/TGRS.2019.2903875
10.1109/TNNLS.2014.2376936
10.1109/ACCESS.2019.2921451
10.1016/j.jocs.2018.12.002
10.1109/TGRS.2019.2896471
10.1109/ACCESS.2019.2960928
10.1016/j.media.2010.06.002
10.1155/2017/2691474
10.1109/TPAMI.2018.2829180
10.1109/ICCV.2017.262
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2019.1527
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 2689
ExternalDocumentID 10_1049_iet_ipr_2019_1527
IPR2BF02782
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No.61873155
– fundername: National Natural Science Foundation of China
  funderid: 61873155; 61702313; 61672333; 61703096
– fundername: National Natural Science Foundation of Shaanxi Province
  funderid: 2018JM6050
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20170691
GroupedDBID 0R
24P
29I
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS
O9-
OCL
P2P
QWB
RIE
RNS
RUI
UNR
ZL0
.DC
0R~
1OC
4.4
8FE
8FG
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4112-156932614eaf61114633543382c83c4903d8de2c65ed0e205432cad8c22f54e63
IEDL.DBID 24P
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582146100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Wed Oct 29 21:13:20 EDT 2025
Tue Nov 18 22:29:32 EST 2025
Wed Jan 22 16:30:25 EST 2025
Wed Oct 14 04:20:18 EDT 2020
Tue Jan 05 21:45:20 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords DenseUNet
smart design
disease
parameter efficient method
diseases
encoding
computer-aided diagnosis
weighted loss
image segmentation
ISBI 2012 EM dataset
electron microscopy
EM image segmentation
convolutional neural nets
electron microscopy image segmentation
CNN-based methods
specific pathogens
medical image processing
convolutional neural network-based methods
encoder-decoder architecture variants
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4112-156932614eaf61114633543382c83c4903d8de2c65ed0e205432cad8c22f54e63
ORCID 0000-0002-0055-3081
0000-0003-0162-3595
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2019.1527
PageCount 8
ParticipantIDs iet_journals_10_1049_iet_ipr_2019_1527
crossref_citationtrail_10_1049_iet_ipr_2019_1527
crossref_primary_10_1049_iet_ipr_2019_1527
wiley_primary_10_1049_iet_ipr_2019_1527_IPR2BF02782
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-10-16
PublicationDateYYYYMMDD 2020-10-16
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-16
  day: 16
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Ignacio, A.; Turaga, S.C.; Berger, D.R. (C5) 2015; 9
Du, B.; Wei, Q.; Liu, R. (C7) 2019; 57
Yang, J.; Guo, J.; Yue, H. (C21) 2019; 57
Liu, S.; Peng, Y.; Sun, Z. (C44) 2019; 31
Liu, T.; Jones, C.; Seyedhosseini, M. (C56) 2014; 226
Yang, Y.; Li, B.; Li, P. (C11) 2019; 21
Tu, B.; Huang, S.; Fang, L. (C14) 2018; 11
Yang, J.; Zhu, Y.; Li, K. (C23) 2018; 12
Liu, S.; Peng, Y. (C9) 2012; 45
Peng, Y.; Li, L.; Liu, S. (C4) 2018; 147
Liu, H.; Xu, B.; Lu, D. (C19) 2018; 68
Long, J.; Shelhamer, E.; Darrell, T. (C31) 2014; 39
Peng, Y.; Liu, S.; Qiang, Y. (C1) 2019; 33
Liu, J.; Wang, C.; Su, H. (C20) 2020; 29
Peng, Y.; Zhang, L.; Liu, S. (C27) 2019; 345
Peng, Y.; Zhang, L.; Liu, S. (C13) 2017; 2017
Peng, Y.; Li, L.; Liu, S. (C38) 2020; 130
Zuo, W.; Wu, X.; Lin, L. (C47) 2019; 41
Jurrus, E.; Paiva, A.R.C.; Watanabe, S. (C6) 2010; 14
Peng, Y.; Liu, S.; Wang, X. (C10) 2019 2020; 398
Liu, S.; Li, L.; Jin, M. (C40) 2019; 8
Hochreiter, S. (C53) 1998; 6
Liu, H.; Liu, B.; Zhang, H. (C22) 2018; 436-437
Tu, B.; Zhou, C.; He, D. (C41) 2020; 58
Tu, B.; Zhang, X.; Kang, X. (C8) 2019; 57
Yu, J.; Zhu, C.; Zhang, J. (C24) 2020; 31
Yang, W.; Zhou, L.; Li, T. (C25) 2019; 78
Drozdzal, M.; Chartrand, G.; Vorontsov, E. (C51) 2017; 44
Yang, J.; Gan, Z.; Li, K. (C42) 2015; 45
Li, K.; Yang, J.; Lai, Y. (C12) 2019; 25
Du, B.; Tang, X.; Wang, Z. (C18) 2019; 49
Chen, K.; Zhu, D.; Lu, J. (C48) 2018; 10
Du, B.; Ru, L.; Wu, C. (C15) 2019; 57
Liu, S.; Peng, Y.; Ben, X. (C2) 2016; 124
Zhang, K.; Zuo, W.; Zhang, L. (C29) 2018; 27
Fu, S.; Liu, W.; Tao, D. (C43) 2020; 514
Gong, C.; Liu, T.; Tao, D. (C16) 2015; 26
Liu, P.; Zhang, H.; Lian, W. (C35) 2019; 7
Yang, Y.; Liu, Q.; He, X. (C17) 2019; 28
Li, K.; Yang, J.; Liu, L. (C3) 2017; 27
Zhang, C.; Fu, H.; Hu, Q. (C39) 2020; 42
2010; 14
September 2014
2019; 57
2017; 44
16–20 June 2019
2020; 58
2015; 45
2020; 130
2019; 21
2019; 25
2019; 28
2019; 398
2019; 8
2019; 7
12–17 February 2016
27–30 June 2016
2017; 2017
2020; 42
2019; 31
2012
2019; 33
7–12 December 2015
2017; 27
2019; 78
2018; 147
2016; 124
2019; 345
21 October 2016
2015; 9
2018; 27
24–29 July 2016
2018; 68
2015; 26
2014; 226
October 2017
25–27 January 2016
2020; 31
2019; 41
18–22 June 2018
5–9 October 2015
2019; 49
21–26 July 2017
2020; 514
2018; 436‐437
2014; 39
2018; 12
2018; 11
1998; 6
2012; 45
2018; 10
2020; 29
e_1_2_7_5_1
e_1_2_7_3_1
Long J. (e_1_2_7_32_1) 2014; 39
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
Yang J. (e_1_2_7_43_1) 2015; 45
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Li K. (e_1_2_7_4_1) 2017; 27
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
Chen H. (e_1_2_7_50_1) 2016
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
Ciresan D.C. (e_1_2_7_46_1) 2012
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Ignacio A. (e_1_2_7_6_1) 2015; 9
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Stollenga M.F. (e_1_2_7_47_1) 2015
References_xml – volume: 514
  start-page: 484
  year: 2020
  end-page: 498
  ident: C43
  article-title: HESGCN: Hessian graph convolutional networks for semi-supervised classification
  publication-title: Inf. Sci.
– volume: 33
  start-page: 11
  year: 2019
  end-page: 19
  ident: C1
  article-title: A local mean and variance active contour model for biomedical image segmentation
  publication-title: J. Comput. Sci.
– volume: 39
  start-page: 640
  issue: 4
  year: 2014
  end-page: 651
  ident: C31
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 142
  year: 2015
  end-page: 150
  ident: C5
  article-title: Crowdsourcing the creation of image segmentation algorithms for connectomics
  publication-title: Front. Neuroanatomy
– volume: 14
  start-page: 770
  issue: 6
  year: 2010
  end-page: 783
  ident: C6
  article-title: Detection of neuron membranes in electron microscopy images using a serial neural network architecture
  publication-title: Med. Image Anal.
– volume: 345
  start-page: 67
  year: 2019
  end-page: 76
  ident: C27
  article-title: Dilated residual networks with symmetric skip connection for image denoising
  publication-title: Neurocomputing
– volume: 31
  start-page: 45
  year: 2019
  end-page: 53
  ident: C44
  article-title: Self-calibration of projective camera based on trajectory basis
  publication-title: J. Comput. Sci.
– volume: 42
  start-page: 86
  issue: 1
  year: 2020
  end-page: 99
  ident: C39
  article-title: Generalized Latent Multi-View Subspace Clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 49
  start-page: 1440
  issue: 4
  year: 2019
  end-page: 1453
  ident: C18
  article-title: Robust graph-based semisupervised learning for noisy labeled data via maximum correntropy criterion
  publication-title: IEEE Trans. Cybern.
– volume: 57
  start-page: 6003
  issue: 8
  year: 2019
  end-page: 6017
  ident: C7
  article-title: An improved quantum-behaved particle swarm optimization for endmember extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 4063
  issue: 11
  year: 2018
  end-page: 4075
  ident: C14
  article-title: Hyperspectral image classification via weighted joint nearest neighbor and sparse representation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens.
– volume: 58
  start-page: 4116
  issue: 6
  year: 2020
  end-page: 4131
  ident: C41
  article-title: Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 78
  start-page: 24373
  issue: 17
  year: 2019
  end-page: 24390
  ident: C25
  article-title: A face detection method based on cascade convolutional neural network
  publication-title: Multimedia Tools Appl.
– volume: 124
  start-page: 141
  year: 2016
  end-page: 146
  ident: C2
  article-title: A novel label learning algorithm for face recognition
  publication-title: Signal Process.
– volume: 57
  start-page: 9976
  issue: 12
  year: 2019
  end-page: 9992
  ident: C15
  article-title: Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 21
  start-page: 809
  issue: 4
  year: 2019
  end-page: 820
  ident: C11
  article-title: A two-stage clustering based 3D visual saliency model for dynamic scenarios
  publication-title: IEEE Trans. Multimed.
– volume: 25
  start-page: 2255
  issue: 6
  year: 2019
  end-page: 2269
  ident: C12
  article-title: Robust non-rigid registration with reweighted position and transformation sparsity
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 41
  start-page: 1158
  issue: 5
  year: 2019
  end-page: 1172
  ident: C47
  article-title: Learning support correlation filters for visual tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 661
  issue: 2
  year: 2020
  end-page: 674
  ident: C24
  article-title: Spatial pyramid-enhanced netvlad with and weighted triplet loss for place recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 26
  start-page: 2261
  issue: 10
  year: 2015
  end-page: 2274
  ident: C16
  article-title: Deformed graph Laplacian for semisupervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 8
  start-page: 8668
  year: 2019
  end-page: 8674
  ident: C40
  article-title: An optimized coefficient vector and representation based classification methods for face recognition
  publication-title: IEEE Access
– volume: 6
  start-page: 107
  issue: 2
  year: 1998
  end-page: 116
  ident: C53
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
– volume: 398
  start-page: 505
  year: 2019 2020
  end-page: 519
  ident: C10
  article-title: Joint local constraint and fisher discrimination based dictionary learning for image classification
  publication-title: Nuerocomputing
– volume: 2017
  start-page: 2691474:1
  year: 2017
  end-page: 2691474:14
  ident: C13
  article-title: Kernel negative dragging linear regression for pattern classification
  publication-title: Complexity
– volume: 10
  start-page: 467
  issue: 10
  year: 2018
  ident: C48
  article-title: An adversarial and densely dilated network for connectomes segmentation
  publication-title: Symmetry
– volume: 7
  start-page: 74973
  year: 2019
  end-page: 74985
  ident: C35
  article-title: Multi-level wavelet convolutional neural networks
  publication-title: IEEE Access
– volume: 45
  start-page: 913
  issue: 5
  year: 2015
  end-page: 926
  ident: C42
  article-title: Graph-based segmentation for RGB-D data using 3-d geometry enhanced superpixels
  publication-title: IEEE Trans. Cybern.
– volume: 68
  start-page: 360
  year: 2018
  end-page: 376
  ident: C19
  article-title: A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 3388
  year: 2020
  end-page: 3400
  ident: C20
  article-title: Multistage GAN for Fabric Defect Detection
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 4608
  issue: 9
  year: 2018
  end-page: 4622
  ident: C29
  article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 226
  start-page: 88
  year: 2014
  end-page: 102
  ident: C56
  article-title: A modular hierarchical approach to 3d electron microscopy image segmentation
  publication-title: J. Neurosci. Methods
– volume: 45
  start-page: 2769
  issue: 7
  year: 2012
  end-page: 2779
  ident: C9
  article-title: A local region-based chan-vese model for image segmentation
  publication-title: Pattern Recognit.
– volume: 147
  start-page: 101
  year: 2018
  end-page: 109
  ident: C4
  article-title: Space-frequency domain based joint dictionary learning and collaborative representation for face recognition
  publication-title: Signal Process.
– volume: 57
  start-page: 5085
  issue: 7
  year: 2019
  end-page: 5097
  ident: C8
  article-title: Spatial density peak clustering for hyperspectral image classification with noisy labels
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 771
  issue: 4
  year: 2017
  end-page: 783
  ident: C3
  article-title: SPA: sparse photorealistic animation using a single RGB-D camera
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 130
  start-page: 99
  year: 2020
  end-page: 106
  ident: C38
  article-title: Weighted constraint based dictionary learning for image classification
  publication-title: Pattern Recognit. Lett.
– volume: 436-437
  start-page: 247
  year: 2018
  end-page: 267
  ident: C22
  article-title: Crowd evacuation simulation approach based on navigation knowledge and two-layer control mechanism
  publication-title: Inf. Sci.
– volume: 28
  start-page: 302
  issue: 1
  year: 2019
  end-page: 315
  ident: C17
  article-title: Cross-view multi-lateral filter for compressed multi-view depth video
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 6195
  issue: 8
  year: 2019
  end-page: 6211
  ident: C21
  article-title: CdNet: CNN-based cloud detection for remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 1420
  issue: 6
  year: 2018
  end-page: 1434
  ident: C23
  article-title: Tensor completion from structurally-missing entries by low-tt-rankness and fiber-wise sparsity
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 44
  start-page: 1
  year: 2017
  end-page: 13
  ident: C51
  article-title: Learning normalized inputs for iterative estimation in medical image segmentation
  publication-title: Med. Image Anal.
– volume: 147
  start-page: 101
  year: 2018
  end-page: 109
  article-title: Space‐frequency domain based joint dictionary learning and collaborative representation for face recognition
  publication-title: Signal Process.
– volume: 398
  start-page: 505
  year: 2019
  end-page: 519
  article-title: Joint local constraint and fisher discrimination based dictionary learning for image classification
  publication-title: Nuerocomputing
– start-page: 1167
  year: 12–17 February 2016
  end-page: 1173
– start-page: 234
  year: 5–9 October 2015
  end-page: 241
– volume: 68
  start-page: 360
  year: 2018
  end-page: 376
  article-title: A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 809
  issue: 4
  year: 2019
  end-page: 820
  article-title: A two‐stage clustering based 3D visual saliency model for dynamic scenarios
  publication-title: IEEE Trans. Multimed.
– volume: 45
  start-page: 2769
  issue: 7
  year: 2012
  end-page: 2779
  article-title: A local region‐based chan‐vese model for image segmentation
  publication-title: Pattern Recognit.
– volume: 58
  start-page: 4116
  issue: 6
  year: 2020
  end-page: 4131
  article-title: Hyperspectral classification with noisy label detection via superpixel‐to‐pixel weighting distance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 124
  start-page: 141
  year: 2016
  end-page: 146
  article-title: A novel label learning algorithm for face recognition
  publication-title: Signal Process.
– volume: 436‐437
  start-page: 247
  year: 2018
  end-page: 267
  article-title: Crowd evacuation simulation approach based on navigation knowledge and two‐layer control mechanism
  publication-title: Inf. Sci.
– volume: 10
  start-page: 467
  issue: 10
  year: 2018
  article-title: An adversarial and densely dilated network for connectomes segmentation
  publication-title: Symmetry
– start-page: 773
  year: 18–22 June 2018
  end-page: 782
– volume: 57
  start-page: 6195
  issue: 8
  year: 2019
  end-page: 6211
  article-title: CdNet: CNN‐based cloud detection for remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 1420
  issue: 6
  year: 2018
  end-page: 1434
  article-title: Tensor completion from structurally‐missing entries by low‐tt‐rankness and fiber‐wise sparsity
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 130
  start-page: 99
  year: 2020
  end-page: 106
  article-title: Weighted constraint based dictionary learning for image classification
  publication-title: Pattern Recognit. Lett.
– volume: 78
  start-page: 24373
  issue: 17
  year: 2019
  end-page: 24390
  article-title: A face detection method based on cascade convolutional neural network
  publication-title: Multimedia Tools Appl.
– volume: 44
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Learning normalized inputs for iterative estimation in medical image segmentation
  publication-title: Med. Image Anal.
– volume: 45
  start-page: 913
  issue: 5
  year: 2015
  end-page: 926
  article-title: Graph‐based segmentation for RGB‐D data using 3‐d geometry enhanced superpixels
  publication-title: IEEE Trans. Cybern.
– volume: 226
  start-page: 88
  year: 2014
  end-page: 102
  article-title: A modular hierarchical approach to 3d electron microscopy image segmentation
  publication-title: J. Neurosci. Methods
– volume: 57
  start-page: 5085
  issue: 7
  year: 2019
  end-page: 5097
  article-title: Spatial density peak clustering for hyperspectral image classification with noisy labels
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 770
  issue: 6
  year: 2010
  end-page: 783
  article-title: Detection of neuron membranes in electron microscopy images using a serial neural network architecture
  publication-title: Med. Image Anal.
– volume: 29
  start-page: 3388
  year: 2020
  end-page: 3400
  article-title: Multistage GAN for Fabric Defect Detection
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 9976
  issue: 12
  year: 2019
  end-page: 9992
  article-title: Unsupervised deep slow feature analysis for change detection in multi‐temporal remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 771
  issue: 4
  year: 2017
  end-page: 783
  article-title: SPA: sparse photorealistic animation using a single RGB‐D camera
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 11
  start-page: 4063
  issue: 11
  year: 2018
  end-page: 4075
  article-title: Hyperspectral image classification via weighted joint nearest neighbor and sparse representation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens.
– volume: 9
  start-page: 142
  year: 2015
  end-page: 150
  article-title: Crowdsourcing the creation of image segmentation algorithms for connectomics
  publication-title: Front. Neuroanatomy
– volume: 25
  start-page: 2255
  issue: 6
  year: 2019
  end-page: 2269
  article-title: Robust non‐rigid registration with reweighted position and transformation sparsity
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 2017
  start-page: 2691474:1
  year: 2017
  end-page: 2691474:14
  article-title: Kernel negative dragging linear regression for pattern classification
  publication-title: Complexity
– start-page: 179
  year: 21 October 2016
  end-page: 187
– start-page: 2261
  year: 21–26 July 2017
  end-page: 2269
– volume: 49
  start-page: 1440
  issue: 4
  year: 2019
  end-page: 1453
  article-title: Robust graph‐based semisupervised learning for noisy labeled data via maximum correntropy criterion
  publication-title: IEEE Trans. Cybern.
– start-page: 770
  year: 27–30 June 2016
  end-page: 778
– start-page: 97
  year: September 2014
  end-page: 105
– start-page: 2852
  year: 2012
  end-page: 2860
– volume: 8
  start-page: 8668
  year: 2019
  end-page: 8674
  article-title: An optimized coefficient vector and representation based classification methods for face recognition
  publication-title: IEEE Access
– volume: 31
  start-page: 661
  issue: 2
  year: 2020
  end-page: 674
  article-title: Spatial pyramid‐enhanced netvlad with and weighted triplet loss for place recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 302
  issue: 1
  year: 2019
  end-page: 315
  article-title: Cross‐view multi‐lateral filter for compressed multi‐view depth video
  publication-title: IEEE Trans. Image Process.
– volume: 41
  start-page: 1158
  issue: 5
  year: 2019
  end-page: 1172
  article-title: Learning support correlation filters for visual tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 11
  year: 2019
  end-page: 19
  article-title: A local mean and variance active contour model for biomedical image segmentation
  publication-title: J. Comput. Sci.
– start-page: 1671
  year: 16–20 June 2019
  end-page: 1681
– volume: 39
  start-page: 640
  issue: 4
  year: 2014
  end-page: 651
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 74973
  year: 2019
  end-page: 74985
  article-title: Multi‐level wavelet convolutional neural networks
  publication-title: IEEE Access
– volume: 42
  start-page: 86
  issue: 1
  year: 2020
  end-page: 99
  article-title: Generalized Latent Multi‐View Subspace Clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 45
  year: 2019
  end-page: 53
  article-title: Self‐calibration of projective camera based on trajectory basis
  publication-title: J. Comput. Sci.
– volume: 514
  start-page: 484
  year: 2020
  end-page: 498
  article-title: HESGCN: Hessian graph convolutional networks for semi‐supervised classification
  publication-title: Inf. Sci.
– volume: 345
  start-page: 67
  year: 2019
  end-page: 76
  article-title: Dilated residual networks with symmetric skip connection for image denoising
  publication-title: Neurocomputing
– volume: 26
  start-page: 2261
  issue: 10
  year: 2015
  end-page: 2274
  article-title: Deformed graph Laplacian for semisupervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 2998
  year: 7–12 December 2015
  end-page: 3006
– start-page: 174
  year: 25–27 January 2016
  end-page: 179
– volume: 6
  start-page: 107
  issue: 2
  year: 1998
  end-page: 116
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowl.‐Based Syst.
– start-page: 624
  year: 24–29 July 2016
  end-page: 631
– volume: 27
  start-page: 4608
  issue: 9
  year: 2018
  end-page: 4622
  article-title: FFDNet: toward a fast and flexible solution for CNN‐based image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 6003
  issue: 8
  year: 2019
  end-page: 6017
  article-title: An improved quantum‐behaved particle swarm optimization for endmember extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 2391
  year: October 2017
  end-page: 2400
– volume: 9
  start-page: 142
  year: 2015
  ident: e_1_2_7_6_1
  article-title: Crowdsourcing the creation of image segmentation algorithms for connectomics
  publication-title: Front. Neuroanatomy
– ident: e_1_2_7_55_1
  doi: 10.1109/IJCNN.2016.7727258
– ident: e_1_2_7_34_1
  doi: 10.1007/978-3-319-46976-8_19
– ident: e_1_2_7_40_1
  doi: 10.1109/TPAMI.2018.2877660
– ident: e_1_2_7_26_1
  doi: 10.1007/s11042-018-6995-0
– ident: e_1_2_7_29_1
  doi: 10.1109/CVPRW.2018.00121
– ident: e_1_2_7_56_1
– ident: e_1_2_7_33_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_16_1
  doi: 10.1109/TGRS.2019.2930682
– ident: e_1_2_7_57_1
  doi: 10.1016/j.jneumeth.2014.01.022
– ident: e_1_2_7_3_1
  doi: 10.1016/j.sigpro.2015.09.033
– ident: e_1_2_7_5_1
  doi: 10.1016/j.sigpro.2018.01.013
– ident: e_1_2_7_15_1
  doi: 10.1109/JSTARS.2018.2869376
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ins.2019.11.019
– start-page: 2852
  volume-title: Advances in Neural Information Processing Systems 25: 26th Annual Conf. on Neural Information Processing Systems 2012.Proc. meeting held on 3–6 December 2012
  year: 2012
  ident: e_1_2_7_46_1
– ident: e_1_2_7_35_1
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neucom.2018.12.075
– ident: e_1_2_7_24_1
  doi: 10.1109/JSTSP.2018.2873990
– ident: e_1_2_7_27_1
  doi: 10.1109/CVPR.2019.00177
– ident: e_1_2_7_22_1
  doi: 10.1109/TGRS.2019.2904868
– ident: e_1_2_7_42_1
  doi: 10.1109/TGRS.2019.2961141
– ident: e_1_2_7_13_1
  doi: 10.1109/TVCG.2018.2832136
– ident: e_1_2_7_30_1
  doi: 10.1109/TIP.2018.2839891
– ident: e_1_2_7_37_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ins.2018.01.023
– ident: e_1_2_7_25_1
  doi: 10.1109/TNNLS.2019.2908982
– ident: e_1_2_7_52_1
  doi: 10.1016/j.media.2017.11.005
– ident: e_1_2_7_49_1
  doi: 10.3390/sym10100467
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jocs.2019.03.003
– ident: e_1_2_7_53_1
  doi: 10.1109/ISMS.2016.14
– ident: e_1_2_7_31_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_7_21_1
  doi: 10.1109/TIP.2019.2959741
– ident: e_1_2_7_39_1
  doi: 10.1016/j.patrec.2018.09.008
– ident: e_1_2_7_19_1
  doi: 10.1109/TCYB.2018.2804326
– ident: e_1_2_7_54_1
  doi: 10.1142/S0218488598000094
– ident: e_1_2_7_12_1
  doi: 10.1109/TMM.2018.2867742
– ident: e_1_2_7_10_1
  doi: 10.1016/j.patcog.2011.11.019
– ident: e_1_2_7_18_1
  doi: 10.1109/TIP.2018.2867740
– ident: e_1_2_7_38_1
  doi: 10.1007/978-3-319-10404-1_13
– start-page: 2998
  volume-title: Advances in Neural Information Processing Systems 28: Annual Conf. on Neural Information Processing Systems 2015
  year: 2015
  ident: e_1_2_7_47_1
– volume: 39
  start-page: 640
  issue: 4
  year: 2014
  ident: e_1_2_7_32_1
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neucom.2019.05.103
– ident: e_1_2_7_20_1
  doi: 10.1016/j.asoc.2018.04.015
– ident: e_1_2_7_8_1
  doi: 10.1109/TGRS.2019.2903875
– ident: e_1_2_7_17_1
  doi: 10.1109/TNNLS.2014.2376936
– volume: 27
  start-page: 771
  issue: 4
  year: 2017
  ident: e_1_2_7_4_1
  article-title: SPA: sparse photorealistic animation using a single RGB‐D camera
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: e_1_2_7_36_1
  doi: 10.1109/ACCESS.2019.2921451
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jocs.2018.12.002
– start-page: 1167
  volume-title: Proc. Thirtieth AAAI Conf. on Artificial Intelligence
  year: 2016
  ident: e_1_2_7_50_1
– volume: 45
  start-page: 913
  issue: 5
  year: 2015
  ident: e_1_2_7_43_1
  article-title: Graph‐based segmentation for RGB‐D data using 3‐d geometry enhanced superpixels
  publication-title: IEEE Trans. Cybern.
– ident: e_1_2_7_9_1
  doi: 10.1109/TGRS.2019.2896471
– ident: e_1_2_7_41_1
  doi: 10.1109/ACCESS.2019.2960928
– ident: e_1_2_7_7_1
  doi: 10.1016/j.media.2010.06.002
– ident: e_1_2_7_14_1
  doi: 10.1155/2017/2691474
– ident: e_1_2_7_48_1
  doi: 10.1109/TPAMI.2018.2829180
– ident: e_1_2_7_51_1
  doi: 10.1109/ICCV.2017.262
SSID ssj0059085
Score 2.5273368
Snippet Electron microscopy (EM) image segmentation plays an important role in computer-aided diagnosis of specific pathogens or disease. However, EM image...
Electron microscopy (EM) image segmentation plays an important role in computer‐aided diagnosis of specific pathogens or disease. However, EM image...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 2682
SubjectTerms CNN‐based methods
computer‐aided diagnosis
convolutional neural nets
convolutional neural network‐based methods
DenseUNet
disease
diseases
electron microscopy
electron microscopy image segmentation
EM image segmentation
encoder‐decoder architecture variants
encoding
image segmentation
ISBI 2012 EM dataset
medical image processing
parameter efficient method
smart design
Special Section: AI-Powered 3D Vision
specific pathogens
weighted loss
Title DenseUNet: densely connected UNet for electron microscopy image segmentation
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2019.1527
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2019.1527
Volume 14
WOSCitedRecordID wos000582146100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Collection
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6sevDiW6wvFhEPQrDZR5r1ptViQUIRH72FZHcigbYWWwX_vTtpWilCBfESQjKThNmd3W-yO_MBnNSltqmsJV5qtfGkSrmX-CrzQq2QJzbDsChW_XRXj6Kw09HtBWhMcmHG9SGmP9zIM4rxmhw8SccsJA7UukbMceTlAyrp6Wti8alXYMn3RUj8DVy2J8MxcXqrIiuS-OQDpadLm_r8xyNmJqeKuz0LWYs5p7n2L1-7Dqsl5GSX4z6yAQvY34S1En6y0rmHW3B37UJafIxwdMEsnXY_maF9MMahUkbXmUO4bEKcw3q0l4-yWj5Z3nPDEhviS69MZepvw2Pz5qFx65VkC56RDnN5Lo4jKOdLTLLAp1xlIZR0ASw3oTBS14QNLXITKLQ15A7pCW4SGxrOMyUxEDuw2H_t4y4wRAxkkGR-lqI0ymrUIVqeuLYRxmlWoTaxcmzKSuREiNGNixVxqWNnrdhZKyZrxWStKpxNVQbjMhzzhE_pWumMw3mCxzOCrZuHuNW-_xaIBzargiga9vf3ki6_atJaLt_7k9Y-rHCK52nHTHAAi6O3dzyEZfMxyodvR0W_dsfnVvQFxP766A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED6abtC-tNva0rTdKsbYQ8HM1g_H6lvbJDQ0M2GkW96EI51LIElDkhb631fnOBlhkMHYm5HvbHPWSd9JuvsAvtSkdn0ZZkHfaRtI1edBFqk8SLRCnrkck6JY9c92LU2TXk93tqC-zIVZ1IdYLbiRZxTjNTk4LUgvAk5JRTIHOA8GE6rpGWmi8alV4I30gIMIHH610uV4TKTeqkiLJEL5WOnV3qb-9scj1manir-9jlmLSae5_38-9x3slaCTXS16yXvYwvEH2C8BKCvde3YA7boPavE-xfklc3Q5fGGWTsJYj0sZtTOPcdmSOoeN6DQf5bW8sMHID0xshg-jMplpfAj3zUb35jYo6RYCKz3qCnwkR2AukpjlcUTZykIo6UNYbhNhpQ6FSxxyGyt0IXKP9QS3mUss57mSGIsj2B4_jvEYGCLGMs7yKO-jtMpp1Ak6nokkFNZrViFcmtnYshY5UWIMTbEnLrXx1jLeWoasZchaVbhYqUwWhTg2CX-lttIdZ5sEP68Jthpd0-r8-C1gJi6vgij-7N_fS7r8ukm7ufzkn7TOYee2-71t2q307hR2OUX3dH4mPoPt-fQJP8Jb-zwfzKafik7-CnP__jE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8NADA9-Ib74Lc7PQ8QHodjeR9fzTZ3D4RhDVHw7urtUBtscbgr-9166bjIEBfGtXJO25JLcL71LAnBcltq1ZJgGLadtIFWLB2mksiDRCnnqMkzyYtWP9XKjkTw96eYMVMa5MKP6EJMfbmQZub8mA8e-y0YBp6QimW0cBu0-1fSMNLXxKc_CvFTliHSby-bYH1NTb5WnRVJD-Vjpyd6mPvv2iKnVadbfnsas-aJTXfmfz12F5QJ0souRlqzBDPbWYaUAoKww78EG1Cs-qMWHBg7PmaPLzgezdBLGelzKaJx5jMvGrXNYl07zUV7LB2t3vWNiA3zuFslMvU14qF7fX90ERbuFwEqPugIfyRGYiySmWRxRtrIQSvoQlttEWKlD4RKH3MYKXYjcYz3BbeoSy3mmJMZiC-Z6Lz3cBoaIsYzTLMpaKK1yGnWCjqciCYX1nCUIx2I2tqhFTi0xOibfE5faeGkZLy1D0jIkrRKcTlj6o0IcPxGf0FhhjoOfCI-mCGvX96bWvPsiMH4SSyDymf39vcTLL6u0m8t3_sR1CIvNStXUa43bXVjiFNzT8Zl4D-aGr2-4Dwv2fdgevB7kOv4JgLn9SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DenseUNet%3A+densely+connected+UNet+for+electron+microscopy+image+segmentation&rft.jtitle=IET+image+processing&rft.au=Cao%2C+Yue&rft.au=Liu%2C+Shigang&rft.au=Peng%2C+Yali&rft.au=Li%2C+Jun&rft.date=2020-10-16&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=14&rft.issue=12&rft.spage=2682&rft.epage=2689&rft_id=info:doi/10.1049%2Fiet-ipr.2019.1527&rft.externalDocID=10_1049_iet_ipr_2019_1527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon