The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding
The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the rec...
Uloženo v:
| Vydáno v: | Journal of virology Ročník 82; číslo 20; s. 10059 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.10.2008
|
| Témata: | |
| ISSN: | 1098-5514, 1098-5514 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur. |
|---|---|
| AbstractList | The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur.The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur. The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur. |
| Author | Chen, Benjamin J Jackson, David Leser, George P Lamb, Robert A |
| Author_xml | – sequence: 1 givenname: Benjamin J surname: Chen fullname: Chen, Benjamin J organization: Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Dr., Evanston, IL 60208-3500, USA – sequence: 2 givenname: George P surname: Leser fullname: Leser, George P – sequence: 3 givenname: David surname: Jackson fullname: Jackson, David – sequence: 4 givenname: Robert A surname: Lamb fullname: Lamb, Robert A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18701586$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAQRS1URB-wY428YpdiuxMnXqKKR1ErNoVt5DgTapQ4JXZA5Qv4bCJoEau50pw5upoxGbjGISHnnE05F-nVw_NiyjhPIWLpERlxptIojjkM_uUhGXv_yhgHkHBChjxNGI9TOSJf6w1S68qqQ_ep6bttO09Xgm7bJqB11OxCs620r62hQduqZwO22gRPP2zY0NCfr_gfrl1xsBn0e532Huu82lEdfnhvA9Km3G_zriisezklx6WuPJ7t54Q83d6s5_fR8vFuMb9eRgY4C1EpwMQFx2RWKjBJkoMoOWhlEomaQSKZNAigUgYFslwwYUye62QmlEINpZiQy19vX_mtQx-y2nqDVaUdNp3PpJJcyRn04MUe7PIai2zb2lq3u-zwO_ENQuZ0WQ |
| CitedBy_id | crossref_primary_10_1128_JVI_05681_11 crossref_primary_10_1155_2011_245090 crossref_primary_10_1586_erv_09_6 crossref_primary_10_1016_j_vaccine_2017_10_018 crossref_primary_10_1586_erv_09_8 crossref_primary_10_1128_JVI_06003_11 crossref_primary_10_1124_mol_119_116640 crossref_primary_10_1128_JVI_03253_14 crossref_primary_10_3389_fbioe_2015_00197 crossref_primary_10_1016_j_chom_2013_10_011 crossref_primary_10_1093_infdis_jiz003 crossref_primary_10_1021_jacs_5c05111 crossref_primary_10_1128_JVI_00276_13 crossref_primary_10_1128_JVI_01424_08 crossref_primary_10_3390_v12070780 crossref_primary_10_1016_j_antiviral_2020_104780 crossref_primary_10_1083_jcb_201108175 crossref_primary_10_3390_v13081657 crossref_primary_10_1371_journal_pone_0165421 crossref_primary_10_1016_j_bpj_2021_11_023 crossref_primary_10_1016_j_bbamem_2024_184387 crossref_primary_10_1038_nrmicro3367 crossref_primary_10_3390_pathogens8040168 crossref_primary_10_1016_j_drudis_2012_06_002 crossref_primary_10_1128_jvi_00716_22 crossref_primary_10_1016_j_bpj_2014_06_042 crossref_primary_10_1016_j_cemconres_2022_107005 crossref_primary_10_1016_j_phrs_2021_105690 crossref_primary_10_1371_journal_ppat_1008775 crossref_primary_10_1016_j_antiviral_2024_105807 crossref_primary_10_1016_j_bpj_2015_11_3529 crossref_primary_10_1021_jacs_8b09658 crossref_primary_10_1128_JVI_01367_10 crossref_primary_10_1007_s00281_010_0226_8 crossref_primary_10_1016_j_virol_2010_12_003 crossref_primary_10_4167_jbv_2025_55_2_187 crossref_primary_10_1146_annurev_virology_110615_042345 crossref_primary_10_1016_j_vaccine_2011_05_077 crossref_primary_10_1099_jgv_0_000535 crossref_primary_10_1128_JVI_01205_16 crossref_primary_10_3389_fcimb_2018_00396 crossref_primary_10_1016_j_virol_2016_02_021 crossref_primary_10_1073_pnas_0905726106 crossref_primary_10_1128_JVI_02104_16 crossref_primary_10_1128_JVI_00267_17 crossref_primary_10_1016_j_virol_2017_02_008 crossref_primary_10_1016_j_virol_2015_02_005 crossref_primary_10_1007_s12668_022_00993_z crossref_primary_10_1128_JVI_05970_11 crossref_primary_10_1002_pro_2690 crossref_primary_10_1146_annurev_cellbio_101011_155838 crossref_primary_10_3390_v10100560 crossref_primary_10_1128_JVI_01479_12 crossref_primary_10_1016_j_virol_2016_08_016 crossref_primary_10_1128_JVI_01972_17 crossref_primary_10_3390_v8090249 crossref_primary_10_1016_j_virusres_2010_07_006 crossref_primary_10_1128_JVI_00161_19 crossref_primary_10_1038_nsmb1209_1207 crossref_primary_10_3390_v6083019 crossref_primary_10_1002_1873_3468_14194 crossref_primary_10_1074_jbc_M117_776112 crossref_primary_10_1128_JVI_03306_14 crossref_primary_10_1111_cmi_12045 crossref_primary_10_1371_journal_pone_0174862 crossref_primary_10_1371_journal_ppat_1003358 crossref_primary_10_1128_jvi_00373_22 crossref_primary_10_1128_JVI_03354_13 crossref_primary_10_1007_s13253_024_00605_1 crossref_primary_10_1016_j_bbamem_2019_03_013 crossref_primary_10_1038_srep41029 crossref_primary_10_1007_s11262_019_01700_z crossref_primary_10_1016_j_bbamem_2019_05_021 crossref_primary_10_1016_j_bpj_2012_01_010 crossref_primary_10_1016_j_jep_2017_07_015 crossref_primary_10_1128_JVI_01551_18 crossref_primary_10_1016_j_virusres_2012_08_014 crossref_primary_10_1242_jcs_252676 crossref_primary_10_1016_j_virusres_2011_02_013 crossref_primary_10_1371_journal_ppat_1011484 crossref_primary_10_1080_07391102_2018_1436089 crossref_primary_10_1371_journal_pone_0035989 crossref_primary_10_1074_jbc_M112_412726 crossref_primary_10_1016_j_yjsbx_2025_100122 crossref_primary_10_1128_jvi_00067_25 crossref_primary_10_1007_s11427_010_4048_7 crossref_primary_10_1016_j_bspc_2020_102359 crossref_primary_10_3390_ijms18081673 crossref_primary_10_3390_ijms18122649 crossref_primary_10_1016_j_cell_2010_08_029 crossref_primary_10_1186_1743_422X_7_108 crossref_primary_10_1128_JVI_01129_09 crossref_primary_10_1515_hsz_2021_0241 crossref_primary_10_1128_JVI_00410_16 crossref_primary_10_1099_vir_0_000201 crossref_primary_10_1128_JVI_01757_16 crossref_primary_10_1586_eri_11_25 crossref_primary_10_1038_nsmb_1707 crossref_primary_10_1128_JVI_00378_11 crossref_primary_10_1186_s12896_015_0152_x crossref_primary_10_1128_JVI_01605_19 crossref_primary_10_1002_1873_3468_12118 crossref_primary_10_1186_s12929_019_0572_3 crossref_primary_10_1371_journal_pone_0050595 crossref_primary_10_1016_j_virol_2013_01_001 crossref_primary_10_1242_jcs_210807 crossref_primary_10_1586_erv_12_150 crossref_primary_10_1016_j_virusres_2011_09_037 crossref_primary_10_1038_s41579_018_0003_6 crossref_primary_10_1016_j_cell_2010_08_036 crossref_primary_10_1016_j_bbamem_2017_10_026 crossref_primary_10_1111_rssc_12054 crossref_primary_10_1128_JVI_01425_18 crossref_primary_10_1128_JVI_05992_11 crossref_primary_10_1002_chem_202403129 crossref_primary_10_1128_JVI_00853_10 crossref_primary_10_1007_s00705_008_0283_7 crossref_primary_10_1016_j_virusres_2015_01_005 crossref_primary_10_1128_JVI_00119_10 crossref_primary_10_1016_j_bbamem_2013_09_004 crossref_primary_10_1128_JVI_01322_10 crossref_primary_10_1007_s12104_020_09937_8 crossref_primary_10_1128_cmr_00040_22 crossref_primary_10_1016_j_bbamem_2010_04_015 crossref_primary_10_1128_JVI_01812_13 crossref_primary_10_3390_pathogens14060599 crossref_primary_10_1586_14760584_2015_989988 crossref_primary_10_1080_15548627_2019_1580089 crossref_primary_10_1128_JVI_01363_13 crossref_primary_10_1002_pro_2937 crossref_primary_10_1371_journal_ppat_1002998 crossref_primary_10_1099_vir_0_038554_0 crossref_primary_10_1242_jcs_188409 crossref_primary_10_3390_v10120731 crossref_primary_10_2478_jvetres_2018_0057 crossref_primary_10_7554_eLife_81571 crossref_primary_10_1016_j_febslet_2014_02_014 crossref_primary_10_1186_1743_422X_6_67 crossref_primary_10_1016_j_chom_2009_09_009 crossref_primary_10_1016_j_jep_2023_117275 crossref_primary_10_1007_s11262_014_1068_6 crossref_primary_10_1007_s12250_010_3136_y crossref_primary_10_1016_j_tibs_2010_07_005 crossref_primary_10_1042_BC20090138 crossref_primary_10_3390_v11010046 crossref_primary_10_1007_s13238_010_0025_y crossref_primary_10_1073_pnas_1701747114 crossref_primary_10_1016_j_micpath_2015_11_008 crossref_primary_10_3390_v16020316 crossref_primary_10_1099_vir_0_046219_0 crossref_primary_10_1016_j_virusres_2013_09_022 crossref_primary_10_1155_2011_370606 crossref_primary_10_1586_14760584_2014_852476 crossref_primary_10_1080_22221751_2025_2558881 crossref_primary_10_1016_j_virol_2011_05_006 crossref_primary_10_1002_pro_2368 crossref_primary_10_1016_j_virol_2010_06_035 crossref_primary_10_1128_jvi_00388_23 crossref_primary_10_1016_j_virusres_2009_05_010 crossref_primary_10_1128_JVI_02306_09 crossref_primary_10_1042_BJ20110706 crossref_primary_10_1128_JVI_00858_17 crossref_primary_10_1007_s11262_022_01904_w crossref_primary_10_1128_JVI_00586_14 crossref_primary_10_1038_s41467_018_05480_2 crossref_primary_10_1099_jgv_0_000562 crossref_primary_10_3390_cells10071722 crossref_primary_10_3390_v7072786 crossref_primary_10_3390_v13122335 crossref_primary_10_1038_s41598_019_41023_5 crossref_primary_10_3390_v7072781 crossref_primary_10_4049_jimmunol_1801054 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/JVI.01184-08 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1098-5514 |
| ExternalDocumentID | 18701586 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008152 – fundername: NIAID NIH HHS grantid: R01 AI-20201 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: T32 GM08152-18 – fundername: NIAID NIH HHS grantid: R01 AI020201 |
| GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A NPM O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM 7X8 AFPKN |
| ID | FETCH-LOGICAL-c410t-f24c5d1e73f94c77b42f14a9c76ea047606ce449804de0b202ccbba73299ea4f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 199 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260109100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-5514 |
| IngestDate | Sun Nov 09 09:52:47 EST 2025 Mon Jul 21 06:00:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-f24c5d1e73f94c77b42f14a9c76ea047606ce449804de0b202ccbba73299ea4f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1128/JVI.01184-08 |
| PMID | 18701586 |
| PQID | 69619634 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_69619634 pubmed_primary_18701586 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-10-01 |
| PublicationDateYYYYMMDD | 2008-10-01 |
| PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of virology |
| PublicationTitleAlternate | J Virol |
| PublicationYear | 2008 |
| References | 17146050 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18992-7 1377366 - Nature. 1992 Jul 9;358(6382):110-1 12604801 - J Gen Virol. 2003 Mar;84(Pt 3):517-27 1375129 - Cell. 1992 May 15;69(4):577-8 10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50 3840537 - J Virol. 1985 Nov;56(2):502-11 12527752 - J Cell Biol. 2003 Jan 20;160(2):165-70 1989386 - Virology. 1991 Feb;180(2):617-24 18063004 - Virology. 2008 Mar 15;372(2):221-32 6945577 - Proc Natl Acad Sci U S A. 1981 Jul;78(7):4170-4 17989175 - J Virol. 2008 Jan;82(2):728-39 8551626 - J Virol. 1996 Feb;70(2):873-9 15967815 - J Cell Biol. 2005 Jun 20;169(6):965-76 15034144 - Mol Biol Cell. 2004 Jun;15(6):2580-92 2455818 - J Virol. 1988 Aug;62(8):2762-72 16873274 - J Virol. 2006 Aug;80(16):8178-89 11773413 - J Virol. 2002 Feb;76(3):1391-9 9312009 - EMBO J. 1997 Sep 15;16(18):5501-8 10516084 - J Virol. 1999 Nov;73(11):9679-82 3882238 - Cell. 1985 Mar;40(3):627-33 15731254 - J Virol. 2005 Mar;79(6):3595-605 1374685 - Cell. 1992 May 1;69(3):517-28 10954572 - J Virol. 2000 Sep;74(18):8709-19 18214385 - Methods Mol Biol. 2007;398:245-61 10864667 - J Virol. 2000 Jul;74(14):6538-45 9499106 - J Virol. 1998 Mar;72(3):2449-55 16699003 - J Virol. 2006 Jun;80(11):5233-40 1906908 - J Histochem Cytochem. 1991 Aug;39(8):1017-24 12490406 - Virology. 2002 Dec 5;304(1):89-96 7529332 - J Virol. 1995 Feb;69(2):1219-25 15221235 - Eur Biophys J. 2005 Feb;34(1):52-66 10559278 - J Virol. 1999 Dec;73(12):9695-701 7535862 - J Virol. 1995 May;69(5):2725-8 7571410 - Virology. 1995 Oct 1;212(2):411-21 9875317 - Virology. 1998 Dec 5;252(1):54-64 15452221 - J Virol. 2004 Oct;78(20):11007-15 9135140 - EMBO J. 1997 Mar 17;16(6):1236-47 16227287 - J Virol. 2005 Nov;79(21):13673-84 9890962 - J Biol Chem. 1999 Jan 22;274(4):2038-44 15113907 - J Virol. 2004 May;78(10):5258-69 16474138 - J Virol. 2006 Mar;80(5):2318-25 10753711 - Virology. 2000 Apr 10;269(2):325-34 2915973 - Proc Natl Acad Sci U S A. 1989 Feb;86(3):1061-5 8841994 - J Physiol. 1996 Jul 15;494 ( Pt 2):329-36 8411379 - J Virol. 1993 Nov;67(11):6762-7 17475660 - J Virol. 2007 Jul;81(13):7111-23 14561897 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14610-7 10722698 - J Biol Chem. 2000 Mar 24;275(12):8592-9 11799156 - J Virol. 2002 Feb;76(4):1617-25 16437116 - Nature. 2006 Jan 26;439(7075):490-2 1660837 - Gene. 1991 Dec 15;108(2):193-9 15033573 - Virology. 2004 Mar 30;321(1):144-53 10775599 - J Virol. 2000 May;74(10):4634-44 9448697 - Virology. 1998 Jan 5;240(1):127-37 9375016 - Virology. 1997 Nov 10;238(1):128-34 15613353 - J Virol. 2005 Jan;79(2):1262-70 12852861 - Dev Cell. 2003 Jul;5(1):175-84 16139601 - Adv Virus Res. 2005;64:383-416 2053285 - Virology. 1991 Jul;183(1):32-43 16249012 - Virology. 2005 Nov 25;342(2):215-27 16081296 - Micron. 2006;37(1):14-34 8794300 - J Virol. 1996 Oct;70(10):6653-7 |
| References_xml | – reference: 2915973 - Proc Natl Acad Sci U S A. 1989 Feb;86(3):1061-5 – reference: 11773413 - J Virol. 2002 Feb;76(3):1391-9 – reference: 16249012 - Virology. 2005 Nov 25;342(2):215-27 – reference: 7571410 - Virology. 1995 Oct 1;212(2):411-21 – reference: 8551626 - J Virol. 1996 Feb;70(2):873-9 – reference: 10775599 - J Virol. 2000 May;74(10):4634-44 – reference: 12852861 - Dev Cell. 2003 Jul;5(1):175-84 – reference: 9135140 - EMBO J. 1997 Mar 17;16(6):1236-47 – reference: 7529332 - J Virol. 1995 Feb;69(2):1219-25 – reference: 10753711 - Virology. 2000 Apr 10;269(2):325-34 – reference: 9499106 - J Virol. 1998 Mar;72(3):2449-55 – reference: 1375129 - Cell. 1992 May 15;69(4):577-8 – reference: 10864667 - J Virol. 2000 Jul;74(14):6538-45 – reference: 9448697 - Virology. 1998 Jan 5;240(1):127-37 – reference: 15967815 - J Cell Biol. 2005 Jun 20;169(6):965-76 – reference: 16081296 - Micron. 2006;37(1):14-34 – reference: 15452221 - J Virol. 2004 Oct;78(20):11007-15 – reference: 17475660 - J Virol. 2007 Jul;81(13):7111-23 – reference: 8794300 - J Virol. 1996 Oct;70(10):6653-7 – reference: 1660837 - Gene. 1991 Dec 15;108(2):193-9 – reference: 11799156 - J Virol. 2002 Feb;76(4):1617-25 – reference: 14561897 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14610-7 – reference: 8411379 - J Virol. 1993 Nov;67(11):6762-7 – reference: 17146050 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18992-7 – reference: 2053285 - Virology. 1991 Jul;183(1):32-43 – reference: 6945577 - Proc Natl Acad Sci U S A. 1981 Jul;78(7):4170-4 – reference: 3882238 - Cell. 1985 Mar;40(3):627-33 – reference: 10516084 - J Virol. 1999 Nov;73(11):9679-82 – reference: 16873274 - J Virol. 2006 Aug;80(16):8178-89 – reference: 16437116 - Nature. 2006 Jan 26;439(7075):490-2 – reference: 16699003 - J Virol. 2006 Jun;80(11):5233-40 – reference: 10954572 - J Virol. 2000 Sep;74(18):8709-19 – reference: 18214385 - Methods Mol Biol. 2007;398:245-61 – reference: 15221235 - Eur Biophys J. 2005 Feb;34(1):52-66 – reference: 10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50 – reference: 16474138 - J Virol. 2006 Mar;80(5):2318-25 – reference: 12490406 - Virology. 2002 Dec 5;304(1):89-96 – reference: 1989386 - Virology. 1991 Feb;180(2):617-24 – reference: 15113907 - J Virol. 2004 May;78(10):5258-69 – reference: 16227287 - J Virol. 2005 Nov;79(21):13673-84 – reference: 1377366 - Nature. 1992 Jul 9;358(6382):110-1 – reference: 15033573 - Virology. 2004 Mar 30;321(1):144-53 – reference: 15034144 - Mol Biol Cell. 2004 Jun;15(6):2580-92 – reference: 15731254 - J Virol. 2005 Mar;79(6):3595-605 – reference: 17989175 - J Virol. 2008 Jan;82(2):728-39 – reference: 1374685 - Cell. 1992 May 1;69(3):517-28 – reference: 10559278 - J Virol. 1999 Dec;73(12):9695-701 – reference: 9890962 - J Biol Chem. 1999 Jan 22;274(4):2038-44 – reference: 9875317 - Virology. 1998 Dec 5;252(1):54-64 – reference: 3840537 - J Virol. 1985 Nov;56(2):502-11 – reference: 8841994 - J Physiol. 1996 Jul 15;494 ( Pt 2):329-36 – reference: 10722698 - J Biol Chem. 2000 Mar 24;275(12):8592-9 – reference: 12527752 - J Cell Biol. 2003 Jan 20;160(2):165-70 – reference: 9312009 - EMBO J. 1997 Sep 15;16(18):5501-8 – reference: 12604801 - J Gen Virol. 2003 Mar;84(Pt 3):517-27 – reference: 1906908 - J Histochem Cytochem. 1991 Aug;39(8):1017-24 – reference: 7535862 - J Virol. 1995 May;69(5):2725-8 – reference: 16139601 - Adv Virus Res. 2005;64:383-416 – reference: 18063004 - Virology. 2008 Mar 15;372(2):221-32 – reference: 9375016 - Virology. 1997 Nov 10;238(1):128-34 – reference: 15613353 - J Virol. 2005 Jan;79(2):1262-70 – reference: 2455818 - J Virol. 1988 Aug;62(8):2762-72 |
| SSID | ssj0014464 |
| Score | 2.3973858 |
| Snippet | The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 10059 |
| SubjectTerms | Amino Acid Sequence Animals Cell Line Cell Membrane - metabolism Humans Influenza A virus - physiology Molecular Sequence Data Protein Structure, Tertiary RNA, Viral - genetics RNA, Viral - metabolism Sequence Alignment Viral Matrix Proteins - genetics Viral Matrix Proteins - metabolism Virus Assembly Virus Replication |
| Title | The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/18701586 https://www.proquest.com/docview/69619634 |
| Volume | 82 |
| WOSCitedRecordID | wos000260109100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUKBYkL-1JWH7iGZnHjWEJCCFEBolUPUPVWOY4tRaJJadJK5Qv4bGaywAlx4JJLHMuyJzNvPMsj5FIpLo0twMnxvchi4BBYMpCexQD9IrG5lkUV__CZ9_vBaCQGDXJd18JgWmWtEwtFHaUK78jbvvBRWNjN9N1CziiMrVYEGiuk6QGQwYQuPvqJIYCjU8SUsWMm4oI67d0N2k_DxyssuWSWHfwOLQsT09363-K2yWYFLeltKQs7pKGTXbJekk0u98gnSASNS06SD0kX8Wye0Z5Li04NcULVMk-ngKUnsaKYVkqxkwTWUGUUL2spIEXac76HyySqZwNVU00HSFxPwrcllXkxHldIU1O9DecRWsp98tq9f7l7sCoeBksxx84t4zLViRzNPSOY4jxkrnGYFIr7WtqMgw-kNGMisFmk7dC1XaXCUHIPTJ2WzLgHZDVJE31EqDBCCQOYQIJjqrxQGulEugOwKzLGk3aLXNQbPAY5x-CFTHQ6z8b1FrfIYXlG42nZjmPsgMpxOoF__Oe3J2TDrdvZOqekaeAP12dkTS3yOJudF-IDz_6g9wWATdH8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influenza+virus+M2+protein+cytoplasmic+tail+interacts+with+the+M1+protein+and+influences+virus+assembly+at+the+site+of+virus+budding&rft.jtitle=Journal+of+virology&rft.au=Chen%2C+Benjamin+J&rft.au=Leser%2C+George+P&rft.au=Jackson%2C+David&rft.au=Lamb%2C+Robert+A&rft.date=2008-10-01&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=82&rft.issue=20&rft.spage=10059&rft_id=info:doi/10.1128%2FJVI.01184-08&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5514&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5514&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5514&client=summon |