A Robust Regression Framework with Laplace Kernel-Induced Loss

This work proposes a robust regression framework with nonconvex loss function. Two regression formulations are presented based on the Laplace kernel-induced loss (LK-loss). Moreover, we illustrate that the LK-loss function is a nice approximation for the zero-norm. However, nonconvexity of the LK-lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation Jg. 29; H. 11; S. 3014
Hauptverfasser: Yang, Liming, Ren, Zhuo, Wang, Yidan, Dong, Hongwei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.11.2017
ISSN:1530-888X, 1530-888X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work proposes a robust regression framework with nonconvex loss function. Two regression formulations are presented based on the Laplace kernel-induced loss (LK-loss). Moreover, we illustrate that the LK-loss function is a nice approximation for the zero-norm. However, nonconvexity of the LK-loss makes it difficult to optimize. A continuous optimization method is developed to solve the proposed framework. The problems are formulated as DC (difference of convex functions) programming. The corresponding DC algorithms (DCAs) converge linearly. Furthermore, the proposed algorithms are applied directly to determine the hardness of licorice seeds using near-infrared spectral data with noisy input. Experiments in eight spectral regions show that the proposed methods improve generalization compared with the traditional support vector regressions (SVR), especially in high-frequency regions. Experiments on several benchmark data sets demonstrate that the proposed methods achieve better results than the traditional regression methods in most of data sets we have considered.
AbstractList This work proposes a robust regression framework with nonconvex loss function. Two regression formulations are presented based on the Laplace kernel-induced loss (LK-loss). Moreover, we illustrate that the LK-loss function is a nice approximation for the zero-norm. However, nonconvexity of the LK-loss makes it difficult to optimize. A continuous optimization method is developed to solve the proposed framework. The problems are formulated as DC (difference of convex functions) programming. The corresponding DC algorithms (DCAs) converge linearly. Furthermore, the proposed algorithms are applied directly to determine the hardness of licorice seeds using near-infrared spectral data with noisy input. Experiments in eight spectral regions show that the proposed methods improve generalization compared with the traditional support vector regressions (SVR), especially in high-frequency regions. Experiments on several benchmark data sets demonstrate that the proposed methods achieve better results than the traditional regression methods in most of data sets we have considered.This work proposes a robust regression framework with nonconvex loss function. Two regression formulations are presented based on the Laplace kernel-induced loss (LK-loss). Moreover, we illustrate that the LK-loss function is a nice approximation for the zero-norm. However, nonconvexity of the LK-loss makes it difficult to optimize. A continuous optimization method is developed to solve the proposed framework. The problems are formulated as DC (difference of convex functions) programming. The corresponding DC algorithms (DCAs) converge linearly. Furthermore, the proposed algorithms are applied directly to determine the hardness of licorice seeds using near-infrared spectral data with noisy input. Experiments in eight spectral regions show that the proposed methods improve generalization compared with the traditional support vector regressions (SVR), especially in high-frequency regions. Experiments on several benchmark data sets demonstrate that the proposed methods achieve better results than the traditional regression methods in most of data sets we have considered.
This work proposes a robust regression framework with nonconvex loss function. Two regression formulations are presented based on the Laplace kernel-induced loss (LK-loss). Moreover, we illustrate that the LK-loss function is a nice approximation for the zero-norm. However, nonconvexity of the LK-loss makes it difficult to optimize. A continuous optimization method is developed to solve the proposed framework. The problems are formulated as DC (difference of convex functions) programming. The corresponding DC algorithms (DCAs) converge linearly. Furthermore, the proposed algorithms are applied directly to determine the hardness of licorice seeds using near-infrared spectral data with noisy input. Experiments in eight spectral regions show that the proposed methods improve generalization compared with the traditional support vector regressions (SVR), especially in high-frequency regions. Experiments on several benchmark data sets demonstrate that the proposed methods achieve better results than the traditional regression methods in most of data sets we have considered.
Author Yang, Liming
Wang, Yidan
Dong, Hongwei
Ren, Zhuo
Author_xml – sequence: 1
  givenname: Liming
  surname: Yang
  fullname: Yang, Liming
  email: cauyanglm@163.com
  organization: College of Science, China Agricultural University, Beijing, 100083, China cauyanglm@163.com
– sequence: 2
  givenname: Zhuo
  surname: Ren
  fullname: Ren, Zhuo
  email: renzhuo9307@126.com
  organization: College of Science, China Agricultural University, Beijing, 100083, China renzhuo9307@126.com
– sequence: 3
  givenname: Yidan
  surname: Wang
  fullname: Wang, Yidan
  email: 229260067@qq.com
  organization: College of Science, China Agricultural University, Beijing, 100083, China 229260067@qq.com
– sequence: 4
  givenname: Hongwei
  surname: Dong
  fullname: Dong, Hongwei
  email: 790108503@qq.com
  organization: College of Science, China Agricultural University, Beijing, 100083, China 790108503@qq.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28777723$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAYhIOsuB968yw9eqm-SZo0uQjL4upiQVgUvJW0favVNqlJy-K_d8UVnMvMwMPAzMnEOouEnFO4olSya4uly00OFIAdkRkVHGKl1MvkX56SeQjvACApiBMyZSrdi_EZuVlGW1eMYYi2-OoxhMbZaO1NhzvnP6JdM7xFmelbU2L0gN5iG29sNZZYRZkL4ZQc16YNeHbwBXle3z6t7uPs8W6zWmZxmVAY4ipNNa2LBGihaqoqVvy0RDABKWjgNedaciNSFEwBrTSXBSs1p5CkspaGLcjl727v3eeIYci7JpTYtsaiG0NONZNSCS1gj14c0LHosMp733TGf-V_n9k3T95Ykg
CitedBy_id crossref_primary_10_1007_s10618_025_01112_8
crossref_primary_10_1016_j_patcog_2022_109283
crossref_primary_10_1007_s10489_020_01865_3
crossref_primary_10_3233_JIFS_191617
crossref_primary_10_1007_s00521_021_06370_3
crossref_primary_10_3390_e24040440
crossref_primary_10_1007_s11063_020_10380_y
crossref_primary_10_1016_j_neucom_2024_128809
crossref_primary_10_1016_j_knosys_2019_105211
crossref_primary_10_1007_s11042_023_17315_4
crossref_primary_10_1016_j_knosys_2020_106707
crossref_primary_10_1007_s00521_019_04627_6
crossref_primary_10_1016_j_asoc_2019_105483
crossref_primary_10_1016_j_ins_2024_121026
crossref_primary_10_1007_s10462_020_09836_3
crossref_primary_10_1016_j_ijepes_2022_108552
crossref_primary_10_3233_JIFS_181501
crossref_primary_10_1016_j_apacoust_2021_108316
ContentType Journal Article
DBID NPM
7X8
DOI 10.1162/neco_a_01002
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
ExternalDocumentID 28777723
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
41~
53G
6IK
AAJGR
AALMD
AAYOK
ABAZT
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ACGFO
ACUHS
ACYGS
ADIYS
ADMLS
AEGXH
AEILP
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
COF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
7X8
ABUFD
ABVLG
AMVHM
ID FETCH-LOGICAL-c410t-d7791fb401b8f18d2b1fb44525070903f33963a57e52801d936b2c9310476f6a2
IEDL.DBID 7X8
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413292600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-888X
IngestDate Sun Nov 09 10:25:10 EST 2025
Thu Apr 03 07:05:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-d7791fb401b8f18d2b1fb44525070903f33963a57e52801d936b2c9310476f6a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28777723
PQID 1926685950
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1926685950
pubmed_primary_28777723
PublicationCentury 2000
PublicationDate 2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2017
SSID ssj0006105
Score 2.3700564
Snippet This work proposes a robust regression framework with nonconvex loss function. Two regression formulations are presented based on the Laplace kernel-induced...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3014
Title A Robust Regression Framework with Laplace Kernel-Induced Loss
URI https://www.ncbi.nlm.nih.gov/pubmed/28777723
https://www.proquest.com/docview/1926685950
Volume 29
WOSCitedRecordID wos000413292600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UevBifVtfrOB16XbT7GYviohFsJZSFHIL-xRBktq0_n5n86AnQfASyCEQJjP7zePLfAjdOC0A96kk8SCxBBCCEiWZJZol3A-1i2RiKrEJMZkkaSqnTcOtbGiV7ZlYHdS2MKFH3odMhPOwjIvezb9IUI0K09VGQmMTdSJIZQKlS6TrbeG8pjBCUFMClV7aEt856-dQ3GUqo4O6ofJLclmBzKj739fbQ7tNeonva3_YRxsuP0DdVroBN5F8iG7v8azQq3KJZ-69psLmeNQStXDozuKxqghb-NktcvdJgsiHcRaPAVaP0Nvo8fXhiTRSCsQMB3RJrBBy4DUUUzrx8FWYDnfVTFOETo2PIohEFQsXM8AsKyOumZFRWOTAPVfsGG3lRe5OEYYKzXjplLQ0GcY-Vt5IRo22MXNCOtpD162FMnDVMH9QuStWZba2UQ-d1GbO5vVOjYyFvYSCRWd_ePoc7bAArtUfgReo4yFQ3SXaNt_Lj3JxVfkAXCfTlx8b1bq-
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Regression+Framework+with+Laplace+Kernel-Induced+Loss&rft.jtitle=Neural+computation&rft.au=Yang%2C+Liming&rft.au=Ren%2C+Zhuo&rft.au=Wang%2C+Yidan&rft.au=Dong%2C+Hongwei&rft.date=2017-11-01&rft.issn=1530-888X&rft.eissn=1530-888X&rft.volume=29&rft.issue=11&rft.spage=3014&rft_id=info:doi/10.1162%2Fneco_a_01002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-888X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-888X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-888X&client=summon