Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community
This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorgan...
Uloženo v:
| Vydáno v: | Bioresource technology Ročník 175; s. 578 - 585 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
01.01.2015
|
| Témata: | |
| ISSN: | 0960-8524, 1873-2976, 1873-2976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry. |
|---|---|
| AbstractList | This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P < 0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry. This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry. |
| Author | Cho, Dae-Hyun Ramanan, Rishiram Lee, Jimin Kim, Byung-Hyuk Oh, Hee-Mock Kim, Hee-Sik Heo, Jina |
| Author_xml | – sequence: 1 givenname: Dae-Hyun surname: Cho fullname: Cho, Dae-Hyun – sequence: 2 givenname: Rishiram surname: Ramanan fullname: Ramanan, Rishiram – sequence: 3 givenname: Jina surname: Heo fullname: Heo, Jina – sequence: 4 givenname: Jimin surname: Lee fullname: Lee, Jimin – sequence: 5 givenname: Byung-Hyuk surname: Kim fullname: Kim, Byung-Hyuk – sequence: 6 givenname: Hee-Mock surname: Oh fullname: Oh, Hee-Mock – sequence: 7 givenname: Hee-Sik surname: Kim fullname: Kim, Hee-Sik |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25459870$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9u1DAQxi1URLeFV6hy5JJl7MT_JC6oKhSpEhc4cbAce7L1KnFK7CDtjXfgDXkSnLYrIS7tyZrx75sZj78zchKniIRcUNhSoOLdftuFac7obrcMaLtd81y_IBuqZFMzLcUJ2YAWUCvO2lNyltIeABoq2StyynjLtZKwId-v4q2NLsRdNQY3T3bY2aEqtUebUnU3T35xOfwM-VB1hwrjLkTEecXtP4I_v3531uVyUcRuGsclFsVr8rK3Q8I3j-c5-fbx6uvldX3z5dPnyw83tWsp5Lpvbac6qZTS3ErvhGeoS4QKW4--QS41euUAe01Z5wQyi76X3IOgCrvmnLx9qFvG_bFgymYMyeEw2IjTkgxVjRDlwQ1_BgoggWqmn0YFpy1XbSOegbYSgDWwoheP6NKN6M3dHEY7H8zxRwrw_gEou01pxt64kG0OU8yzDYOhYFYDmL05GsCsBrjP83Vq8Z_82OEJ4V8Dd7rI |
| CitedBy_id | crossref_primary_10_1186_s13068_018_1174_0 crossref_primary_10_1007_s00449_021_02542_6 crossref_primary_10_1016_j_biortech_2020_123825 crossref_primary_10_1016_j_biortech_2019_121879 crossref_primary_10_1371_journal_pone_0177488 crossref_primary_10_1007_s13762_021_03820_2 crossref_primary_10_1080_09593330_2022_2044919 crossref_primary_10_1016_j_biortech_2019_02_063 crossref_primary_10_1016_j_cej_2024_158987 crossref_primary_10_1016_j_watres_2021_117952 crossref_primary_10_3389_fbioe_2020_557572 crossref_primary_10_1111_jpy_13026 crossref_primary_10_1007_s00248_017_1139_z crossref_primary_10_1038_s41598_017_02139_8 crossref_primary_10_3390_ijerph192113950 crossref_primary_10_1016_j_algal_2019_101490 crossref_primary_10_1016_j_algal_2020_101943 crossref_primary_10_1016_j_eti_2025_104419 crossref_primary_10_3390_ijms23158447 crossref_primary_10_1016_j_chemosphere_2021_129540 crossref_primary_10_1186_s40068_024_00385_0 crossref_primary_10_1099_ijsem_0_001074 crossref_primary_10_1016_j_jwpe_2020_101203 crossref_primary_10_1007_s10811_019_01854_1 crossref_primary_10_3390_plants11233225 crossref_primary_10_1016_j_jhazmat_2021_127153 crossref_primary_10_1016_j_jece_2020_104025 crossref_primary_10_3390_fermentation8060261 crossref_primary_10_1016_j_cej_2021_131436 crossref_primary_10_1016_j_biortech_2016_12_094 crossref_primary_10_1016_j_biortech_2019_121890 crossref_primary_10_1016_j_chemosphere_2021_129878 crossref_primary_10_1111_1751_7915_13296 crossref_primary_10_1016_j_envpol_2024_123864 crossref_primary_10_1016_j_marenvres_2025_107553 crossref_primary_10_1016_j_micres_2024_127813 crossref_primary_10_1016_j_algal_2018_05_020 crossref_primary_10_3390_antiox10091360 crossref_primary_10_1016_j_biortech_2015_03_082 crossref_primary_10_1007_s10811_018_1591_2 crossref_primary_10_1007_s11356_023_30470_3 crossref_primary_10_1002_wer_11142 crossref_primary_10_1007_s10811_020_02076_6 crossref_primary_10_1089_omi_2016_0065 crossref_primary_10_1007_s00253_019_10193_7 crossref_primary_10_1093_femsec_fiad026 crossref_primary_10_1016_j_algal_2020_101840 crossref_primary_10_1016_j_cej_2022_138481 crossref_primary_10_1007_s10811_017_1270_8 crossref_primary_10_1016_j_jclepro_2019_117865 crossref_primary_10_3390_life14091053 crossref_primary_10_1016_j_chemosphere_2021_133330 crossref_primary_10_1016_j_jwpe_2025_108714 crossref_primary_10_1111_1758_2229_13321 crossref_primary_10_1186_s12934_017_0834_2 crossref_primary_10_1016_j_pecs_2022_101020 crossref_primary_10_1016_j_biortech_2022_127033 crossref_primary_10_1016_j_biotechadv_2015_12_003 crossref_primary_10_1016_j_memsci_2025_124356 crossref_primary_10_1016_j_hal_2021_102104 crossref_primary_10_1016_j_resconrec_2021_105519 crossref_primary_10_1111_1751_7915_12865 crossref_primary_10_3390_w14233893 crossref_primary_10_1016_j_envres_2022_114238 crossref_primary_10_1111_tpj_14661 crossref_primary_10_3390_biology10040282 crossref_primary_10_1016_j_rser_2015_11_001 crossref_primary_10_3389_fenrg_2025_1654079 crossref_primary_10_1016_j_watres_2024_122930 crossref_primary_10_1016_j_biortech_2022_127028 crossref_primary_10_1186_s13068_018_1097_9 crossref_primary_10_3389_fspas_2021_700579 crossref_primary_10_1111_1751_7915_14014 crossref_primary_10_1016_j_algal_2025_104102 crossref_primary_10_1007_s10452_020_09762_0 crossref_primary_10_1016_j_biortech_2020_123101 crossref_primary_10_1007_s12257_020_0066_x crossref_primary_10_1002_jctb_6624 crossref_primary_10_1007_s10811_019_01924_4 crossref_primary_10_1016_j_algal_2022_102869 crossref_primary_10_1038_s41598_018_28543_2 crossref_primary_10_3390_en16041758 crossref_primary_10_1016_j_chemosphere_2024_143927 crossref_primary_10_1016_j_pedsph_2023_12_002 crossref_primary_10_1016_j_biortech_2025_132983 crossref_primary_10_2166_wst_2022_322 crossref_primary_10_1007_s00248_019_01437_0 crossref_primary_10_1016_j_biortech_2023_129991 crossref_primary_10_1002_jobm_201700594 crossref_primary_10_7717_peerj_11217 crossref_primary_10_1016_j_rser_2017_05_260 crossref_primary_10_1016_j_rser_2021_111395 crossref_primary_10_1016_j_jwpe_2023_104456 crossref_primary_10_1016_j_algal_2021_102585 crossref_primary_10_7717_peerj_10911 crossref_primary_10_1515_cppm_2017_0082 crossref_primary_10_1093_femsec_fiaa115 crossref_primary_10_1016_j_jwpe_2024_106007 crossref_primary_10_1016_j_cej_2019_122957 crossref_primary_10_1080_07388551_2019_1597828 crossref_primary_10_1016_j_lssr_2019_08_001 crossref_primary_10_1016_j_cej_2018_06_032 crossref_primary_10_1016_j_algal_2018_06_006 crossref_primary_10_1016_j_bej_2022_108433 crossref_primary_10_1007_s10661_024_13516_y crossref_primary_10_1186_s40168_021_01140_8 crossref_primary_10_1016_j_algal_2022_102768 crossref_primary_10_3390_biology13010054 crossref_primary_10_1016_j_cej_2022_141212 crossref_primary_10_1016_j_chemosphere_2022_137473 crossref_primary_10_3390_d14010002 crossref_primary_10_1016_j_biortech_2025_132601 crossref_primary_10_3389_fbioe_2021_642671 crossref_primary_10_1051_ocl_2021045 crossref_primary_10_2166_ws_2023_042 crossref_primary_10_1016_j_biortech_2019_121353 crossref_primary_10_1016_j_algal_2019_101666 crossref_primary_10_1007_s12649_018_0325_7 crossref_primary_10_1016_j_algal_2019_101547 crossref_primary_10_1007_s10811_024_03357_0 crossref_primary_10_1016_j_algal_2022_102892 crossref_primary_10_1016_j_biortech_2021_125579 crossref_primary_10_1016_j_hazadv_2025_100797 crossref_primary_10_1016_j_jenvman_2021_113869 crossref_primary_10_3390_microorganisms10102029 crossref_primary_10_1016_j_renene_2019_11_063 crossref_primary_10_1111_are_14711 crossref_primary_10_1016_j_algal_2018_101390 crossref_primary_10_1016_j_jece_2024_112288 crossref_primary_10_1007_s10811_025_03469_1 crossref_primary_10_1128_AEM_01548_19 crossref_primary_10_1007_s11356_022_22165_y crossref_primary_10_3389_fmicb_2022_839465 crossref_primary_10_1007_s10098_018_1505_7 crossref_primary_10_1016_j_biortech_2021_126428 crossref_primary_10_1007_s13762_023_05069_3 crossref_primary_10_1016_j_scitotenv_2020_140099 crossref_primary_10_1016_j_jhazmat_2019_120860 crossref_primary_10_3389_fmicb_2019_01192 crossref_primary_10_1016_j_grets_2023_100060 crossref_primary_10_1016_j_rser_2020_109708 crossref_primary_10_1016_j_jwpe_2022_103003 crossref_primary_10_1016_j_biortech_2020_123766 crossref_primary_10_1016_j_fuel_2020_119093 crossref_primary_10_3389_fbioe_2020_588210 crossref_primary_10_1016_j_algal_2018_11_011 crossref_primary_10_1016_j_tibtech_2023_12_003 crossref_primary_10_3390_md14050100 crossref_primary_10_1016_j_biortech_2025_132515 crossref_primary_10_1016_j_hal_2020_101939 crossref_primary_10_1038_s41598_020_67322_w crossref_primary_10_1080_26395940_2022_2128884 crossref_primary_10_1016_j_chemosphere_2023_140742 crossref_primary_10_3390_md20020142 crossref_primary_10_3390_ma14113027 crossref_primary_10_1002_wer_10907 crossref_primary_10_1016_j_biortech_2018_05_045 crossref_primary_10_1007_s11274_024_03930_2 crossref_primary_10_1016_j_algal_2015_02_003 crossref_primary_10_1111_1462_2920_14357 crossref_primary_10_1007_s12649_023_02195_4 crossref_primary_10_1128_JB_00865_16 crossref_primary_10_1016_j_biortech_2016_03_109 crossref_primary_10_1007_s00449_023_02855_8 crossref_primary_10_3389_fpls_2017_00289 crossref_primary_10_4014_jmb_2502_02004 crossref_primary_10_1007_s12155_024_10800_0 crossref_primary_10_1007_s12155_022_10400_w crossref_primary_10_1007_s00253_018_9192_1 crossref_primary_10_3389_fmicb_2023_1176069 crossref_primary_10_1007_s12275_018_7488_6 crossref_primary_10_1016_j_biortech_2015_02_013 crossref_primary_10_1016_j_jhazmat_2018_07_051 crossref_primary_10_1016_j_scitotenv_2020_140607 crossref_primary_10_1016_j_jece_2023_109494 crossref_primary_10_3390_environments12090331 crossref_primary_10_1016_j_aquaculture_2023_739594 crossref_primary_10_1016_j_jiec_2018_09_031 crossref_primary_10_1186_s13068_019_1544_2 crossref_primary_10_3390_cells13181552 crossref_primary_10_1016_j_biteb_2025_102242 crossref_primary_10_1016_j_ecoenv_2023_115369 crossref_primary_10_3389_fmicb_2018_02758 crossref_primary_10_1007_s10499_025_02081_x crossref_primary_10_1007_s12010_020_03414_7 crossref_primary_10_1007_s10499_018_0253_3 crossref_primary_10_3390_plants11081086 crossref_primary_10_1016_j_bej_2015_07_013 crossref_primary_10_1016_j_biombioe_2019_01_033 crossref_primary_10_1016_j_egyr_2020_06_014 crossref_primary_10_1093_femsle_fny021 crossref_primary_10_1016_j_chemosphere_2021_131001 crossref_primary_10_3390_microorganisms11051108 crossref_primary_10_3390_app11062591 crossref_primary_10_1016_j_jenvman_2024_121226 crossref_primary_10_1016_j_scitotenv_2023_169013 crossref_primary_10_1016_j_rser_2019_109563 crossref_primary_10_1111_1758_2229_13272 crossref_primary_10_1016_j_biortech_2022_128535 crossref_primary_10_1016_j_scitotenv_2020_141957 crossref_primary_10_1016_j_jiec_2025_02_006 crossref_primary_10_1111_1751_7915_13784 crossref_primary_10_1007_s11274_024_04230_5 crossref_primary_10_3389_fbioe_2021_651895 crossref_primary_10_1088_1755_1315_276_1_012045 crossref_primary_10_4014_jmb_2009_09055 crossref_primary_10_1051_bioconf_202411701045 crossref_primary_10_1016_j_cej_2019_122799 crossref_primary_10_1016_j_algal_2022_102807 |
| Cites_doi | 10.1016/j.biombioe.2014.07.015 10.1128/JB.01777-12 10.4014/jmb.1312.12057 10.1111/j.1574-6976.2000.tb00552.x 10.1128/AEM.70.11.6753-6766.2004 10.1016/j.watres.2007.10.032 10.1371/journal.pone.0037770 10.1016/j.femsec.2004.08.004 10.1128/AEM.66.4.1527-1531.2000 10.1111/j.1365-313X.2008.03492.x 10.1016/j.biortech.2009.03.058 10.1016/j.tibtech.2008.05.004 10.1016/j.biortech.2013.04.010 10.1016/j.biortech.2012.11.130 10.1016/j.febslet.2012.12.020 10.1016/j.copbio.2010.03.013 10.1021/es010590g 10.3389/fmicb.2011.00093 10.1007/BF02783496 10.1021/np800107c 10.1128/AEM.01998-09 10.1007/s10482-014-0159-7 10.1128/AEM.66.7.3024-3030.2000 10.1007/s10811-010-9623-6 10.1002/etc.643 10.1128/AEM.64.8.2906-2913.1998 10.1007/s00248-006-9162-5 10.1016/j.ecolmodel.2004.02.010 10.1007/978-3-642-32223-5_1 10.1111/jpy.12091 10.1016/j.ejsobi.2008.08.004 10.1128/AEM.01496-13 10.1016/j.algal.2013.11.009 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 8FD C1K F1W FR3 H95 H98 L.G M7N P64 7SU 7TB KR7 7X8 7S9 L.6 |
| DOI | 10.1016/j.biortech.2014.10.159 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Civil Engineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| EndPage | 585 |
| ExternalDocumentID | 25459870 10_1016_j_biortech_2014_10_159 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9DU 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CITATION CJTIS CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~HD ~KM AACTN BNPGV CGR CUY CVF ECM EIF NPM RIG SSH 7QL 7QO 7T7 8FD C1K F1W FR3 H95 H98 L.G M7N P64 7SU 7TB KR7 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c410t-f4ab8b788895a7dc6d2e9888e8e4ded3e579ed8c0ef912bc6e2aedf75d0618eb3 |
| ISICitedReferencesCount | 234 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345689900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Thu Oct 02 04:25:27 EDT 2025 Wed Oct 01 14:02:45 EDT 2025 Tue Oct 07 10:19:18 EDT 2025 Tue Oct 07 09:43:01 EDT 2025 Thu Apr 03 07:00:49 EDT 2025 Sat Nov 29 07:12:00 EST 2025 Tue Nov 18 21:28:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artificial microalgal bacterial community Phycosphere bacteria Biodiesel Growth enhancement Chlorella vulgaris |
| Language | English |
| License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-f4ab8b788895a7dc6d2e9888e8e4ded3e579ed8c0ef912bc6e2aedf75d0618eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25459870 |
| PQID | 1647002306 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1836645935 proquest_miscellaneous_1800701929 proquest_miscellaneous_1651458436 proquest_miscellaneous_1647002306 pubmed_primary_25459870 crossref_citationtrail_10_1016_j_biortech_2014_10_159 crossref_primary_10_1016_j_biortech_2014_10_159 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-00 2015-Jan 20150101 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-00 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2015 |
| References | Kim (10.1016/j.biortech.2014.10.159_b0065) 2014; 69 Steenhoudt (10.1016/j.biortech.2014.10.159_b0140) 2000; 24 Bereschenko (10.1016/j.biortech.2014.10.159_b0010) 2010; 76 Sapp (10.1016/j.biortech.2014.10.159_b0130) 2007; 53 Cho (10.1016/j.biortech.2014.10.159_b0025) 2014 Sule (10.1016/j.biortech.2014.10.159_b0145) 2013; 195 John (10.1016/j.biortech.2014.10.159_b0060) 2001; 35 Langille (10.1016/j.biortech.2014.10.159_b0075) 1998; 64 Powell (10.1016/j.biortech.2014.10.159_b0115) 2013; 79 Kim (10.1016/j.biortech.2014.10.159_b9000) 2012; 7 Hernandez (10.1016/j.biortech.2014.10.159_b0045) 2009; 45 Peters (10.1016/j.biortech.2014.10.159_b0105) 2011; 30 Lee (10.1016/j.biortech.2014.10.159_b0080) 2010; 101 Watanabe (10.1016/j.biortech.2014.10.159_b0165) 2005; 51 Geng (10.1016/j.biortech.2014.10.159_b0030) 2010; 21 Zhang (10.1016/j.biortech.2014.10.159_b0170) 2008; 71 Cho (10.1016/j.biortech.2014.10.159_b0020) 2013; 49 Hu (10.1016/j.biortech.2014.10.159_b0050) 2008; 54 Pinhassi (10.1016/j.biortech.2014.10.159_b0110) 2004; 70 Ivanova (10.1016/j.biortech.2014.10.159_b0055) 2014; 105 10.1016/j.biortech.2014.10.159_b0155 Ramaiah (10.1016/j.biortech.2014.10.159_b0120) 2006; 35 10.1016/j.biortech.2014.10.159_b0095 Unnithan (10.1016/j.biortech.2014.10.159_b0160) 2014; 4 Taylor (10.1016/j.biortech.2014.10.159_b0150) 1995; 53 Ashen (10.1016/j.biortech.2014.10.159_b0005) 2000; 66 Kim (10.1016/j.biortech.2014.10.159_b0070) 2014; 24 Lee (10.1016/j.biortech.2014.10.159_b0085) 2013; 131 Henderson (10.1016/j.biortech.2014.10.159_b0040) 2008; 42 Brenner (10.1016/j.biortech.2014.10.159_b0015) 2008; 26 Montero (10.1016/j.biortech.2014.10.159_b0090) 2011; 23 Shekh (10.1016/j.biortech.2014.10.159_b0135) 2013; 138 Neuhauser (10.1016/j.biortech.2014.10.159_b0100) 2004; 177 Ramanan (10.1016/j.biortech.2014.10.159_b0125) 2013; 587 Gonzalez (10.1016/j.biortech.2014.10.159_b0035) 2000; 66 |
| References_xml | – volume: 69 start-page: 95 year: 2014 ident: 10.1016/j.biortech.2014.10.159_b0065 article-title: Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.07.015 – volume: 195 start-page: 637 issue: 4 year: 2013 ident: 10.1016/j.biortech.2014.10.159_b0145 article-title: A Novel inducer of roseobacter motility is also a disruptor of algal symbiosis publication-title: J. Bacteriol. doi: 10.1128/JB.01777-12 – volume: 24 start-page: 1123 issue: 8 year: 2014 ident: 10.1016/j.biortech.2014.10.159_b0070 article-title: Nutrient removal and biofuel production in high rate algal pond (HRAP) using real municipal wastewater publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1312.12057 – volume: 24 start-page: 487 issue: 4 year: 2000 ident: 10.1016/j.biortech.2014.10.159_b0140 article-title: Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2000.tb00552.x – volume: 70 start-page: 6753 issue: 11 year: 2004 ident: 10.1016/j.biortech.2014.10.159_b0110 article-title: Changes in bacterioplankton composition under different phytoplankton regimens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.11.6753-6766.2004 – volume: 42 start-page: 3435 issue: 13 year: 2008 ident: 10.1016/j.biortech.2014.10.159_b0040 article-title: Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms publication-title: Water Res. doi: 10.1016/j.watres.2007.10.032 – volume: 7 start-page: e37770 issue: 5 year: 2012 ident: 10.1016/j.biortech.2014.10.159_b9000 article-title: Simple, rapid and cost-Eeffective method for high quality nucleic acids extraction from different strains of Botryococcus braunii publication-title: PLoS ONE doi: 10.1371/journal.pone.0037770 – volume: 51 start-page: 187 issue: 2 year: 2005 ident: 10.1016/j.biortech.2014.10.159_b0165 article-title: Symbiotic association in Chlorella culture publication-title: FEMS Microbiol. Ecol. doi: 10.1016/j.femsec.2004.08.004 – volume: 66 start-page: 1527 issue: 4 year: 2000 ident: 10.1016/j.biortech.2014.10.159_b0035 article-title: Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.4.1527-1531.2000 – volume: 54 start-page: 621 issue: 4 year: 2008 ident: 10.1016/j.biortech.2014.10.159_b0050 article-title: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03492.x – volume: 101 issue: 1 year: 2010 ident: 10.1016/j.biortech.2014.10.159_b0080 article-title: Comparison of several methods for effective lipid extraction from microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.03.058 – volume: 26 start-page: 483 issue: 9 year: 2008 ident: 10.1016/j.biortech.2014.10.159_b0015 article-title: Engineering microbial consortia: a new frontier in synthetic biology publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2008.05.004 – volume: 138 start-page: 382 year: 2013 ident: 10.1016/j.biortech.2014.10.159_b0135 article-title: Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.04.010 – volume: 131 start-page: 195 year: 2013 ident: 10.1016/j.biortech.2014.10.159_b0085 article-title: Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.130 – volume: 587 start-page: 370 issue: 4 year: 2013 ident: 10.1016/j.biortech.2014.10.159_b0125 article-title: Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.12.020 – volume: 21 start-page: 332 issue: 3 year: 2010 ident: 10.1016/j.biortech.2014.10.159_b0030 article-title: Molecular mechanisms underlying roseobacter–phytoplankton symbioses publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2010.03.013 – volume: 35 start-page: 2942 issue: 14 year: 2001 ident: 10.1016/j.biortech.2014.10.159_b0060 article-title: Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9) publication-title: Environ. Sci. Technol. doi: 10.1021/es010590g – ident: 10.1016/j.biortech.2014.10.159_b0155 doi: 10.3389/fmicb.2011.00093 – volume: 53 start-page: 207 issue: 3 year: 1995 ident: 10.1016/j.biortech.2014.10.159_b0150 article-title: A modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/BF02783496 – volume: 71 start-page: 1458 issue: 8 year: 2008 ident: 10.1016/j.biortech.2014.10.159_b0170 article-title: Chlorohydroaspyrones A and B, antibacterial aspyrone derivatives from the marine-derived fungus Exophiala sp publication-title: J. Nat. Prod. doi: 10.1021/np800107c – volume: 76 start-page: 2623 issue: 8 year: 2010 ident: 10.1016/j.biortech.2014.10.159_b0010 article-title: Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas sp publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01998-09 – volume: 105 start-page: 997 issue: 6 year: 2014 ident: 10.1016/j.biortech.2014.10.159_b0055 article-title: Lysis of Antarctic algal strains by bacterial pathogen publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-014-0159-7 – volume: 66 start-page: 3024 issue: 7 year: 2000 ident: 10.1016/j.biortech.2014.10.159_b0005 article-title: Molecular and ecological evidence for species specificity and coevolution in a group of marine algal–bacterial symbioses publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.7.3024-3030.2000 – volume: 23 start-page: 1053 issue: 6 year: 2011 ident: 10.1016/j.biortech.2014.10.159_b0090 article-title: Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting publication-title: J. Appl. Phycol. doi: 10.1007/s10811-010-9623-6 – volume: 30 start-page: 2407 issue: 11 year: 2011 ident: 10.1016/j.biortech.2014.10.159_b0105 article-title: Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.643 – start-page: 1 year: 2014 ident: 10.1016/j.biortech.2014.10.159_b0025 article-title: Hydrocarbon pollution does not influence bacterial diversity as much as geographic location: a Korean case study publication-title: Int. J. Environ. Sci. Technol. – volume: 35 start-page: 380 issue: 4 year: 2006 ident: 10.1016/j.biortech.2014.10.159_b0120 article-title: A review on fungal diseases of algae, marine fishes, shrimps and corals publication-title: Ind. J. Marine Sci. – volume: 64 start-page: 2906 issue: 8 year: 1998 ident: 10.1016/j.biortech.2014.10.159_b0075 article-title: Spatial and temporal deposition of Hyphomonas strain VP-6 capsules involved in biofilm formation publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.8.2906-2913.1998 – volume: 53 start-page: 683 issue: 4 year: 2007 ident: 10.1016/j.biortech.2014.10.159_b0130 article-title: Species-specific bacterial communities in the phycosphere of microalgae? publication-title: Microb. Ecol. doi: 10.1007/s00248-006-9162-5 – volume: 177 start-page: 337 issue: 3–4 year: 2004 ident: 10.1016/j.biortech.2014.10.159_b0100 article-title: A mutualism–parasitism continuum model and its application to plant–mycorrhizae interactions publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.02.010 – ident: 10.1016/j.biortech.2014.10.159_b0095 doi: 10.1007/978-3-642-32223-5_1 – volume: 49 start-page: 802 issue: 4 year: 2013 ident: 10.1016/j.biortech.2014.10.159_b0020 article-title: Novel approach for the development of axenic microalgal cultures from environmental samples publication-title: J. Phycol. doi: 10.1111/jpy.12091 – volume: 45 start-page: 88 issue: 1 year: 2009 ident: 10.1016/j.biortech.2014.10.159_b0045 article-title: Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2008.08.004 – volume: 79 start-page: 6093 issue: 19 year: 2013 ident: 10.1016/j.biortech.2014.10.159_b0115 article-title: Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01496-13 – volume: 4 start-page: 35 year: 2014 ident: 10.1016/j.biortech.2014.10.159_b0160 article-title: Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters publication-title: Algal Res. doi: 10.1016/j.algal.2013.11.009 |
| SSID | ssj0003172 |
| Score | 2.5703886 |
| Snippet | This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange.... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 578 |
| SubjectTerms | Bacteria Bacteria - genetics Bacteria - metabolism Biomass biomass production Biotechnology Biotechnology - methods Carbon Carbon - metabolism carbon cycle Chlorella vulgaris Chlorella vulgaris - growth & development Chlorella vulgaris - metabolism Chlorella vulgaris - microbiology coculture Consortia engineering Exchange Flocculation lipid content Lipid Metabolism Lipids Lipids - chemistry metabolism microalgae Microalgae - growth & development Microalgae - metabolism Microalgae - microbiology Microbial Consortia - genetics Microbial Consortia - physiology molecular weight Productivity Symbiosis |
| Title | Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25459870 https://www.proquest.com/docview/1647002306 https://www.proquest.com/docview/1651458436 https://www.proquest.com/docview/1800701929 https://www.proquest.com/docview/1836645935 |
| Volume | 175 |
| WOSCitedRecordID | wos000345689900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYhwQ8IBiXjcsUJMRLlW1N4th-rKpOA02Fh04qT5Gd2LtoS0vaTtu_55zYuUwrZTzwUrVu3KQ-J865fh8hn4WiaWhS5cecCj9iKvNlYIwfGmFCzo1Ms6gkm2CjEZ9MxA-XLpiXdAIsz_nNjZj9V1HDGAgbW2f_Qdz1j8IAvAehwyuIHV4fJPhhfoYYGvlp9wqL7bBX47KLXfZgJmM5FgK8WsYIsDx1A0fYla0JvrIoziV6SNlCsrib_z2fFi7w313ci84Pzqa2Xl77R7fLptdMYq2s6-fHqLi8akKxNgPkyLzbJUJIO9aOTfRoKzZht1POkCmOObDrFWPVHsxoaxelltXn3u5uAw0Xe7BmBf43rMyL9koSJ9E8z6oc_uh7cnhyfJyMh5Pxl9kvH5nGMCPvaFc2yGbAqOAdstn_Opx8q5_fYFGVOfLqOlt95atPfdek-YOfUtor4xfkuXM0vL5VkJfkkc63yLP-aeHAVvQWeTKo2P7gmxYw5Svys1Yir9EJzymR11YiT916LSXypLdKibxaiV6Tk8PheHDkOxIOP416BwvfRFJxhYESQSXL0jgLtIBPmuso01moKRM64-mBNqIXqDTWgdSZYTQDS5FrFb4hnXya623ixUEA9z-Mh0ZG4CjLOMjiVElpmJahEjuEVuuYpA6hHolSLpOqFPEiqdY_wfUvxynM26_nzSxGy19nfKrElMA6Y45M5nq6nCcIr2f98nXHgJcBhnu47hiOQFrgPq07Fw9jxHIK6Q55a3Wlvv4APBsBz9J3DzjDe_K0ufk-kM6iWOqP5HF6vTifF7tkg034rlPy36ODyxw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+microalgal+biomass+productivity+by+engineering+a+microalgal-bacterial+community&rft.jtitle=Bioresource+technology&rft.au=Cho%2C+Dae-Hyun&rft.au=Ramanan%2C+Rishiram&rft.au=Heo%2C+Jina&rft.au=Lee%2C+Jimin&rft.date=2015-01-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=175&rft.spage=578&rft_id=info:doi/10.1016%2Fj.biortech.2014.10.159&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |