Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community

This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorgan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioresource technology Ročník 175; s. 578 - 585
Hlavní autoři: Cho, Dae-Hyun, Ramanan, Rishiram, Heo, Jina, Lee, Jimin, Kim, Byung-Hyuk, Oh, Hee-Mock, Kim, Hee-Sik
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.01.2015
Témata:
ISSN:0960-8524, 1873-2976, 1873-2976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.
AbstractList This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P < 0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.
This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.
Author Cho, Dae-Hyun
Ramanan, Rishiram
Lee, Jimin
Kim, Byung-Hyuk
Oh, Hee-Mock
Kim, Hee-Sik
Heo, Jina
Author_xml – sequence: 1
  givenname: Dae-Hyun
  surname: Cho
  fullname: Cho, Dae-Hyun
– sequence: 2
  givenname: Rishiram
  surname: Ramanan
  fullname: Ramanan, Rishiram
– sequence: 3
  givenname: Jina
  surname: Heo
  fullname: Heo, Jina
– sequence: 4
  givenname: Jimin
  surname: Lee
  fullname: Lee, Jimin
– sequence: 5
  givenname: Byung-Hyuk
  surname: Kim
  fullname: Kim, Byung-Hyuk
– sequence: 6
  givenname: Hee-Mock
  surname: Oh
  fullname: Oh, Hee-Mock
– sequence: 7
  givenname: Hee-Sik
  surname: Kim
  fullname: Kim, Hee-Sik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25459870$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxi1URLeFV6hy5JJl7MT_JC6oKhSpEhc4cbAce7L1KnFK7CDtjXfgDXkSnLYrIS7tyZrx75sZj78zchKniIRcUNhSoOLdftuFac7obrcMaLtd81y_IBuqZFMzLcUJ2YAWUCvO2lNyltIeABoq2StyynjLtZKwId-v4q2NLsRdNQY3T3bY2aEqtUebUnU3T35xOfwM-VB1hwrjLkTEecXtP4I_v3531uVyUcRuGsclFsVr8rK3Q8I3j-c5-fbx6uvldX3z5dPnyw83tWsp5Lpvbac6qZTS3ErvhGeoS4QKW4--QS41euUAe01Z5wQyi76X3IOgCrvmnLx9qFvG_bFgymYMyeEw2IjTkgxVjRDlwQ1_BgoggWqmn0YFpy1XbSOegbYSgDWwoheP6NKN6M3dHEY7H8zxRwrw_gEou01pxt64kG0OU8yzDYOhYFYDmL05GsCsBrjP83Vq8Z_82OEJ4V8Dd7rI
CitedBy_id crossref_primary_10_1186_s13068_018_1174_0
crossref_primary_10_1007_s00449_021_02542_6
crossref_primary_10_1016_j_biortech_2020_123825
crossref_primary_10_1016_j_biortech_2019_121879
crossref_primary_10_1371_journal_pone_0177488
crossref_primary_10_1007_s13762_021_03820_2
crossref_primary_10_1080_09593330_2022_2044919
crossref_primary_10_1016_j_biortech_2019_02_063
crossref_primary_10_1016_j_cej_2024_158987
crossref_primary_10_1016_j_watres_2021_117952
crossref_primary_10_3389_fbioe_2020_557572
crossref_primary_10_1111_jpy_13026
crossref_primary_10_1007_s00248_017_1139_z
crossref_primary_10_1038_s41598_017_02139_8
crossref_primary_10_3390_ijerph192113950
crossref_primary_10_1016_j_algal_2019_101490
crossref_primary_10_1016_j_algal_2020_101943
crossref_primary_10_1016_j_eti_2025_104419
crossref_primary_10_3390_ijms23158447
crossref_primary_10_1016_j_chemosphere_2021_129540
crossref_primary_10_1186_s40068_024_00385_0
crossref_primary_10_1099_ijsem_0_001074
crossref_primary_10_1016_j_jwpe_2020_101203
crossref_primary_10_1007_s10811_019_01854_1
crossref_primary_10_3390_plants11233225
crossref_primary_10_1016_j_jhazmat_2021_127153
crossref_primary_10_1016_j_jece_2020_104025
crossref_primary_10_3390_fermentation8060261
crossref_primary_10_1016_j_cej_2021_131436
crossref_primary_10_1016_j_biortech_2016_12_094
crossref_primary_10_1016_j_biortech_2019_121890
crossref_primary_10_1016_j_chemosphere_2021_129878
crossref_primary_10_1111_1751_7915_13296
crossref_primary_10_1016_j_envpol_2024_123864
crossref_primary_10_1016_j_marenvres_2025_107553
crossref_primary_10_1016_j_micres_2024_127813
crossref_primary_10_1016_j_algal_2018_05_020
crossref_primary_10_3390_antiox10091360
crossref_primary_10_1016_j_biortech_2015_03_082
crossref_primary_10_1007_s10811_018_1591_2
crossref_primary_10_1007_s11356_023_30470_3
crossref_primary_10_1002_wer_11142
crossref_primary_10_1007_s10811_020_02076_6
crossref_primary_10_1089_omi_2016_0065
crossref_primary_10_1007_s00253_019_10193_7
crossref_primary_10_1093_femsec_fiad026
crossref_primary_10_1016_j_algal_2020_101840
crossref_primary_10_1016_j_cej_2022_138481
crossref_primary_10_1007_s10811_017_1270_8
crossref_primary_10_1016_j_jclepro_2019_117865
crossref_primary_10_3390_life14091053
crossref_primary_10_1016_j_chemosphere_2021_133330
crossref_primary_10_1016_j_jwpe_2025_108714
crossref_primary_10_1111_1758_2229_13321
crossref_primary_10_1186_s12934_017_0834_2
crossref_primary_10_1016_j_pecs_2022_101020
crossref_primary_10_1016_j_biortech_2022_127033
crossref_primary_10_1016_j_biotechadv_2015_12_003
crossref_primary_10_1016_j_memsci_2025_124356
crossref_primary_10_1016_j_hal_2021_102104
crossref_primary_10_1016_j_resconrec_2021_105519
crossref_primary_10_1111_1751_7915_12865
crossref_primary_10_3390_w14233893
crossref_primary_10_1016_j_envres_2022_114238
crossref_primary_10_1111_tpj_14661
crossref_primary_10_3390_biology10040282
crossref_primary_10_1016_j_rser_2015_11_001
crossref_primary_10_3389_fenrg_2025_1654079
crossref_primary_10_1016_j_watres_2024_122930
crossref_primary_10_1016_j_biortech_2022_127028
crossref_primary_10_1186_s13068_018_1097_9
crossref_primary_10_3389_fspas_2021_700579
crossref_primary_10_1111_1751_7915_14014
crossref_primary_10_1016_j_algal_2025_104102
crossref_primary_10_1007_s10452_020_09762_0
crossref_primary_10_1016_j_biortech_2020_123101
crossref_primary_10_1007_s12257_020_0066_x
crossref_primary_10_1002_jctb_6624
crossref_primary_10_1007_s10811_019_01924_4
crossref_primary_10_1016_j_algal_2022_102869
crossref_primary_10_1038_s41598_018_28543_2
crossref_primary_10_3390_en16041758
crossref_primary_10_1016_j_chemosphere_2024_143927
crossref_primary_10_1016_j_pedsph_2023_12_002
crossref_primary_10_1016_j_biortech_2025_132983
crossref_primary_10_2166_wst_2022_322
crossref_primary_10_1007_s00248_019_01437_0
crossref_primary_10_1016_j_biortech_2023_129991
crossref_primary_10_1002_jobm_201700594
crossref_primary_10_7717_peerj_11217
crossref_primary_10_1016_j_rser_2017_05_260
crossref_primary_10_1016_j_rser_2021_111395
crossref_primary_10_1016_j_jwpe_2023_104456
crossref_primary_10_1016_j_algal_2021_102585
crossref_primary_10_7717_peerj_10911
crossref_primary_10_1515_cppm_2017_0082
crossref_primary_10_1093_femsec_fiaa115
crossref_primary_10_1016_j_jwpe_2024_106007
crossref_primary_10_1016_j_cej_2019_122957
crossref_primary_10_1080_07388551_2019_1597828
crossref_primary_10_1016_j_lssr_2019_08_001
crossref_primary_10_1016_j_cej_2018_06_032
crossref_primary_10_1016_j_algal_2018_06_006
crossref_primary_10_1016_j_bej_2022_108433
crossref_primary_10_1007_s10661_024_13516_y
crossref_primary_10_1186_s40168_021_01140_8
crossref_primary_10_1016_j_algal_2022_102768
crossref_primary_10_3390_biology13010054
crossref_primary_10_1016_j_cej_2022_141212
crossref_primary_10_1016_j_chemosphere_2022_137473
crossref_primary_10_3390_d14010002
crossref_primary_10_1016_j_biortech_2025_132601
crossref_primary_10_3389_fbioe_2021_642671
crossref_primary_10_1051_ocl_2021045
crossref_primary_10_2166_ws_2023_042
crossref_primary_10_1016_j_biortech_2019_121353
crossref_primary_10_1016_j_algal_2019_101666
crossref_primary_10_1007_s12649_018_0325_7
crossref_primary_10_1016_j_algal_2019_101547
crossref_primary_10_1007_s10811_024_03357_0
crossref_primary_10_1016_j_algal_2022_102892
crossref_primary_10_1016_j_biortech_2021_125579
crossref_primary_10_1016_j_hazadv_2025_100797
crossref_primary_10_1016_j_jenvman_2021_113869
crossref_primary_10_3390_microorganisms10102029
crossref_primary_10_1016_j_renene_2019_11_063
crossref_primary_10_1111_are_14711
crossref_primary_10_1016_j_algal_2018_101390
crossref_primary_10_1016_j_jece_2024_112288
crossref_primary_10_1007_s10811_025_03469_1
crossref_primary_10_1128_AEM_01548_19
crossref_primary_10_1007_s11356_022_22165_y
crossref_primary_10_3389_fmicb_2022_839465
crossref_primary_10_1007_s10098_018_1505_7
crossref_primary_10_1016_j_biortech_2021_126428
crossref_primary_10_1007_s13762_023_05069_3
crossref_primary_10_1016_j_scitotenv_2020_140099
crossref_primary_10_1016_j_jhazmat_2019_120860
crossref_primary_10_3389_fmicb_2019_01192
crossref_primary_10_1016_j_grets_2023_100060
crossref_primary_10_1016_j_rser_2020_109708
crossref_primary_10_1016_j_jwpe_2022_103003
crossref_primary_10_1016_j_biortech_2020_123766
crossref_primary_10_1016_j_fuel_2020_119093
crossref_primary_10_3389_fbioe_2020_588210
crossref_primary_10_1016_j_algal_2018_11_011
crossref_primary_10_1016_j_tibtech_2023_12_003
crossref_primary_10_3390_md14050100
crossref_primary_10_1016_j_biortech_2025_132515
crossref_primary_10_1016_j_hal_2020_101939
crossref_primary_10_1038_s41598_020_67322_w
crossref_primary_10_1080_26395940_2022_2128884
crossref_primary_10_1016_j_chemosphere_2023_140742
crossref_primary_10_3390_md20020142
crossref_primary_10_3390_ma14113027
crossref_primary_10_1002_wer_10907
crossref_primary_10_1016_j_biortech_2018_05_045
crossref_primary_10_1007_s11274_024_03930_2
crossref_primary_10_1016_j_algal_2015_02_003
crossref_primary_10_1111_1462_2920_14357
crossref_primary_10_1007_s12649_023_02195_4
crossref_primary_10_1128_JB_00865_16
crossref_primary_10_1016_j_biortech_2016_03_109
crossref_primary_10_1007_s00449_023_02855_8
crossref_primary_10_3389_fpls_2017_00289
crossref_primary_10_4014_jmb_2502_02004
crossref_primary_10_1007_s12155_024_10800_0
crossref_primary_10_1007_s12155_022_10400_w
crossref_primary_10_1007_s00253_018_9192_1
crossref_primary_10_3389_fmicb_2023_1176069
crossref_primary_10_1007_s12275_018_7488_6
crossref_primary_10_1016_j_biortech_2015_02_013
crossref_primary_10_1016_j_jhazmat_2018_07_051
crossref_primary_10_1016_j_scitotenv_2020_140607
crossref_primary_10_1016_j_jece_2023_109494
crossref_primary_10_3390_environments12090331
crossref_primary_10_1016_j_aquaculture_2023_739594
crossref_primary_10_1016_j_jiec_2018_09_031
crossref_primary_10_1186_s13068_019_1544_2
crossref_primary_10_3390_cells13181552
crossref_primary_10_1016_j_biteb_2025_102242
crossref_primary_10_1016_j_ecoenv_2023_115369
crossref_primary_10_3389_fmicb_2018_02758
crossref_primary_10_1007_s10499_025_02081_x
crossref_primary_10_1007_s12010_020_03414_7
crossref_primary_10_1007_s10499_018_0253_3
crossref_primary_10_3390_plants11081086
crossref_primary_10_1016_j_bej_2015_07_013
crossref_primary_10_1016_j_biombioe_2019_01_033
crossref_primary_10_1016_j_egyr_2020_06_014
crossref_primary_10_1093_femsle_fny021
crossref_primary_10_1016_j_chemosphere_2021_131001
crossref_primary_10_3390_microorganisms11051108
crossref_primary_10_3390_app11062591
crossref_primary_10_1016_j_jenvman_2024_121226
crossref_primary_10_1016_j_scitotenv_2023_169013
crossref_primary_10_1016_j_rser_2019_109563
crossref_primary_10_1111_1758_2229_13272
crossref_primary_10_1016_j_biortech_2022_128535
crossref_primary_10_1016_j_scitotenv_2020_141957
crossref_primary_10_1016_j_jiec_2025_02_006
crossref_primary_10_1111_1751_7915_13784
crossref_primary_10_1007_s11274_024_04230_5
crossref_primary_10_3389_fbioe_2021_651895
crossref_primary_10_1088_1755_1315_276_1_012045
crossref_primary_10_4014_jmb_2009_09055
crossref_primary_10_1051_bioconf_202411701045
crossref_primary_10_1016_j_cej_2019_122799
crossref_primary_10_1016_j_algal_2022_102807
Cites_doi 10.1016/j.biombioe.2014.07.015
10.1128/JB.01777-12
10.4014/jmb.1312.12057
10.1111/j.1574-6976.2000.tb00552.x
10.1128/AEM.70.11.6753-6766.2004
10.1016/j.watres.2007.10.032
10.1371/journal.pone.0037770
10.1016/j.femsec.2004.08.004
10.1128/AEM.66.4.1527-1531.2000
10.1111/j.1365-313X.2008.03492.x
10.1016/j.biortech.2009.03.058
10.1016/j.tibtech.2008.05.004
10.1016/j.biortech.2013.04.010
10.1016/j.biortech.2012.11.130
10.1016/j.febslet.2012.12.020
10.1016/j.copbio.2010.03.013
10.1021/es010590g
10.3389/fmicb.2011.00093
10.1007/BF02783496
10.1021/np800107c
10.1128/AEM.01998-09
10.1007/s10482-014-0159-7
10.1128/AEM.66.7.3024-3030.2000
10.1007/s10811-010-9623-6
10.1002/etc.643
10.1128/AEM.64.8.2906-2913.1998
10.1007/s00248-006-9162-5
10.1016/j.ecolmodel.2004.02.010
10.1007/978-3-642-32223-5_1
10.1111/jpy.12091
10.1016/j.ejsobi.2008.08.004
10.1128/AEM.01496-13
10.1016/j.algal.2013.11.009
ContentType Journal Article
Copyright Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
8FD
C1K
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
KR7
7X8
7S9
L.6
DOI 10.1016/j.biortech.2014.10.159
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Civil Engineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 585
ExternalDocumentID 25459870
10_1016_j_biortech_2014_10_159
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9DU
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGEKW
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CITATION
CJTIS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~HD
~KM
AACTN
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
SSH
7QL
7QO
7T7
8FD
C1K
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
KR7
7X8
7S9
L.6
ID FETCH-LOGICAL-c410t-f4ab8b788895a7dc6d2e9888e8e4ded3e579ed8c0ef912bc6e2aedf75d0618eb3
ISICitedReferencesCount 234
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345689900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-8524
1873-2976
IngestDate Thu Oct 02 04:25:27 EDT 2025
Wed Oct 01 14:02:45 EDT 2025
Tue Oct 07 10:19:18 EDT 2025
Tue Oct 07 09:43:01 EDT 2025
Thu Apr 03 07:00:49 EDT 2025
Sat Nov 29 07:12:00 EST 2025
Tue Nov 18 21:28:32 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Artificial microalgal bacterial community
Phycosphere bacteria
Biodiesel
Growth enhancement
Chlorella vulgaris
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-f4ab8b788895a7dc6d2e9888e8e4ded3e579ed8c0ef912bc6e2aedf75d0618eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25459870
PQID 1647002306
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1836645935
proquest_miscellaneous_1800701929
proquest_miscellaneous_1651458436
proquest_miscellaneous_1647002306
pubmed_primary_25459870
crossref_citationtrail_10_1016_j_biortech_2014_10_159
crossref_primary_10_1016_j_biortech_2014_10_159
PublicationCentury 2000
PublicationDate 2015-01-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2015
References Kim (10.1016/j.biortech.2014.10.159_b0065) 2014; 69
Steenhoudt (10.1016/j.biortech.2014.10.159_b0140) 2000; 24
Bereschenko (10.1016/j.biortech.2014.10.159_b0010) 2010; 76
Sapp (10.1016/j.biortech.2014.10.159_b0130) 2007; 53
Cho (10.1016/j.biortech.2014.10.159_b0025) 2014
Sule (10.1016/j.biortech.2014.10.159_b0145) 2013; 195
John (10.1016/j.biortech.2014.10.159_b0060) 2001; 35
Langille (10.1016/j.biortech.2014.10.159_b0075) 1998; 64
Powell (10.1016/j.biortech.2014.10.159_b0115) 2013; 79
Kim (10.1016/j.biortech.2014.10.159_b9000) 2012; 7
Hernandez (10.1016/j.biortech.2014.10.159_b0045) 2009; 45
Peters (10.1016/j.biortech.2014.10.159_b0105) 2011; 30
Lee (10.1016/j.biortech.2014.10.159_b0080) 2010; 101
Watanabe (10.1016/j.biortech.2014.10.159_b0165) 2005; 51
Geng (10.1016/j.biortech.2014.10.159_b0030) 2010; 21
Zhang (10.1016/j.biortech.2014.10.159_b0170) 2008; 71
Cho (10.1016/j.biortech.2014.10.159_b0020) 2013; 49
Hu (10.1016/j.biortech.2014.10.159_b0050) 2008; 54
Pinhassi (10.1016/j.biortech.2014.10.159_b0110) 2004; 70
Ivanova (10.1016/j.biortech.2014.10.159_b0055) 2014; 105
10.1016/j.biortech.2014.10.159_b0155
Ramaiah (10.1016/j.biortech.2014.10.159_b0120) 2006; 35
10.1016/j.biortech.2014.10.159_b0095
Unnithan (10.1016/j.biortech.2014.10.159_b0160) 2014; 4
Taylor (10.1016/j.biortech.2014.10.159_b0150) 1995; 53
Ashen (10.1016/j.biortech.2014.10.159_b0005) 2000; 66
Kim (10.1016/j.biortech.2014.10.159_b0070) 2014; 24
Lee (10.1016/j.biortech.2014.10.159_b0085) 2013; 131
Henderson (10.1016/j.biortech.2014.10.159_b0040) 2008; 42
Brenner (10.1016/j.biortech.2014.10.159_b0015) 2008; 26
Montero (10.1016/j.biortech.2014.10.159_b0090) 2011; 23
Shekh (10.1016/j.biortech.2014.10.159_b0135) 2013; 138
Neuhauser (10.1016/j.biortech.2014.10.159_b0100) 2004; 177
Ramanan (10.1016/j.biortech.2014.10.159_b0125) 2013; 587
Gonzalez (10.1016/j.biortech.2014.10.159_b0035) 2000; 66
References_xml – volume: 69
  start-page: 95
  year: 2014
  ident: 10.1016/j.biortech.2014.10.159_b0065
  article-title: Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.07.015
– volume: 195
  start-page: 637
  issue: 4
  year: 2013
  ident: 10.1016/j.biortech.2014.10.159_b0145
  article-title: A Novel inducer of roseobacter motility is also a disruptor of algal symbiosis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01777-12
– volume: 24
  start-page: 1123
  issue: 8
  year: 2014
  ident: 10.1016/j.biortech.2014.10.159_b0070
  article-title: Nutrient removal and biofuel production in high rate algal pond (HRAP) using real municipal wastewater
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1312.12057
– volume: 24
  start-page: 487
  issue: 4
  year: 2000
  ident: 10.1016/j.biortech.2014.10.159_b0140
  article-title: Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2000.tb00552.x
– volume: 70
  start-page: 6753
  issue: 11
  year: 2004
  ident: 10.1016/j.biortech.2014.10.159_b0110
  article-title: Changes in bacterioplankton composition under different phytoplankton regimens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.11.6753-6766.2004
– volume: 42
  start-page: 3435
  issue: 13
  year: 2008
  ident: 10.1016/j.biortech.2014.10.159_b0040
  article-title: Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.10.032
– volume: 7
  start-page: e37770
  issue: 5
  year: 2012
  ident: 10.1016/j.biortech.2014.10.159_b9000
  article-title: Simple, rapid and cost-Eeffective method for high quality nucleic acids extraction from different strains of Botryococcus braunii
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0037770
– volume: 51
  start-page: 187
  issue: 2
  year: 2005
  ident: 10.1016/j.biortech.2014.10.159_b0165
  article-title: Symbiotic association in Chlorella culture
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/j.femsec.2004.08.004
– volume: 66
  start-page: 1527
  issue: 4
  year: 2000
  ident: 10.1016/j.biortech.2014.10.159_b0035
  article-title: Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.4.1527-1531.2000
– volume: 54
  start-page: 621
  issue: 4
  year: 2008
  ident: 10.1016/j.biortech.2014.10.159_b0050
  article-title: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03492.x
– volume: 101
  issue: 1
  year: 2010
  ident: 10.1016/j.biortech.2014.10.159_b0080
  article-title: Comparison of several methods for effective lipid extraction from microalgae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.03.058
– volume: 26
  start-page: 483
  issue: 9
  year: 2008
  ident: 10.1016/j.biortech.2014.10.159_b0015
  article-title: Engineering microbial consortia: a new frontier in synthetic biology
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2008.05.004
– volume: 138
  start-page: 382
  year: 2013
  ident: 10.1016/j.biortech.2014.10.159_b0135
  article-title: Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.04.010
– volume: 131
  start-page: 195
  year: 2013
  ident: 10.1016/j.biortech.2014.10.159_b0085
  article-title: Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.130
– volume: 587
  start-page: 370
  issue: 4
  year: 2013
  ident: 10.1016/j.biortech.2014.10.159_b0125
  article-title: Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.12.020
– volume: 21
  start-page: 332
  issue: 3
  year: 2010
  ident: 10.1016/j.biortech.2014.10.159_b0030
  article-title: Molecular mechanisms underlying roseobacter–phytoplankton symbioses
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2010.03.013
– volume: 35
  start-page: 2942
  issue: 14
  year: 2001
  ident: 10.1016/j.biortech.2014.10.159_b0060
  article-title: Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010590g
– ident: 10.1016/j.biortech.2014.10.159_b0155
  doi: 10.3389/fmicb.2011.00093
– volume: 53
  start-page: 207
  issue: 3
  year: 1995
  ident: 10.1016/j.biortech.2014.10.159_b0150
  article-title: A modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/BF02783496
– volume: 71
  start-page: 1458
  issue: 8
  year: 2008
  ident: 10.1016/j.biortech.2014.10.159_b0170
  article-title: Chlorohydroaspyrones A and B, antibacterial aspyrone derivatives from the marine-derived fungus Exophiala sp
  publication-title: J. Nat. Prod.
  doi: 10.1021/np800107c
– volume: 76
  start-page: 2623
  issue: 8
  year: 2010
  ident: 10.1016/j.biortech.2014.10.159_b0010
  article-title: Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas sp
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01998-09
– volume: 105
  start-page: 997
  issue: 6
  year: 2014
  ident: 10.1016/j.biortech.2014.10.159_b0055
  article-title: Lysis of Antarctic algal strains by bacterial pathogen
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-014-0159-7
– volume: 66
  start-page: 3024
  issue: 7
  year: 2000
  ident: 10.1016/j.biortech.2014.10.159_b0005
  article-title: Molecular and ecological evidence for species specificity and coevolution in a group of marine algal–bacterial symbioses
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.7.3024-3030.2000
– volume: 23
  start-page: 1053
  issue: 6
  year: 2011
  ident: 10.1016/j.biortech.2014.10.159_b0090
  article-title: Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-010-9623-6
– volume: 30
  start-page: 2407
  issue: 11
  year: 2011
  ident: 10.1016/j.biortech.2014.10.159_b0105
  article-title: Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.643
– start-page: 1
  year: 2014
  ident: 10.1016/j.biortech.2014.10.159_b0025
  article-title: Hydrocarbon pollution does not influence bacterial diversity as much as geographic location: a Korean case study
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 35
  start-page: 380
  issue: 4
  year: 2006
  ident: 10.1016/j.biortech.2014.10.159_b0120
  article-title: A review on fungal diseases of algae, marine fishes, shrimps and corals
  publication-title: Ind. J. Marine Sci.
– volume: 64
  start-page: 2906
  issue: 8
  year: 1998
  ident: 10.1016/j.biortech.2014.10.159_b0075
  article-title: Spatial and temporal deposition of Hyphomonas strain VP-6 capsules involved in biofilm formation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.8.2906-2913.1998
– volume: 53
  start-page: 683
  issue: 4
  year: 2007
  ident: 10.1016/j.biortech.2014.10.159_b0130
  article-title: Species-specific bacterial communities in the phycosphere of microalgae?
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-006-9162-5
– volume: 177
  start-page: 337
  issue: 3–4
  year: 2004
  ident: 10.1016/j.biortech.2014.10.159_b0100
  article-title: A mutualism–parasitism continuum model and its application to plant–mycorrhizae interactions
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.02.010
– ident: 10.1016/j.biortech.2014.10.159_b0095
  doi: 10.1007/978-3-642-32223-5_1
– volume: 49
  start-page: 802
  issue: 4
  year: 2013
  ident: 10.1016/j.biortech.2014.10.159_b0020
  article-title: Novel approach for the development of axenic microalgal cultures from environmental samples
  publication-title: J. Phycol.
  doi: 10.1111/jpy.12091
– volume: 45
  start-page: 88
  issue: 1
  year: 2009
  ident: 10.1016/j.biortech.2014.10.159_b0045
  article-title: Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2008.08.004
– volume: 79
  start-page: 6093
  issue: 19
  year: 2013
  ident: 10.1016/j.biortech.2014.10.159_b0115
  article-title: Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01496-13
– volume: 4
  start-page: 35
  year: 2014
  ident: 10.1016/j.biortech.2014.10.159_b0160
  article-title: Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2013.11.009
SSID ssj0003172
Score 2.5703886
Snippet This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 578
SubjectTerms Bacteria
Bacteria - genetics
Bacteria - metabolism
Biomass
biomass production
Biotechnology
Biotechnology - methods
Carbon
Carbon - metabolism
carbon cycle
Chlorella vulgaris
Chlorella vulgaris - growth & development
Chlorella vulgaris - metabolism
Chlorella vulgaris - microbiology
coculture
Consortia
engineering
Exchange
Flocculation
lipid content
Lipid Metabolism
Lipids
Lipids - chemistry
metabolism
microalgae
Microalgae - growth & development
Microalgae - metabolism
Microalgae - microbiology
Microbial Consortia - genetics
Microbial Consortia - physiology
molecular weight
Productivity
Symbiosis
Title Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community
URI https://www.ncbi.nlm.nih.gov/pubmed/25459870
https://www.proquest.com/docview/1647002306
https://www.proquest.com/docview/1651458436
https://www.proquest.com/docview/1800701929
https://www.proquest.com/docview/1836645935
Volume 175
WOSCitedRecordID wos000345689900074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYhwQ8IBiXjcsUJMRLlW1N4th-rKpOA02Fh04qT5Gd2LtoS0vaTtu_55zYuUwrZTzwUrVu3KQ-J865fh8hn4WiaWhS5cecCj9iKvNlYIwfGmFCzo1Ms6gkm2CjEZ9MxA-XLpiXdAIsz_nNjZj9V1HDGAgbW2f_Qdz1j8IAvAehwyuIHV4fJPhhfoYYGvlp9wqL7bBX47KLXfZgJmM5FgK8WsYIsDx1A0fYla0JvrIoziV6SNlCsrib_z2fFi7w313ci84Pzqa2Xl77R7fLptdMYq2s6-fHqLi8akKxNgPkyLzbJUJIO9aOTfRoKzZht1POkCmOObDrFWPVHsxoaxelltXn3u5uAw0Xe7BmBf43rMyL9koSJ9E8z6oc_uh7cnhyfJyMh5Pxl9kvH5nGMCPvaFc2yGbAqOAdstn_Opx8q5_fYFGVOfLqOlt95atPfdek-YOfUtor4xfkuXM0vL5VkJfkkc63yLP-aeHAVvQWeTKo2P7gmxYw5Svys1Yir9EJzymR11YiT916LSXypLdKibxaiV6Tk8PheHDkOxIOP416BwvfRFJxhYESQSXL0jgLtIBPmuso01moKRM64-mBNqIXqDTWgdSZYTQDS5FrFb4hnXya623ixUEA9z-Mh0ZG4CjLOMjiVElpmJahEjuEVuuYpA6hHolSLpOqFPEiqdY_wfUvxynM26_nzSxGy19nfKrElMA6Y45M5nq6nCcIr2f98nXHgJcBhnu47hiOQFrgPq07Fw9jxHIK6Q55a3Wlvv4APBsBz9J3DzjDe_K0ufk-kM6iWOqP5HF6vTifF7tkg034rlPy36ODyxw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+microalgal+biomass+productivity+by+engineering+a+microalgal-bacterial+community&rft.jtitle=Bioresource+technology&rft.au=Cho%2C+Dae-Hyun&rft.au=Ramanan%2C+Rishiram&rft.au=Heo%2C+Jina&rft.au=Lee%2C+Jimin&rft.date=2015-01-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=175&rft.spage=578&rft_id=info:doi/10.1016%2Fj.biortech.2014.10.159&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon