Prediction of the tensile properties of ultrafine grained Al–SiC nanocomposites using machine learning

We discovered and analyzed the new prediction model by using machine learning (ML) for the tensile strength of aluminum nanocomposites reinforced with μ-SiC particles fabricated by accumulative roll bonding (ARB). The effect of the number of cycles and SiC content on the microstructure, phase analys...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research and technology Vol. 24; pp. 7666 - 7682
Main Authors: Najjar, I.M.R., Sadoun, A.M., Elaziz, Mohamed Abd, Ahmadian, H., Fathy, A., Kabeel, A.M.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2023
Elsevier
Subjects:
ISSN:2238-7854
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We discovered and analyzed the new prediction model by using machine learning (ML) for the tensile strength of aluminum nanocomposites reinforced with μ-SiC particles fabricated by accumulative roll bonding (ARB). The effect of the number of cycles and SiC content on the microstructure, phase analysis, tensile, and hardness properties have been investigated for the ARBed sheets and their composites. The experimental results showed the distribution of SiC particles improved by increasing ARB passes. The ARB approach greatly enhanced the ultimate tensile strength (UTS), yield strength (YS), and hardness. The UTS achieved was 254 MPa for 4% SiC after 9 ARB cycles. The hardness values of the ARBed AA1050, and AA1050-4 wt% SiC are 60, and 76.5, respectively, after 9 ARB cycles. The modified version of random vector functional link based on Growth Optimizer Algorithm is developed as a machine-learning model to predict the tensile properties of the produced composites. The efficiency of the developed ML model is evaluated with other methods according to the performance criteria.
AbstractList We discovered and analyzed the new prediction model by using machine learning (ML) for the tensile strength of aluminum nanocomposites reinforced with μ-SiC particles fabricated by accumulative roll bonding (ARB). The effect of the number of cycles and SiC content on the microstructure, phase analysis, tensile, and hardness properties have been investigated for the ARBed sheets and their composites. The experimental results showed the distribution of SiC particles improved by increasing ARB passes. The ARB approach greatly enhanced the ultimate tensile strength (UTS), yield strength (YS), and hardness. The UTS achieved was 254 MPa for 4% SiC after 9 ARB cycles. The hardness values of the ARBed AA1050, and AA1050-4 wt% SiC are 60, and 76.5, respectively, after 9 ARB cycles. The modified version of random vector functional link based on Growth Optimizer Algorithm is developed as a machine-learning model to predict the tensile properties of the produced composites. The efficiency of the developed ML model is evaluated with other methods according to the performance criteria.
Author Elaziz, Mohamed Abd
Fathy, A.
Ahmadian, H.
Kabeel, A.M.
Najjar, I.M.R.
Sadoun, A.M.
Author_xml – sequence: 1
  givenname: I.M.R.
  surname: Najjar
  fullname: Najjar, I.M.R.
  email: inajjar@kau.edu.sa
  organization: Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, Saudi Arabia
– sequence: 2
  givenname: A.M.
  surname: Sadoun
  fullname: Sadoun, A.M.
  organization: Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, Saudi Arabia
– sequence: 3
  givenname: Mohamed Abd
  surname: Elaziz
  fullname: Elaziz, Mohamed Abd
  organization: Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
– sequence: 4
  givenname: H.
  surname: Ahmadian
  fullname: Ahmadian, H.
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
– sequence: 5
  givenname: A.
  surname: Fathy
  fullname: Fathy, A.
  email: adelfathy99@yahoo.com
  organization: Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, P.O. Box 44519, Egypt
– sequence: 6
  givenname: A.M.
  surname: Kabeel
  fullname: Kabeel, A.M.
  organization: Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, P.O. Box 44519, Egypt
BookMark eNp9kc2KFDEQx3NYwXV2X8BTv8C0Seej0-BlGfxYWHBBPYdMpTKTpicZkqzgzXfwDX0S04548LCnIlX1-0P98opcxRSRkNeM9owy9Wbu51Ou_UAH3lPZUy6vyPUwcL0dtRQvyW0pM6WUyUlRza7J8TGjC1BDil3yXT1iVzGWsGB3zumMuQYs6-Rpqdn6ELE7ZNuK6-6WXz9-fg67LtqYIJ3OqYTalp9KiIfuZOG4bi9oc2yNG_LC26Xg7d-6IV_fv_uy-7h9-PThfnf3sAXBaN16vUcYlVKeT1ziXgvqlIUREKwTisHEQAOVKEY5jhw09X5QToETnsFe8A25v-S6ZGdzzuFk83eTbDB_GikfjG1HwYJmUpNQkuPE9CCk5JN1XDOhpv3onW-PDRkuWZBTKRn9vzxGzarbzGbVbVbdhkrTdDdI_wdBqHYV3ASG5Xn07QXFJuhbwGwKBIzQfigj1HZBeA7_DbMgop8
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111113
crossref_primary_10_1016_j_jallcom_2025_179142
crossref_primary_10_1016_j_mtcomm_2025_113777
crossref_primary_10_1007_s11665_025_11327_x
crossref_primary_10_1016_j_msea_2023_145816
crossref_primary_10_1038_s41598_024_67004_x
crossref_primary_10_1016_j_jmatprotec_2024_118596
crossref_primary_10_1177_00219983231186205
crossref_primary_10_1016_j_jmrt_2025_08_113
crossref_primary_10_1016_j_vacuum_2024_113484
crossref_primary_10_1515_ijmr_2021_8412
crossref_primary_10_1016_j_ceramint_2024_08_352
crossref_primary_10_1177_09544062251349011
crossref_primary_10_1016_j_oceaneng_2024_118320
crossref_primary_10_1088_2051_672X_adabfe
crossref_primary_10_1016_j_mtcomm_2024_109303
crossref_primary_10_1016_j_powtec_2024_119651
crossref_primary_10_1016_j_jallcom_2024_176532
crossref_primary_10_3390_ma16175927
crossref_primary_10_1002_masy_202300164
crossref_primary_10_1002_pat_70057
crossref_primary_10_1016_j_msea_2024_146892
crossref_primary_10_1016_j_jestch_2024_101897
crossref_primary_10_1142_S0219876225500057
crossref_primary_10_1016_j_triboint_2025_111148
crossref_primary_10_1007_s11665_025_11380_6
crossref_primary_10_1016_j_compositesa_2025_109027
crossref_primary_10_3389_feart_2025_1645393
crossref_primary_10_1007_s11837_024_07119_8
crossref_primary_10_1007_s00170_024_14070_0
crossref_primary_10_1007_s10853_025_11372_w
crossref_primary_10_1007_s11665_024_10045_0
crossref_primary_10_1016_j_vacuum_2024_113899
crossref_primary_10_1016_j_mtcomm_2023_107835
crossref_primary_10_1016_j_rineng_2024_103471
crossref_primary_10_1016_j_jmatprotec_2025_118821
crossref_primary_10_1016_j_mtcomm_2024_109279
crossref_primary_10_1016_j_cirpj_2025_06_020
Cites_doi 10.1016/j.matdes.2014.01.022
10.1016/j.msea.2018.12.090
10.3390/math10081266
10.1177/0021998319876684
10.1016/j.jallcom.2012.10.069
10.1016/j.jallcom.2018.04.167
10.1016/j.mtcomm.2023.105743
10.1007/s12613-019-1917-3
10.1016/j.msea.2011.03.061
10.1016/j.scriptamat.2008.06.040
10.1016/j.scriptamat.2020.03.064
10.1016/j.jmrt.2023.01.212
10.1016/j.mtla.2020.100699
10.1177/0021998318781462
10.1016/j.rinp.2019.102911
10.1016/j.mechmat.2020.103321
10.1016/j.ceramint.2018.10.147
10.1016/j.aej.2022.09.036
10.4236/ojmetal.2011.12004
10.1016/j.jmsy.2022.08.014
10.3390/app9173627
10.1177/0021998319851831
10.1007/s00521-019-04663-2
10.1016/j.jmst.2020.08.008
10.1016/j.powtec.2023.118291
10.1016/j.jmrt.2021.10.111
10.1016/j.jallcom.2022.163828
10.1016/j.diamond.2021.108755
10.1016/j.msea.2014.04.013
10.1016/j.rinp.2019.102814
10.1038/s41524-019-0221-0
10.1016/j.ceramint.2021.11.322
10.1016/j.jallcom.2017.05.209
10.1088/2053-1591/ab9d53
10.1016/j.matdes.2013.04.032
10.1007/s11661-011-1039-7
10.1177/0021998320934860
10.3390/lubricants10110277
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jmrt.2023.05.035
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 7682
ExternalDocumentID oai_doaj_org_article_9694653e918245539ad381469b7fdfad
10_1016_j_jmrt_2023_05_035
S2238785423010001
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ABXRA
ACGFS
ADBBV
ADCUG
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
FNPLU
GROUPED_DOAJ
GX1
HH5
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ADVLN
AFJKZ
CITATION
ID FETCH-LOGICAL-c410t-f8bec7666f3935eb840d6ac7cecad461c91c8c05e475773c80ff26d6cd4f1cb43
IEDL.DBID DOA
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2238-7854
IngestDate Fri Oct 03 12:41:18 EDT 2025
Thu Nov 13 04:14:55 EST 2025
Tue Nov 18 21:58:00 EST 2025
Sat Sep 30 17:11:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hardness
Al– SiC nanocomposite
Accumulative roll bonding
Tensile strength
Machine learning
Growth optimizer algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-f8bec7666f3935eb840d6ac7cecad461c91c8c05e475773c80ff26d6cd4f1cb43
OpenAccessLink https://doaj.org/article/9694653e918245539ad381469b7fdfad
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9694653e918245539ad381469b7fdfad
crossref_primary_10_1016_j_jmrt_2023_05_035
crossref_citationtrail_10_1016_j_jmrt_2023_05_035
elsevier_sciencedirect_doi_10_1016_j_jmrt_2023_05_035
PublicationCentury 2000
PublicationDate May-June 2023
2023-05-00
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May-June 2023
PublicationDecade 2020
PublicationTitle Journal of materials research and technology
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Peng, Cheng, Zhang, Shao, Wang, Shen (bib25) 2022; 65
Wang, Wang, Wang, Hu, Wu, Wang (bib16) 2014; 57
Sadoun, Meselhy, Deabs (bib26) 2020; 16
Darmiani, Danaee, Golozar, Toroghinejad (bib35) 2013; 552
Mahallawy, Fathy, Hassan, Abdelaziem (bib1) 2017; 0021998317692141
Wagih, Fathy, Ibrahim, Elkady, Hassan (bib3) 2018; 752
Ghalehbandi, Malaki, Gupta (bib6) 2019; 9
Li, Wang, Zhang, Li, Gao, Sun (bib7) 2019; 745
Ahmadian, Sallakhniknezhad, Zhou, Kiahosseini (bib32) 2022; 121
Schmidt, Marques, Botti, Marques (bib28) 2019; 5
Reihanian, Hadadian, Paydar (bib5) 2014; 607
Nie, Wang, Hu, Xu, Wu, Zheng (bib17) 2011; 528
Hu, Lai, Du, Ho, Huang (bib8) 2008; 59
Kim, Lee, Lee, Son, Reddy, Kim (bib21) 2020; 11
Fathy, Wagih, Abu-Oqail (bib33) 2019; 45
Jiang, Jia, Zhang, Zhang, Wang, Zhang (bib22) 2020; 186
Rezayat, Akbarzadeh, Owhadi (bib30) 2012; 43
Fathy, Ibrahim, Elkady, Hassan (bib37) 2019; 53
Sadoun, Najjar, Fathy, Abd Elaziz, Al-qaness, Abdallah, Elmahdy (bib40) 2023; 65
Kiahosseini, Ahmadian (bib2) 2020; 27
Meselhy, Reda (bib11) 2019; 53
Elwan, Fathy, Wagih, Essa, Abu-Oqail, EL-Nikhaily (bib15) 2020; 54
Amirkhanlou, Ketabchi, Parvin, Khorsand, Bahrami (bib14) 2013; 51
Najjar, Sadoun, Fathy, Abdallah, Elaziz, Elmahdy (bib39) 2022; 10
Asteris, Apostolopoulou, Skentou, Moropoulou (bib19) 2019; 24
Ahmadian, Sadoun, Fathy, Zhou (bib41) 2023; 418
Park, Kayani, Euh, Seo, Kim, Park (bib29) 2022; 903
Fathy, Elkady, Abu-Oqail (bib31) 2017; 719
Du, Feng, Zhang (bib27) 2021; 15
Mohamed, Mohammed, Ibrahim, El-Kady (bib12) 2020; 54
Shaat, Fathy, Wagih (bib38) 2020; 143
Sadoun, Najjar, Alsoruji, Abd-Elwahed, Elaziz, Fathy (bib13) 2022; 10
Li, Xie, Fang, Liu, Liu, Liaw (bib23) 2021; 68
Najjar, Sadoun, Alsoruji, Abd Elaziz, Wagih (bib34) 2022; 48
Sadoun, Wagih, Fathy, Essa (bib18) 2019; 15
Asteris, Mokos (bib20) 2020; 32
Hassanein, Sadoun, Abu-Oqail (bib36) 2020; 7
Najjar, Sadoun, Alam, Fathy (bib9) 2023
Chawla, Chawla, KK (bib4) 2006
Alsoruji, Sadoun, Abd Elaziz, Al-Betar, Abdallah, Fathy (bib10) 2023; 23
Shehata, Abdelhameed, Fathy, Elmahdy (bib24) 2011; 1
Mahallawy (10.1016/j.jmrt.2023.05.035_bib1) 2017; 0021998317692141
Reihanian (10.1016/j.jmrt.2023.05.035_bib5) 2014; 607
Asteris (10.1016/j.jmrt.2023.05.035_bib19) 2019; 24
Li (10.1016/j.jmrt.2023.05.035_bib23) 2021; 68
Shehata (10.1016/j.jmrt.2023.05.035_bib24) 2011; 1
Kiahosseini (10.1016/j.jmrt.2023.05.035_bib2) 2020; 27
Shaat (10.1016/j.jmrt.2023.05.035_bib38) 2020; 143
Elwan (10.1016/j.jmrt.2023.05.035_bib15) 2020; 54
Fathy (10.1016/j.jmrt.2023.05.035_bib37) 2019; 53
Wagih (10.1016/j.jmrt.2023.05.035_bib3) 2018; 752
Alsoruji (10.1016/j.jmrt.2023.05.035_bib10) 2023; 23
Sadoun (10.1016/j.jmrt.2023.05.035_bib26) 2020; 16
Schmidt (10.1016/j.jmrt.2023.05.035_bib28) 2019; 5
Chawla (10.1016/j.jmrt.2023.05.035_bib4) 2006
Fathy (10.1016/j.jmrt.2023.05.035_bib31) 2017; 719
Darmiani (10.1016/j.jmrt.2023.05.035_bib35) 2013; 552
Fathy (10.1016/j.jmrt.2023.05.035_bib33) 2019; 45
Asteris (10.1016/j.jmrt.2023.05.035_bib20) 2020; 32
Mohamed (10.1016/j.jmrt.2023.05.035_bib12) 2020; 54
Park (10.1016/j.jmrt.2023.05.035_bib29) 2022; 903
Sadoun (10.1016/j.jmrt.2023.05.035_bib40) 2023; 65
Najjar (10.1016/j.jmrt.2023.05.035_bib39) 2022; 10
Ghalehbandi (10.1016/j.jmrt.2023.05.035_bib6) 2019; 9
Ahmadian (10.1016/j.jmrt.2023.05.035_bib32) 2022; 121
Sadoun (10.1016/j.jmrt.2023.05.035_bib18) 2019; 15
Najjar (10.1016/j.jmrt.2023.05.035_bib34) 2022; 48
Hu (10.1016/j.jmrt.2023.05.035_bib8) 2008; 59
Li (10.1016/j.jmrt.2023.05.035_bib7) 2019; 745
Rezayat (10.1016/j.jmrt.2023.05.035_bib30) 2012; 43
Du (10.1016/j.jmrt.2023.05.035_bib27) 2021; 15
Kim (10.1016/j.jmrt.2023.05.035_bib21) 2020; 11
Sadoun (10.1016/j.jmrt.2023.05.035_bib13) 2022; 10
Najjar (10.1016/j.jmrt.2023.05.035_bib9) 2023
Amirkhanlou (10.1016/j.jmrt.2023.05.035_bib14) 2013; 51
Ahmadian (10.1016/j.jmrt.2023.05.035_bib41) 2023; 418
Peng (10.1016/j.jmrt.2023.05.035_bib25) 2022; 65
Wang (10.1016/j.jmrt.2023.05.035_bib16) 2014; 57
Jiang (10.1016/j.jmrt.2023.05.035_bib22) 2020; 186
Meselhy (10.1016/j.jmrt.2023.05.035_bib11) 2019; 53
Hassanein (10.1016/j.jmrt.2023.05.035_bib36) 2020; 7
Nie (10.1016/j.jmrt.2023.05.035_bib17) 2011; 528
References_xml – year: 2023
  ident: bib9
  article-title: Prediction of wear rates of Al-TiO2 nanocomposites using artificial neural network modified with particle swarm optimization algorithm
  publication-title: Mater Today Commun
– volume: 53
  start-page: 209
  year: 2019
  end-page: 218
  ident: bib37
  article-title: Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process
  publication-title: J Compos Mater
– volume: 121
  start-page: 108755
  year: 2022
  ident: bib32
  article-title: Mechanical properties of Al-Mg/MWCNT nanocomposite powder produced under different parameters of ball milling process
  publication-title: Diam Relat Mater
– volume: 607
  start-page: 188
  year: 2014
  end-page: 196
  ident: bib5
  article-title: Fabrication of Al–2 vol% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): an investigation of the microstructure and mechanical properties
  publication-title: Mater Sci Eng, A
– volume: 15
  start-page: 4914
  year: 2021
  end-page: 4930
  ident: bib27
  article-title: Construction of a machine-learning-based prediction model for mechanical properties of ultra-fine-grained Fe–C alloy
  publication-title: J Mater Res Technol
– volume: 1
  start-page: 25
  year: 2011
  ident: bib24
  article-title: Preparation and characteristics of Cu-Al 2 O 3 nanocomposite
  publication-title: Open J Met
– volume: 9
  start-page: 3627
  year: 2019
  ident: bib6
  article-title: Accumulative roll bonding—a review
  publication-title: Appl Sci
– volume: 10
  year: 2022
  ident: bib13
  article-title: Utilization of improved machine learning method based on artificial hummingbird algorithm to predict the tribological behavior of Cu-Al2O3 nanocomposites synthesized by in situ method
  publication-title: Mathematics
– volume: 54
  start-page: 1259
  year: 2020
  end-page: 1271
  ident: bib15
  article-title: Fabrication and investigation on the properties of ilmenite (FeTiO3)-based Al composite by accumulative roll bonding
  publication-title: J Compos Mater
– volume: 719
  start-page: 411
  year: 2017
  end-page: 419
  ident: bib31
  article-title: Synthesis and characterization of Cu–ZrO2 nanocomposite produced by thermochemical process
  publication-title: J Alloys Compd
– volume: 45
  start-page: 2319
  year: 2019
  end-page: 2329
  ident: bib33
  article-title: Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling
  publication-title: Ceram Int
– volume: 59
  start-page: 1163
  year: 2008
  end-page: 1166
  ident: bib8
  article-title: Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process
  publication-title: Scripta Mater
– volume: 528
  start-page: 5278
  year: 2011
  end-page: 5282
  ident: bib17
  article-title: Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration
  publication-title: Mater Sci Eng, A
– volume: 48
  start-page: 7748
  year: 2022
  end-page: 7758
  ident: bib34
  article-title: Predicting the mechanical properties of Cu–Al2O3 nanocomposites using machine learning and finite element simulation of indentation experiments
  publication-title: Ceram Int
– volume: 65
  start-page: 809
  year: 2023
  end-page: 823
  ident: bib40
  article-title: An enhanced Dendritic Neural Algorithm to predict the wear behavior of alumina coated silver reinforced copper nanocomposites
  publication-title: Alex Eng J
– volume: 418
  year: 2023
  ident: bib41
  article-title: Utilizing a unified conceptual dynamic model for prediction of particle size of duel-matrix nanocomposites during mechanical alloying
  publication-title: Powder Technol
– volume: 7
  year: 2020
  ident: bib36
  article-title: Effect of SiC addition on the mechanical properties and wear behavior of Al-SiC nanocomposites produced by accumulative roll bonding
  publication-title: Mater Res Express
– volume: 10
  start-page: 277
  year: 2022
  ident: bib39
  article-title: Prediction of tribological properties of alumina-coated, silver-reinforced copper nanocomposites using long short-term model combined with golden jackal optimization
  publication-title: Lubricants
– volume: 11
  start-page: 100699
  year: 2020
  ident: bib21
  article-title: Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels
  publication-title: Materialia
– volume: 0021998317692141
  year: 2017
  ident: bib1
  article-title: Evaluation of mechanical properties and microstructure of Al/Al–12% Si multilayer via warm accumulative roll bonding process
  publication-title: J Compos Mater
– volume: 53
  start-page: 3951
  year: 2019
  end-page: 3961
  ident: bib11
  article-title: Investigation of mechanical properties of nanostructured Al-SiC composite manufactured by accumulative roll bonding
  publication-title: J Compos Mater
– volume: 16
  year: 2020
  ident: bib26
  article-title: Improved strength and ductility of friction stir tailor-welded blanks of base metal AA2024 reinforced with interlayer strip of AA7075
  publication-title: Results Phys
– volume: 186
  start-page: 272
  year: 2020
  end-page: 277
  ident: bib22
  article-title: A strategy combining machine learning and multiscale calculation to predict tensile strength for pearlitic steel wires with industrial data
  publication-title: Scripta Mater
– volume: 24
  start-page: 329
  year: 2019
  end-page: 345
  ident: bib19
  article-title: Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars
  publication-title: Comput Concr
– volume: 752
  start-page: 137
  year: 2018
  end-page: 147
  ident: bib3
  article-title: Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation
  publication-title: J Alloys Compd
– volume: 43
  start-page: 2085
  year: 2012
  end-page: 2093
  ident: bib30
  article-title: Fabrication of high-strength Al/Sicp nanocomposite sheets by accumulative roll bonding
  publication-title: Metall Mater Trans A Phys Metall Mater Sci
– volume: 27
  start-page: 384
  year: 2020
  end-page: 390
  ident: bib2
  article-title: Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy
  publication-title: Int J Miner Metall Mater
– volume: 32
  start-page: 11807
  year: 2020
  end-page: 11826
  ident: bib20
  article-title: Concrete compressive strength using artificial neural networks
  publication-title: Neural Comput Appl
– volume: 51
  start-page: 367
  year: 2013
  end-page: 374
  ident: bib14
  article-title: Accumulative press bonding; a novel manufacturing process of nanostructured metal matrix composites
  publication-title: Mater Des
– volume: 15
  year: 2019
  ident: bib18
  article-title: Effect of tool pin side area ratio on temperature distribution in friction stir welding
  publication-title: Results Phys
– volume: 65
  start-page: 104
  year: 2022
  end-page: 114
  ident: bib25
  article-title: Industrial big data-driven mechanical performance prediction for hot-rolling steel using lower upper bound estimation method
  publication-title: J Manuf Syst
– volume: 903
  start-page: 163828
  year: 2022
  ident: bib29
  article-title: H.High strength aluminum alloys design via explainable artificial intelligence
  publication-title: J Alloys Compd
– volume: 745
  start-page: 10
  year: 2019
  end-page: 19
  ident: bib7
  article-title: Enhanced combination of strength and ductility in ultrafine-grained aluminum composites reinforced with high content intragranular nanoparticles
  publication-title: Mater Sci Eng, A
– volume: 57
  start-page: 638
  year: 2014
  end-page: 645
  ident: bib16
  article-title: Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing
  publication-title: Mater Des
– volume: 68
  start-page: 70
  year: 2021
  end-page: 75
  ident: bib23
  article-title: High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy
  publication-title: J Mater Sci Technol
– volume: 54
  start-page: 4921
  year: 2020
  end-page: 4928
  ident: bib12
  article-title: Effect of nano Al2O3 coated Ag reinforced Cu matrix nanocomposites on mechanical and tribological behavior synthesis by P/M technique
  publication-title: J Compos Mater
– volume: 143
  year: 2020
  ident: bib38
  article-title: Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals
  publication-title: Mech Mater
– volume: 552
  start-page: 31
  year: 2013
  end-page: 39
  ident: bib35
  article-title: Corrosion investigation of Al–SiC nano-composite fabricated by accumulative roll bonding (ARB) process
  publication-title: J Alloys Compd
– volume: 5
  start-page: 1
  year: 2019
  end-page: 36
  ident: bib28
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: npj Comput Mater
– volume: 23
  start-page: 4075
  year: 2023
  end-page: 4088
  ident: bib10
  article-title: On the prediction of the mechanical properties of ultrafine grain Al-TiO2 nanocomposites using a modified long-short term memory model with beluga whale optimizer
  publication-title: J Mater Res Technol
– start-page: 172
  year: 2006
  ident: bib4
  article-title: Metal matrix composites. Chou, TW structure and properties of composites
– volume: 57
  start-page: 638
  year: 2014
  ident: 10.1016/j.jmrt.2023.05.035_bib16
  article-title: Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.01.022
– volume: 745
  start-page: 10
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib7
  article-title: Enhanced combination of strength and ductility in ultrafine-grained aluminum composites reinforced with high content intragranular nanoparticles
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2018.12.090
– volume: 10
  year: 2022
  ident: 10.1016/j.jmrt.2023.05.035_bib13
  article-title: Utilization of improved machine learning method based on artificial hummingbird algorithm to predict the tribological behavior of Cu-Al2O3 nanocomposites synthesized by in situ method
  publication-title: Mathematics
  doi: 10.3390/math10081266
– volume: 54
  start-page: 1259
  issue: 10
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib15
  article-title: Fabrication and investigation on the properties of ilmenite (FeTiO3)-based Al composite by accumulative roll bonding
  publication-title: J Compos Mater
  doi: 10.1177/0021998319876684
– volume: 552
  start-page: 31
  year: 2013
  ident: 10.1016/j.jmrt.2023.05.035_bib35
  article-title: Corrosion investigation of Al–SiC nano-composite fabricated by accumulative roll bonding (ARB) process
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2012.10.069
– volume: 752
  start-page: 137
  year: 2018
  ident: 10.1016/j.jmrt.2023.05.035_bib3
  article-title: Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2018.04.167
– year: 2023
  ident: 10.1016/j.jmrt.2023.05.035_bib9
  article-title: Prediction of wear rates of Al-TiO2 nanocomposites using artificial neural network modified with particle swarm optimization algorithm
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2023.105743
– volume: 27
  start-page: 384
  issue: 3
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib2
  article-title: Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy
  publication-title: Int J Miner Metall Mater
  doi: 10.1007/s12613-019-1917-3
– volume: 528
  start-page: 5278
  issue: 15
  year: 2011
  ident: 10.1016/j.jmrt.2023.05.035_bib17
  article-title: Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2011.03.061
– volume: 59
  start-page: 1163
  issue: 11
  year: 2008
  ident: 10.1016/j.jmrt.2023.05.035_bib8
  article-title: Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2008.06.040
– volume: 186
  start-page: 272
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib22
  article-title: A strategy combining machine learning and multiscale calculation to predict tensile strength for pearlitic steel wires with industrial data
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2020.03.064
– volume: 23
  start-page: 4075
  year: 2023
  ident: 10.1016/j.jmrt.2023.05.035_bib10
  article-title: On the prediction of the mechanical properties of ultrafine grain Al-TiO2 nanocomposites using a modified long-short term memory model with beluga whale optimizer
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2023.01.212
– volume: 11
  start-page: 100699
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib21
  article-title: Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels
  publication-title: Materialia
  doi: 10.1016/j.mtla.2020.100699
– volume: 53
  start-page: 209
  issue: 2
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib37
  article-title: Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process
  publication-title: J Compos Mater
  doi: 10.1177/0021998318781462
– volume: 16
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib26
  article-title: Improved strength and ductility of friction stir tailor-welded blanks of base metal AA2024 reinforced with interlayer strip of AA7075
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102911
– volume: 143
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib38
  article-title: Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2020.103321
– volume: 45
  start-page: 2319
  issue: 2
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib33
  article-title: Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.10.147
– volume: 24
  start-page: 329
  issue: 4
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib19
  article-title: Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars
  publication-title: Comput Concr
– volume: 65
  start-page: 809
  year: 2023
  ident: 10.1016/j.jmrt.2023.05.035_bib40
  article-title: An enhanced Dendritic Neural Algorithm to predict the wear behavior of alumina coated silver reinforced copper nanocomposites
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.09.036
– volume: 1
  start-page: 25
  issue: 2
  year: 2011
  ident: 10.1016/j.jmrt.2023.05.035_bib24
  article-title: Preparation and characteristics of Cu-Al 2 O 3 nanocomposite
  publication-title: Open J Met
  doi: 10.4236/ojmetal.2011.12004
– volume: 65
  start-page: 104
  year: 2022
  ident: 10.1016/j.jmrt.2023.05.035_bib25
  article-title: Industrial big data-driven mechanical performance prediction for hot-rolling steel using lower upper bound estimation method
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.08.014
– volume: 9
  start-page: 3627
  issue: 17
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib6
  article-title: Accumulative roll bonding—a review
  publication-title: Appl Sci
  doi: 10.3390/app9173627
– volume: 53
  start-page: 3951
  issue: 28–30
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib11
  article-title: Investigation of mechanical properties of nanostructured Al-SiC composite manufactured by accumulative roll bonding
  publication-title: J Compos Mater
  doi: 10.1177/0021998319851831
– volume: 32
  start-page: 11807
  issue: 15
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib20
  article-title: Concrete compressive strength using artificial neural networks
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04663-2
– volume: 0021998317692141
  year: 2017
  ident: 10.1016/j.jmrt.2023.05.035_bib1
  article-title: Evaluation of mechanical properties and microstructure of Al/Al–12% Si multilayer via warm accumulative roll bonding process
  publication-title: J Compos Mater
– volume: 68
  start-page: 70
  year: 2021
  ident: 10.1016/j.jmrt.2023.05.035_bib23
  article-title: High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2020.08.008
– volume: 418
  year: 2023
  ident: 10.1016/j.jmrt.2023.05.035_bib41
  article-title: Utilizing a unified conceptual dynamic model for prediction of particle size of duel-matrix nanocomposites during mechanical alloying
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2023.118291
– volume: 15
  start-page: 4914
  year: 2021
  ident: 10.1016/j.jmrt.2023.05.035_bib27
  article-title: Construction of a machine-learning-based prediction model for mechanical properties of ultra-fine-grained Fe–C alloy
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2021.10.111
– volume: 903
  start-page: 163828
  year: 2022
  ident: 10.1016/j.jmrt.2023.05.035_bib29
  article-title: H.High strength aluminum alloys design via explainable artificial intelligence
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2022.163828
– start-page: 172
  year: 2006
  ident: 10.1016/j.jmrt.2023.05.035_bib4
– volume: 121
  start-page: 108755
  year: 2022
  ident: 10.1016/j.jmrt.2023.05.035_bib32
  article-title: Mechanical properties of Al-Mg/MWCNT nanocomposite powder produced under different parameters of ball milling process
  publication-title: Diam Relat Mater
  doi: 10.1016/j.diamond.2021.108755
– volume: 607
  start-page: 188
  year: 2014
  ident: 10.1016/j.jmrt.2023.05.035_bib5
  article-title: Fabrication of Al–2 vol% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): an investigation of the microstructure and mechanical properties
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2014.04.013
– volume: 15
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib18
  article-title: Effect of tool pin side area ratio on temperature distribution in friction stir welding
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102814
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.jmrt.2023.05.035_bib28
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: npj Comput Mater
  doi: 10.1038/s41524-019-0221-0
– volume: 48
  start-page: 7748
  issue: 6
  year: 2022
  ident: 10.1016/j.jmrt.2023.05.035_bib34
  article-title: Predicting the mechanical properties of Cu–Al2O3 nanocomposites using machine learning and finite element simulation of indentation experiments
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2021.11.322
– volume: 719
  start-page: 411
  year: 2017
  ident: 10.1016/j.jmrt.2023.05.035_bib31
  article-title: Synthesis and characterization of Cu–ZrO2 nanocomposite produced by thermochemical process
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.05.209
– volume: 7
  issue: 7
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib36
  article-title: Effect of SiC addition on the mechanical properties and wear behavior of Al-SiC nanocomposites produced by accumulative roll bonding
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab9d53
– volume: 51
  start-page: 367
  year: 2013
  ident: 10.1016/j.jmrt.2023.05.035_bib14
  article-title: Accumulative press bonding; a novel manufacturing process of nanostructured metal matrix composites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.04.032
– volume: 43
  start-page: 2085
  year: 2012
  ident: 10.1016/j.jmrt.2023.05.035_bib30
  article-title: Fabrication of high-strength Al/Sicp nanocomposite sheets by accumulative roll bonding
  publication-title: Metall Mater Trans A Phys Metall Mater Sci
  doi: 10.1007/s11661-011-1039-7
– volume: 54
  start-page: 4921
  issue: 30
  year: 2020
  ident: 10.1016/j.jmrt.2023.05.035_bib12
  article-title: Effect of nano Al2O3 coated Ag reinforced Cu matrix nanocomposites on mechanical and tribological behavior synthesis by P/M technique
  publication-title: J Compos Mater
  doi: 10.1177/0021998320934860
– volume: 10
  start-page: 277
  issue: 11
  year: 2022
  ident: 10.1016/j.jmrt.2023.05.035_bib39
  article-title: Prediction of tribological properties of alumina-coated, silver-reinforced copper nanocomposites using long short-term model combined with golden jackal optimization
  publication-title: Lubricants
  doi: 10.3390/lubricants10110277
SSID ssj0001596081
Score 2.4765098
Snippet We discovered and analyzed the new prediction model by using machine learning (ML) for the tensile strength of aluminum nanocomposites reinforced with μ-SiC...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 7666
SubjectTerms Accumulative roll bonding
Al– SiC nanocomposite
Growth optimizer algorithm
Hardness
Machine learning
Tensile strength
Title Prediction of the tensile properties of ultrafine grained Al–SiC nanocomposites using machine learning
URI https://dx.doi.org/10.1016/j.jmrt.2023.05.035
https://doaj.org/article/9694653e918245539ad381469b7fdfad
Volume 24
WOSCitedRecordID wos001030065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 2238-7854
  databaseCode: DOA
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0001596081
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQoqFAnGK55IIOReSw47gEBKJAaCUObWc5PpZdLVkUFmr-gT_kS5hxsksqaGgTTxyNR5nnyfMbQo4hqzNAFRaQW4mlG2aiklse-SIuU6MhCgKb8PFG3N4Wg4Hsd1p9ISeskQduHHcqc4kSYE4CEGacZ1LbDMtWshTeem3x6xsL2dlMNeeDAZmHDqWQ_opIFJy1J2Yactf4uUYiZZoF2c7Q6-0nKwXx_k5y6iScq3Wy1iJFeta84QZZctUmWe3oB26Rp36N_1nQt3TqKWA5GgjpE0dfsMheo1oq3nmbzGrtwZAOsSWEs_Rs8vXxeTe6oJWupsgrR_IWDEYe_JA-B4qlo21PieE2ebi6vL-4jtrWCZFhSTwDV8PaCNiaeDx660rYxtlcG2Gc0ZbliZGJKUzMHRNciMwUsfdpbnNjmU9MybIdslxNK7dLKLNJYTgaas3SWANkKKy2gvsylQkveySZu06ZVlcc21tM1JxANlboboXuVjFX4O4eOVnYvDSqGr-OPscVWYxERexwAeJEtXGi_oqTHuHz9VQtuGhAAzxq9Mvke_8x-T6WA5Duk0cpPyDLs_rNHZIV8z4bvdZHIXS_AbPr8zs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+tensile+properties+of+ultrafine+grained+Al-SiC+nanocomposites+using+machine+learning&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Najjar%2C+I.M.R.&rft.au=Sadoun%2C+A.M.&rft.au=Elaziz%2C+Mohamed+Abd&rft.au=Ahmadian%2C+H.&rft.date=2023-05-01&rft.issn=2238-7854&rft.volume=24&rft.spage=7666&rft.epage=7682&rft_id=info:doi/10.1016%2Fj.jmrt.2023.05.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmrt_2023_05_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon