A techno-economic planning model for integrated generation and transmission expansion in modern power systems with renewables and energy storage using hybrid Runge Kutta-gradient-based optimization algorithm
This paper presents an integrated generation and transmission expansion planning (G&TEP) model embedding with energy storage systems (ESSs) to reduce G&TEP projects’ cost, enhance power system’s reliability, decrease carbon emission, and increase the penetration of renewable energy systems....
Saved in:
| Published in: | Energy reports Vol. 8; pp. 6457 - 6479 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2022
Elsevier |
| Subjects: | |
| ISSN: | 2352-4847, 2352-4847 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents an integrated generation and transmission expansion planning (G&TEP) model embedding with energy storage systems (ESSs) to reduce G&TEP projects’ cost, enhance power system’s reliability, decrease carbon emission, and increase the penetration of renewable energy systems. ESSs are a key component of modern power grids for their ability to solve many challenges and problems. Electrical system operators and planners often resort to ESSs, which are considered promising technology and are sometimes the only economically viable way to address deficiencies in the planning phase, specifically in the presence of renewable energy sources. However, choosing the right ESS type to solve a problem is still a challenge and essential to cost-effectively integrating ESSs into power systems. In this work, a techno-economic planning model is formulated to decide on a suitable ESS type for the optimal configuration of two power systems, taking into account the technical and economic aspects of ESSs. Three long-term and seven medium-term types of ESSs were tested for this purpose. A hybrid scheme of Runge Kutta optimizer and gradient-based optimizer is applied to solve the problem. The proposed planning model is implemented on the known Garver system and a real system in Egypt (Egyptian west delta network). The numerical results found that pumped hydroelectric storage is the most effective type in achieving N-1 reliability constraints, increasing the use of RESs, and reducing the planning cost. ESSs enhanced systems’ security and reduced the total planning cost by 0.86%–2.35% for the Garver network. The results showed that using ESSs is necessary for some power systems, like the west delta network, to avoid rolling blackouts. The investment and operating costs of ESSs, in the presence of RESs, reach more than 50 % of the total planning cost in some case studies. However, ESSs, in the absence of RESs and reliability constraints, increase the planning cost by 5%–50%. Finally, the hybrid scheme proved its superiority in solving the proposed problem.
•A power system planning model in the presence of renewables is investigated.•Technical and economic aspects of storage systems are considered in the model.•A hybrid of two meta-heuristic optimizers is applied to solve the problem.•Performance of long- and medium-term energy storage systems are tested.•Pumped hydroelectric storage system is recommended for electrical networks’ expansion. |
|---|---|
| AbstractList | This paper presents an integrated generation and transmission expansion planning (G&TEP) model embedding with energy storage systems (ESSs) to reduce G&TEP projects’ cost, enhance power system’s reliability, decrease carbon emission, and increase the penetration of renewable energy systems. ESSs are a key component of modern power grids for their ability to solve many challenges and problems. Electrical system operators and planners often resort to ESSs, which are considered promising technology and are sometimes the only economically viable way to address deficiencies in the planning phase, specifically in the presence of renewable energy sources. However, choosing the right ESS type to solve a problem is still a challenge and essential to cost-effectively integrating ESSs into power systems. In this work, a techno-economic planning model is formulated to decide on a suitable ESS type for the optimal configuration of two power systems, taking into account the technical and economic aspects of ESSs. Three long-term and seven medium-term types of ESSs were tested for this purpose. A hybrid scheme of Runge Kutta optimizer and gradient-based optimizer is applied to solve the problem. The proposed planning model is implemented on the known Garver system and a real system in Egypt (Egyptian west delta network). The numerical results found that pumped hydroelectric storage is the most effective type in achieving N-1 reliability constraints, increasing the use of RESs, and reducing the planning cost. ESSs enhanced systems’ security and reduced the total planning cost by 0.86%–2.35% for the Garver network. The results showed that using ESSs is necessary for some power systems, like the west delta network, to avoid rolling blackouts. The investment and operating costs of ESSs, in the presence of RESs, reach more than 50 % of the total planning cost in some case studies. However, ESSs, in the absence of RESs and reliability constraints, increase the planning cost by 5%–50%. Finally, the hybrid scheme proved its superiority in solving the proposed problem. This paper presents an integrated generation and transmission expansion planning (G&TEP) model embedding with energy storage systems (ESSs) to reduce G&TEP projects’ cost, enhance power system’s reliability, decrease carbon emission, and increase the penetration of renewable energy systems. ESSs are a key component of modern power grids for their ability to solve many challenges and problems. Electrical system operators and planners often resort to ESSs, which are considered promising technology and are sometimes the only economically viable way to address deficiencies in the planning phase, specifically in the presence of renewable energy sources. However, choosing the right ESS type to solve a problem is still a challenge and essential to cost-effectively integrating ESSs into power systems. In this work, a techno-economic planning model is formulated to decide on a suitable ESS type for the optimal configuration of two power systems, taking into account the technical and economic aspects of ESSs. Three long-term and seven medium-term types of ESSs were tested for this purpose. A hybrid scheme of Runge Kutta optimizer and gradient-based optimizer is applied to solve the problem. The proposed planning model is implemented on the known Garver system and a real system in Egypt (Egyptian west delta network). The numerical results found that pumped hydroelectric storage is the most effective type in achieving N-1 reliability constraints, increasing the use of RESs, and reducing the planning cost. ESSs enhanced systems’ security and reduced the total planning cost by 0.86%–2.35% for the Garver network. The results showed that using ESSs is necessary for some power systems, like the west delta network, to avoid rolling blackouts. The investment and operating costs of ESSs, in the presence of RESs, reach more than 50 % of the total planning cost in some case studies. However, ESSs, in the absence of RESs and reliability constraints, increase the planning cost by 5%–50%. Finally, the hybrid scheme proved its superiority in solving the proposed problem. •A power system planning model in the presence of renewables is investigated.•Technical and economic aspects of storage systems are considered in the model.•A hybrid of two meta-heuristic optimizers is applied to solve the problem.•Performance of long- and medium-term energy storage systems are tested.•Pumped hydroelectric storage system is recommended for electrical networks’ expansion. |
| Author | Refaat, Mohamed M. Alghamdi, Sultan Ali, Ziad M. Rawa, Muhyaddin Aleem, Shady H.E. Abdel AlKubaisy, Zenah M. |
| Author_xml | – sequence: 1 givenname: Muhyaddin orcidid: 0000-0001-6035-5733 surname: Rawa fullname: Rawa, Muhyaddin email: mrawa@kau.edu.sa organization: Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 2 givenname: Zenah M. orcidid: 0000-0001-9636-2791 surname: AlKubaisy fullname: AlKubaisy, Zenah M. email: zmalkubaisy@kau.edu.sa organization: Department of Management Information System, Faculty of Economics and Administration, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 3 givenname: Sultan surname: Alghamdi fullname: Alghamdi, Sultan email: Smalgamdi1@kau.edu.sa organization: Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 4 givenname: Mohamed M. surname: Refaat fullname: Refaat, Mohamed M. email: mrefaat@eri.sci.eg organization: Photovoltaic Cells Department, Electronics Research Institute, Cairo, Egypt – sequence: 5 givenname: Ziad M. orcidid: 0000-0002-6959-9686 surname: Ali fullname: Ali, Ziad M. email: dr.ziad.elhalwany@aswu.edu.eg organization: Electrical Engineering Department, College of Engineering at Wadi Addawaser, Prince Sattam bin Abdulaziz University, Wadi Addawaser 11991, Saudi Arabia – sequence: 6 givenname: Shady H.E. Abdel orcidid: 0000-0003-2546-6352 surname: Aleem fullname: Aleem, Shady H.E. Abdel email: engyshady@ieee.org organization: Electrical Engineering Department, Valley High Institute of Engineering and Technology, Science Valley Academy, Qalyubia, Egypt |
| BookMark | eNp9kd1q3DAQhU1JoWmaF-iVXsCuLMu2DL0JoT-hgUBpr4V-Rl4ttmQkbbfOS_aVKu-mUHKRK40Gzjdn5rwtLpx3UBTva1zVuO4-7CsY11ARTEiFaYW77lVxSZqWlJTR_uK_-k1xHeMeY1wPBNOuuSz-3KAEaud8Cco7P1uFlkk4Z92IZq9hQsYHZF2CMYgEGo3gIFfWOyScRikIF2cb49aA30v-bZV1J3VwaPFHCCiuMcEc0dGmHQoZcRRygnhCbMBxRTH5IEZAh7jN3q0yWI2-H1xufTukJMpsQFtwqZQiZiN-SXa2j09WptGHzJ7fFa-NmCJcP71Xxc_Pn37cfi3vH77c3d7cl4rWOJVa9IOUDLSWUnWiNqA6YljLDGtwT9TQ9hI6SURbYyolGQAk0JY0hnWqJdBcFXdnrvZiz5dgZxFW7oXlp4YPIxchWTUB10OngRptGmVoL3o2KCUZloMBw2hLM4udWSr4GAMYrmw67ZWvaydeY77lzPd8y5lvOXNMec45S8kz6T8rL4o-nkWQD_TLQuBR5cMq0DaASnkD-5L8L6nEzR4 |
| CitedBy_id | crossref_primary_10_1007_s11831_025_10293_w crossref_primary_10_1038_s41598_025_97798_3 crossref_primary_10_3390_en16062924 crossref_primary_10_1049_rpg2_12762 crossref_primary_10_1038_s41598_024_66688_5 crossref_primary_10_3390_su15032819 crossref_primary_10_1371_journal_pone_0320486 crossref_primary_10_1109_ACCESS_2024_3488006 crossref_primary_10_3390_en15207690 crossref_primary_10_1007_s40031_024_01101_3 crossref_primary_10_1016_j_scs_2023_105120 crossref_primary_10_61186_jgeri_2_2_48 crossref_primary_10_1109_ACCESS_2024_3377660 crossref_primary_10_3390_su142013299 crossref_primary_10_1016_j_jup_2025_101927 crossref_primary_10_1016_j_esd_2023_101264 crossref_primary_10_1007_s00202_025_03215_3 crossref_primary_10_3390_en16165930 crossref_primary_10_3390_systems11010023 crossref_primary_10_1016_j_egyr_2023_04_190 crossref_primary_10_1007_s00521_023_08481_5 crossref_primary_10_1016_j_segan_2025_101982 crossref_primary_10_1038_s41598_024_76410_0 crossref_primary_10_1016_j_rser_2025_115928 crossref_primary_10_1080_0952813X_2023_2165719 crossref_primary_10_3389_fenrg_2024_1338161 |
| Cites_doi | 10.1016/j.apenergy.2020.114679 10.1109/TPWRS.2020.2987982 10.1016/j.rser.2014.10.011 10.3390/app11052155 10.1016/j.ijepes.2019.105428 10.1016/j.est.2021.103095 10.1109/JSYST.2018.2871793 10.1016/j.energy.2016.06.080 10.1016/j.epsr.2017.06.007 10.1002/etep.2312 10.1016/j.epsr.2019.02.018 10.3390/math9212771 10.1016/j.ijepes.2018.05.024 10.1016/j.epsr.2010.07.021 10.1109/ACCESS.2020.3036381 10.1016/j.eswa.2021.115079 10.1016/j.ijepes.2010.06.003 10.1016/j.epsr.2016.05.025 10.1007/s00521-015-1870-7 10.1109/TPWRS.2020.2988195 10.1016/j.rser.2018.08.043 10.1016/j.epsr.2017.04.020 10.1016/j.renene.2019.06.147 10.1049/iet-rpg.2019.0020 10.1109/TSTE.2016.2547911 10.1016/j.est.2020.101345 10.1002/jnm.2937 10.1016/j.rser.2019.01.023 10.1016/j.ins.2020.06.037 10.1049/ip-gtd:20030725 10.1016/j.egyr.2020.07.028 10.1016/j.knosys.2015.12.022 10.1109/59.871750 10.1016/j.egyr.2020.02.007 10.1016/j.egyr.2021.01.020 10.1049/iet-gtd.2019.1897 10.1016/j.ijepes.2019.105510 10.1109/59.910782 10.1016/j.energy.2018.08.037 10.1016/j.apenergy.2019.01.192 10.1016/j.epsr.2015.10.013 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.egyr.2022.04.066 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4847 |
| EndPage | 6479 |
| ExternalDocumentID | oai_doaj_org_article_d96de4fdf3cf47a789ccb80b9fef8454 10_1016_j_egyr_2022_04_066 S2352484722008307 |
| GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E O9- OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c410t-da79bb8eddbbc6a1fec62f858f83072c957be6b2a5104bb29eebe4523f86c52e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870067300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4847 |
| IngestDate | Fri Oct 03 12:43:29 EDT 2025 Sat Nov 29 07:38:41 EST 2025 Tue Nov 18 21:32:33 EST 2025 Sat Sep 06 17:18:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Renewable energy sources Energy storage systems Integrated generation and transmission expansion planning Hybrid scheme of Runge Kutta optimizer and gradient-based optimizer Reliability constraints |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-da79bb8eddbbc6a1fec62f858f83072c957be6b2a5104bb29eebe4523f86c52e3 |
| ORCID | 0000-0002-6959-9686 0000-0001-6035-5733 0000-0001-9636-2791 0000-0003-2546-6352 |
| OpenAccessLink | https://doaj.org/article/d96de4fdf3cf47a789ccb80b9fef8454 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d96de4fdf3cf47a789ccb80b9fef8454 crossref_citationtrail_10_1016_j_egyr_2022_04_066 crossref_primary_10_1016_j_egyr_2022_04_066 elsevier_sciencedirect_doi_10_1016_j_egyr_2022_04_066 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy reports |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | AL Shaqsi, Sopian, Al-Hinai (b6) 2020; 6 Ahmadianfar, Bozorg-Haddad, Chu (b4) 2020; 540 Franken, Barrios, Schrief, Moser (b14) 2020; 14 Dehghani-Sanij, Tharumalingam, Dusseault, Fraser (b11) 2019; 104 Ahmadianfar, Heidari, Gandomi, Chu, Chen (b5) 2021; 181 MacRae, Ernst, Ozlen (b24) 2016; 112 Refaat, Aleem, Atia, Ali, Sayed (b39) 2021; 11 Esmaili, Ghamsari-Yazdel, Amjady, Chung, Conejo (b12) 2020; 35 Mazaheri, Ranjbar, Saber, Moeini-Aghtaie (b26) 2021 Lumbreras, Ramos, Banez-Chicharro (b23) 2017; 149 Mirjalili, Mirjalili, Hatamlou (b29) 2016; 27 Arrigo, Bompard, Merlo, Milano (b7) 2020; 115 Abbasi, Abdi (b1) 2017; 27 Abdi, Moradi, Rashidi (b3) 2022; 35 Gacitua, Gallegos, Henriquez-Auba, Lorca Negrete-Pincetic, Olivares, Valenzuela, Wenzel (b16) 2018; 98 Zakeri, Syri (b47) 2015; 42 Obuz, Ayar, Trevizan, Ruben, Bretas (b35) 2020; 116 Shaheen (b42) 2019 Mostafa, Abdel Aleem, Ali, Ali, Abdelaziz (b33) 2020; 29 Da Silva, Areiza Ortiz, De Oliveira, Binato (b9) 2001; 16 Hamidpour, Aghaei, Pirouzi, Dehghan, Niknam (b18) 2019; 13 Gan, Ai, Fang, Yan, Yao, Zuo, Wen (b17) 2019; 239 Moradi, Abdi, Lumbreras, Ramos, Karimi (b31) 2016; 140 Min, Ryu, Choi (b27) 2020; 6 Sinsel, Riemke, Hoffmann (b44) 2020; 145 Da Silva, Gil, Areiza (b10) 2000; 15 Shaheen, El-Sehiemy (b43) 2019 Nemati, Latify, Yousefi (b34) 2021; 42 Li, Dai, Hao, Qiu, Li, Xiao, Liu (b20) 2021; 7 Romero, Rocha, Mantovani, Mantovani (b40) 2003; 150 Freitas, Macedo, Romero (b15) 2019; 172 Baringo, Boffino, Oggioni (b8) 2020; 265 Zhang (b48) 2013 Zobaa, Ribeiro, Aleem, Afifi (b49) 2018 Lumbreras, Ramos (b22) 2016; 134 Wang, Chen, Liu, Zhu, Gan (b46) 2018; 162 Leite Da Silva, Rezende, Da Fonseca Manso, De Resende (b19) 2010; 32 Mirjalili (b28) 2016; 96 Luburić, Pandžić, Carrión (b21) 2020; 8 Refaat, Abdel Aleem, Atia, Ali, El-Shahat, Sayed (b38) 2021; 9 Abbasi, Abdi, Bruno, La (b2) 2018; 103 Rawa, Abusorrah, Al-Turki, Mekhilef, Mostafa, Ali, Aleem (b37) 2020; 12 Mohamed, Hadi, Fattouh, Jambi (b30) 2017 Sousa, Asada (b45) 2011; 81 Mahdavi, Sabillon Antunez, Ajalli, Romero (b25) 2019; 13 Moradi-Sepahvand, Amraee (b32) 2021; 36 Fathy, Elbages, El-Sehiemy, Bendary (b13) 2017; 151 Ramirez, Hernandez-Tolentino, Marmolejo-Saucedo (b36) 2021 Saboori, Hemmati (b41) 2016; 7 Mahdavi (10.1016/j.egyr.2022.04.066_b25) 2019; 13 Gacitua (10.1016/j.egyr.2022.04.066_b16) 2018; 98 Romero (10.1016/j.egyr.2022.04.066_b40) 2003; 150 Zakeri (10.1016/j.egyr.2022.04.066_b47) 2015; 42 Esmaili (10.1016/j.egyr.2022.04.066_b12) 2020; 35 Ramirez (10.1016/j.egyr.2022.04.066_b36) 2021 Gan (10.1016/j.egyr.2022.04.066_b17) 2019; 239 Mostafa (10.1016/j.egyr.2022.04.066_b33) 2020; 29 Baringo (10.1016/j.egyr.2022.04.066_b8) 2020; 265 Ahmadianfar (10.1016/j.egyr.2022.04.066_b5) 2021; 181 Arrigo (10.1016/j.egyr.2022.04.066_b7) 2020; 115 Mirjalili (10.1016/j.egyr.2022.04.066_b29) 2016; 27 Lumbreras (10.1016/j.egyr.2022.04.066_b22) 2016; 134 Moradi (10.1016/j.egyr.2022.04.066_b31) 2016; 140 Obuz (10.1016/j.egyr.2022.04.066_b35) 2020; 116 Lumbreras (10.1016/j.egyr.2022.04.066_b23) 2017; 149 Mirjalili (10.1016/j.egyr.2022.04.066_b28) 2016; 96 Abdi (10.1016/j.egyr.2022.04.066_b3) 2022; 35 Mazaheri (10.1016/j.egyr.2022.04.066_b26) 2021 Abbasi (10.1016/j.egyr.2022.04.066_b1) 2017; 27 Freitas (10.1016/j.egyr.2022.04.066_b15) 2019; 172 Shaheen (10.1016/j.egyr.2022.04.066_b43) 2019 Min (10.1016/j.egyr.2022.04.066_b27) 2020; 6 Li (10.1016/j.egyr.2022.04.066_b20) 2021; 7 Mohamed (10.1016/j.egyr.2022.04.066_b30) 2017 Ahmadianfar (10.1016/j.egyr.2022.04.066_b4) 2020; 540 Sinsel (10.1016/j.egyr.2022.04.066_b44) 2020; 145 Da Silva (10.1016/j.egyr.2022.04.066_b9) 2001; 16 Fathy (10.1016/j.egyr.2022.04.066_b13) 2017; 151 Zobaa (10.1016/j.egyr.2022.04.066_b49) 2018 Wang (10.1016/j.egyr.2022.04.066_b46) 2018; 162 Luburić (10.1016/j.egyr.2022.04.066_b21) 2020; 8 Nemati (10.1016/j.egyr.2022.04.066_b34) 2021; 42 AL Shaqsi (10.1016/j.egyr.2022.04.066_b6) 2020; 6 Da Silva (10.1016/j.egyr.2022.04.066_b10) 2000; 15 Shaheen (10.1016/j.egyr.2022.04.066_b42) 2019 MacRae (10.1016/j.egyr.2022.04.066_b24) 2016; 112 Moradi-Sepahvand (10.1016/j.egyr.2022.04.066_b32) 2021; 36 Franken (10.1016/j.egyr.2022.04.066_b14) 2020; 14 Hamidpour (10.1016/j.egyr.2022.04.066_b18) 2019; 13 Refaat (10.1016/j.egyr.2022.04.066_b39) 2021; 11 Refaat (10.1016/j.egyr.2022.04.066_b38) 2021; 9 Zhang (10.1016/j.egyr.2022.04.066_b48) 2013 Sousa (10.1016/j.egyr.2022.04.066_b45) 2011; 81 Dehghani-Sanij (10.1016/j.egyr.2022.04.066_b11) 2019; 104 Leite Da Silva (10.1016/j.egyr.2022.04.066_b19) 2010; 32 Saboori (10.1016/j.egyr.2022.04.066_b41) 2016; 7 Rawa (10.1016/j.egyr.2022.04.066_b37) 2020; 12 Abbasi (10.1016/j.egyr.2022.04.066_b2) 2018; 103 |
| References_xml | – volume: 134 start-page: 19 year: 2016 end-page: 29 ident: b22 article-title: The new challenges to transmission expansion planning, survey of recent practice and literature review publication-title: Electr. Power Syst. Res. – volume: 13 start-page: 3129 year: 2019 end-page: 3140 ident: b25 article-title: Transmission expansion planning: Literature review and classification publication-title: IEEE Syst. J. – volume: 116 year: 2020 ident: b35 article-title: Renewable and energy storage resources for enhancing transient stability margins: A PDE-based nonlinear control strategy publication-title: Int. J. Electr. Power Energy Syst. – volume: 6 start-page: 406 year: 2020 end-page: 417 ident: b27 article-title: Effects of the move towards renewables on the power system reliability and flexibility in South Korea publication-title: Energy Rep. – year: 2018 ident: b49 article-title: Energy storage at different voltage levels: technology, integration, and market aspects publication-title: Energy Eng. – volume: 103 start-page: 12 year: 2018 end-page: 20 ident: b2 article-title: Transmission network expansion planning considering load correlation using unscented transformation publication-title: Electr. Power Energy Syst. – volume: 13 start-page: 1862 year: 2019 end-page: 1872 ident: b18 article-title: Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs publication-title: IET Renew. Power Gener. – volume: 15 start-page: 1168 year: 2000 end-page: 1174 ident: b10 article-title: Transmission network expansion planning under an improved genetic algorithm publication-title: IEEE Trans. Power Syst. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b29 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 115 year: 2020 ident: b7 article-title: Assessment of primary frequency control through battery energy storage systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 9 start-page: 2771 year: 2021 ident: b38 article-title: A mathematical approach to simultaneously plan generation and transmission expansion based on fault current limiters and reliability constraints publication-title: Mathematics – volume: 150 start-page: 521 year: 2003 end-page: 526 ident: b40 article-title: Analysis of heuristic algorithms for the transportation model in static and multistage planning in network expansion systems publication-title: IEE Proc.-Gener. Transm. Distrib. – volume: 104 start-page: 192 year: 2019 end-page: 208 ident: b11 article-title: Study of energy storage systems and environmental challenges of batteries publication-title: Renew. Sustain. Energy Rev. – volume: 81 start-page: 123 year: 2011 end-page: 128 ident: b45 article-title: Combined heuristic with fuzzy system to transmission system expansion planning publication-title: Electr. Power Syst. Res. – volume: 151 start-page: 404 year: 2017 end-page: 418 ident: b13 article-title: Static transmission expansion planning for realistic networks in Egypt publication-title: Electr. Power Syst. Res. – volume: 42 year: 2021 ident: b34 article-title: Tri-level coordinated transmission and electrical energy storage systems expansion planning under physical intentional attacks publication-title: J. Energy Storage – start-page: 145 year: 2017 end-page: 152 ident: b30 article-title: LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems publication-title: 2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc. – volume: 29 year: 2020 ident: b33 article-title: Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics publication-title: J. Energy Storage – volume: 112 start-page: 795 year: 2016 end-page: 803 ident: b24 article-title: A benders decomposition approach to transmission expansion planning considering energy storage publication-title: Energy – volume: 239 start-page: 383 year: 2019 end-page: 394 ident: b17 article-title: Security constrained co-planning of transmission expansion and energy storage publication-title: Appl. Energy – start-page: 371 year: 2019 end-page: 376 ident: b43 article-title: Application of multi-verse optimizer for transmission network expansion planning in power systems publication-title: 2019 International Conference on Innovative Trends in Computer Engineering (ITCE) – volume: 32 start-page: 1077 year: 2010 end-page: 1084 ident: b19 article-title: Reliability worth applied to transmission expansion planning based on ant colony system publication-title: Int. J. Electr. Power Energy Syst. – volume: 149 start-page: 76 year: 2017 end-page: 88 ident: b23 article-title: Optimal transmission network expansion planning in real-sized power systems with high renewable penetration publication-title: Electr. Power Syst. Res. – volume: 140 start-page: 493 year: 2016 end-page: 506 ident: b31 article-title: Transmission expansion planning in the presence of wind farms with a mixed AC and DC power flow model using an imperialist competitive algorithm publication-title: Electr. Power Syst. Res – volume: 27 year: 2017 ident: b1 article-title: Multiobjective transmission expansion planning problem based on ACOPF considering load and wind power generation uncertainties publication-title: Int. Trans. Electr. Energy Syst. – volume: 540 start-page: 131 year: 2020 end-page: 159 ident: b4 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inf. Sci. (Ny) – volume: 35 year: 2022 ident: b3 article-title: Hybrid transmission expansion planning and reactive power planning considering the real network uncertainties publication-title: Int. J. Numer. Model. Electron. Netw. Devices Fields – volume: 172 start-page: 22 year: 2019 end-page: 31 ident: b15 article-title: A strategy for transmission network expansion planning considering multiple generation scenarios publication-title: Electr. Power Syst. Res. – volume: 16 start-page: 62 year: 2001 end-page: 68 ident: b9 article-title: Transmission network expansion planning under a tabu search approach publication-title: IEEE Trans. Power Syst. – volume: 8 start-page: 203429 year: 2020 end-page: 203439 ident: b21 article-title: Transmission expansion planning model considering battery energy storage, TCSC and LINEs using AC OpF publication-title: IEEE Access – volume: 181 year: 2021 ident: b5 article-title: RUN beyond the metaphor: An efficient optimization algorithm based on runge kutta method publication-title: Expert Syst. Appl. – volume: 162 start-page: 988 year: 2018 end-page: 1002 ident: b46 article-title: Enhancement of renewable energy penetration through energy storage technologies in a CHP-based energy system for Chongming, China publication-title: Energy – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b28 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 36 start-page: 579 year: 2021 end-page: 591 ident: b32 article-title: Hybrid AC/DC transmission expansion planning considering HVAC to HVDC conversion under renewable penetration publication-title: IEEE Trans. Power Syst. – volume: 14 start-page: 3530 year: 2020 end-page: 3538 ident: b14 article-title: Transmission expansion planning via power flow controlling technologies publication-title: IET Gener. Transm. Distrib. – start-page: 371 year: 2019 end-page: 376 ident: b42 article-title: Application of multi-verse optimizer for transmission network expansion planning in power systems publication-title: 2019 Int. Conf. Innov. Trends Comput. Eng. – start-page: 57 year: 2021 end-page: 91 ident: b36 article-title: A stochastic robust approach to deal with the generation and transmission expansion planning problem embedding renewable sources publication-title: Uncertainties in Modern Power Systems – volume: 145 start-page: 2271 year: 2020 end-page: 2285 ident: b44 article-title: Challenges and solution technologies for the integration of variable renewable energy sources—a review publication-title: Renew. Energy – volume: 7 start-page: 515 year: 2021 end-page: 522 ident: b20 article-title: Optimal generation expansion planning model of a combined thermal–wind–PV power system considering multiple boundary conditions: A case study in Xinjiang, China publication-title: Energy Rep. – start-page: 35 year: 2021 end-page: 56 ident: b26 article-title: Expansion planning of transmission networks publication-title: Uncertainties in Modern Power Systems – volume: 11 start-page: 1 year: 2021 end-page: 22 ident: b39 article-title: Multi-stage dynamic transmission network expansion planning using lshade-spacma publication-title: Appl. Sci. – volume: 6 start-page: 288 year: 2020 end-page: 306 ident: b6 article-title: Review of energy storage services, applications, limitations, and benefits publication-title: Energy Rep. – volume: 98 start-page: 346 year: 2018 end-page: 360 ident: b16 article-title: A comprehensive review on expansion planning: Models and tools for energy policy analysis publication-title: Renew. Sustain. Energy Rev. – volume: 12 start-page: 1 year: 2020 end-page: 25 ident: b37 article-title: Optimal allocation and economic analysis of battery energy storage systems: Self-consumption rate and hosting capacity enhancement for microgrids with high renewable penetration publication-title: Sustain – volume: 35 start-page: 4396 year: 2020 end-page: 4407 ident: b12 article-title: Transmission expansion planning including TCSCs and SFCLs: A MINLP approach publication-title: IEEE Trans. Power Syst. – volume: 265 year: 2020 ident: b8 article-title: Robust expansion planning of a distribution system with electric vehicles, storage and renewable units publication-title: Appl. Energy – start-page: 178 year: 2013 ident: b48 article-title: Transmission Expansion Planning for Large Power Systems – volume: 7 start-page: 1371 year: 2016 end-page: 1378 ident: b41 article-title: Considering carbon capture and storage in electricity generation expansion planning publication-title: IEEE Trans. Sustain. Energy – volume: 42 start-page: 569 year: 2015 end-page: 596 ident: b47 article-title: Electrical energy storage systems: A comparative life cycle cost analysis publication-title: Renew. Sustain. Energy Rev. – volume: 265 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b8 article-title: Robust expansion planning of a distribution system with electric vehicles, storage and renewable units publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114679 – volume: 35 start-page: 4396 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b12 article-title: Transmission expansion planning including TCSCs and SFCLs: A MINLP approach publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2987982 – volume: 42 start-page: 569 year: 2015 ident: 10.1016/j.egyr.2022.04.066_b47 article-title: Electrical energy storage systems: A comparative life cycle cost analysis publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.10.011 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b39 article-title: Multi-stage dynamic transmission network expansion planning using lshade-spacma publication-title: Appl. Sci. doi: 10.3390/app11052155 – volume: 115 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b7 article-title: Assessment of primary frequency control through battery energy storage systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105428 – volume: 42 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b34 article-title: Tri-level coordinated transmission and electrical energy storage systems expansion planning under physical intentional attacks publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103095 – volume: 13 start-page: 3129 year: 2019 ident: 10.1016/j.egyr.2022.04.066_b25 article-title: Transmission expansion planning: Literature review and classification publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2018.2871793 – year: 2018 ident: 10.1016/j.egyr.2022.04.066_b49 article-title: Energy storage at different voltage levels: technology, integration, and market aspects publication-title: Energy Eng. – volume: 112 start-page: 795 year: 2016 ident: 10.1016/j.egyr.2022.04.066_b24 article-title: A benders decomposition approach to transmission expansion planning considering energy storage publication-title: Energy doi: 10.1016/j.energy.2016.06.080 – volume: 151 start-page: 404 year: 2017 ident: 10.1016/j.egyr.2022.04.066_b13 article-title: Static transmission expansion planning for realistic networks in Egypt publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.06.007 – start-page: 57 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b36 article-title: A stochastic robust approach to deal with the generation and transmission expansion planning problem embedding renewable sources – volume: 27 year: 2017 ident: 10.1016/j.egyr.2022.04.066_b1 article-title: Multiobjective transmission expansion planning problem based on ACOPF considering load and wind power generation uncertainties publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2312 – volume: 172 start-page: 22 year: 2019 ident: 10.1016/j.egyr.2022.04.066_b15 article-title: A strategy for transmission network expansion planning considering multiple generation scenarios publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.02.018 – volume: 9 start-page: 2771 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b38 article-title: A mathematical approach to simultaneously plan generation and transmission expansion based on fault current limiters and reliability constraints publication-title: Mathematics doi: 10.3390/math9212771 – start-page: 371 year: 2019 ident: 10.1016/j.egyr.2022.04.066_b42 article-title: Application of multi-verse optimizer for transmission network expansion planning in power systems – volume: 103 start-page: 12 year: 2018 ident: 10.1016/j.egyr.2022.04.066_b2 article-title: Transmission network expansion planning considering load correlation using unscented transformation publication-title: Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.05.024 – start-page: 145 year: 2017 ident: 10.1016/j.egyr.2022.04.066_b30 article-title: LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems – volume: 81 start-page: 123 year: 2011 ident: 10.1016/j.egyr.2022.04.066_b45 article-title: Combined heuristic with fuzzy system to transmission system expansion planning publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2010.07.021 – volume: 8 start-page: 203429 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b21 article-title: Transmission expansion planning model considering battery energy storage, TCSC and LINEs using AC OpF publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036381 – volume: 181 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b5 article-title: RUN beyond the metaphor: An efficient optimization algorithm based on runge kutta method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – volume: 32 start-page: 1077 year: 2010 ident: 10.1016/j.egyr.2022.04.066_b19 article-title: Reliability worth applied to transmission expansion planning based on ant colony system publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2010.06.003 – start-page: 371 year: 2019 ident: 10.1016/j.egyr.2022.04.066_b43 article-title: Application of multi-verse optimizer for transmission network expansion planning in power systems – volume: 140 start-page: 493 year: 2016 ident: 10.1016/j.egyr.2022.04.066_b31 article-title: Transmission expansion planning in the presence of wind farms with a mixed AC and DC power flow model using an imperialist competitive algorithm publication-title: Electr. Power Syst. Res doi: 10.1016/j.epsr.2016.05.025 – volume: 27 start-page: 495 year: 2016 ident: 10.1016/j.egyr.2022.04.066_b29 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 36 start-page: 579 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b32 article-title: Hybrid AC/DC transmission expansion planning considering HVAC to HVDC conversion under renewable penetration publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2988195 – volume: 98 start-page: 346 year: 2018 ident: 10.1016/j.egyr.2022.04.066_b16 article-title: A comprehensive review on expansion planning: Models and tools for energy policy analysis publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.08.043 – volume: 149 start-page: 76 year: 2017 ident: 10.1016/j.egyr.2022.04.066_b23 article-title: Optimal transmission network expansion planning in real-sized power systems with high renewable penetration publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.04.020 – volume: 145 start-page: 2271 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b44 article-title: Challenges and solution technologies for the integration of variable renewable energy sources—a review publication-title: Renew. Energy doi: 10.1016/j.renene.2019.06.147 – volume: 13 start-page: 1862 year: 2019 ident: 10.1016/j.egyr.2022.04.066_b18 article-title: Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2019.0020 – volume: 7 start-page: 1371 year: 2016 ident: 10.1016/j.egyr.2022.04.066_b41 article-title: Considering carbon capture and storage in electricity generation expansion planning publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2016.2547911 – volume: 29 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b33 article-title: Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101345 – volume: 35 year: 2022 ident: 10.1016/j.egyr.2022.04.066_b3 article-title: Hybrid transmission expansion planning and reactive power planning considering the real network uncertainties publication-title: Int. J. Numer. Model. Electron. Netw. Devices Fields doi: 10.1002/jnm.2937 – start-page: 35 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b26 article-title: Expansion planning of transmission networks – volume: 104 start-page: 192 year: 2019 ident: 10.1016/j.egyr.2022.04.066_b11 article-title: Study of energy storage systems and environmental challenges of batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.023 – volume: 540 start-page: 131 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b4 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2020.06.037 – volume: 150 start-page: 521 year: 2003 ident: 10.1016/j.egyr.2022.04.066_b40 article-title: Analysis of heuristic algorithms for the transportation model in static and multistage planning in network expansion systems publication-title: IEE Proc.-Gener. Transm. Distrib. doi: 10.1049/ip-gtd:20030725 – volume: 6 start-page: 288 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b6 article-title: Review of energy storage services, applications, limitations, and benefits publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.07.028 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.egyr.2022.04.066_b28 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 15 start-page: 1168 year: 2000 ident: 10.1016/j.egyr.2022.04.066_b10 article-title: Transmission network expansion planning under an improved genetic algorithm publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.871750 – volume: 6 start-page: 406 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b27 article-title: Effects of the move towards renewables on the power system reliability and flexibility in South Korea publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.02.007 – volume: 7 start-page: 515 year: 2021 ident: 10.1016/j.egyr.2022.04.066_b20 article-title: Optimal generation expansion planning model of a combined thermal–wind–PV power system considering multiple boundary conditions: A case study in Xinjiang, China publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.01.020 – volume: 14 start-page: 3530 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b14 article-title: Transmission expansion planning via power flow controlling technologies publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2019.1897 – volume: 116 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b35 article-title: Renewable and energy storage resources for enhancing transient stability margins: A PDE-based nonlinear control strategy publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105510 – volume: 16 start-page: 62 year: 2001 ident: 10.1016/j.egyr.2022.04.066_b9 article-title: Transmission network expansion planning under a tabu search approach publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.910782 – start-page: 178 year: 2013 ident: 10.1016/j.egyr.2022.04.066_b48 – volume: 162 start-page: 988 year: 2018 ident: 10.1016/j.egyr.2022.04.066_b46 article-title: Enhancement of renewable energy penetration through energy storage technologies in a CHP-based energy system for Chongming, China publication-title: Energy doi: 10.1016/j.energy.2018.08.037 – volume: 239 start-page: 383 year: 2019 ident: 10.1016/j.egyr.2022.04.066_b17 article-title: Security constrained co-planning of transmission expansion and energy storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.192 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.egyr.2022.04.066_b37 article-title: Optimal allocation and economic analysis of battery energy storage systems: Self-consumption rate and hosting capacity enhancement for microgrids with high renewable penetration publication-title: Sustain – volume: 134 start-page: 19 year: 2016 ident: 10.1016/j.egyr.2022.04.066_b22 article-title: The new challenges to transmission expansion planning, survey of recent practice and literature review publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.10.013 |
| SSID | ssj0001920463 |
| Score | 2.3657799 |
| Snippet | This paper presents an integrated generation and transmission expansion planning (G&TEP) model embedding with energy storage systems (ESSs) to reduce G&TEP... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 6457 |
| SubjectTerms | Energy storage systems Hybrid scheme of Runge Kutta optimizer and gradient-based optimizer Integrated generation and transmission expansion planning Reliability constraints Renewable energy sources |
| Title | A techno-economic planning model for integrated generation and transmission expansion in modern power systems with renewables and energy storage using hybrid Runge Kutta-gradient-based optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.egyr.2022.04.066 https://doaj.org/article/d96de4fdf3cf47a789ccb80b9fef8454 |
| Volume | 8 |
| WOSCitedRecordID | wos000870067300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEIAtVHHggkCAWChoDtyQRTbrJPaxVK2QEBVCIPUW-We8bNVmV7sp0AuvyCt1xvYueyoXLlEUOU7kmcyMo5lvhHiDZtYyd1A2QSmpgonSVD7IGZIvDg6DamNqNtGdnenzc_N5r9UX54RlPHBeuHfBtAFVDHHmo-psp433TlfORIxaNYkEWnVmbzN1keMWRmGlznJNLRXZ4FIxk5O7cH7DMNC6TpzThEj865USvH_POe05nNNH4mGJFOEov-FjcQ-HJ-LPESTq6lJiqSiGVWk7BKmpDVAQCjsGRIB5wkrz6oMdAozsmki0_I8M8BeZgnS2GNLd6wFW3DUNMt95A_yXFhh6-ZMrrDZpCkzVgsBZlWSLgBPn5_D9hiu_4AuZDoSP1-NoJb0AZ5ONkh1lgCXZpqtS9An2cr5c09xXT8W305Ovxx9k6ckgvZpWowy2M85pDME539ppRN_WUTc6arIWtTdN57B1taVvXTlXGyQtUbTbjbr1TY2zZ-JgWA74XEDFNbEdtsFarXxjdMUwuakKgcIQissmYrqVSe8LsJz7Zlz228y0i57l2LMc-0r1JMeJeLu7Z5VxHXeOfs-i3o1k1Ha6QArYFwXs_6WAE9FsFaUvUUuORmiqxR0Pf_E_Hv5SPOApc3HkoTgY19f4Stz3P8bFZv06fRN0_PT75BYycBp0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+techno-economic+planning+model+for+integrated+generation+and+transmission+expansion+in+modern+power+systems+with+renewables+and+energy+storage+using+hybrid+Runge+Kutta-gradient-based+optimization+algorithm&rft.jtitle=Energy+reports&rft.au=Rawa%2C+Muhyaddin&rft.au=AlKubaisy%2C+Zenah+M.&rft.au=Alghamdi%2C+Sultan&rft.au=Refaat%2C+Mohamed+M.&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=6457&rft.epage=6479&rft_id=info:doi/10.1016%2Fj.egyr.2022.04.066&rft.externalDocID=S2352484722008307 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |