Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study
This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Ma...
Uloženo v:
| Vydáno v: | Case Studies in Construction Materials Ročník 18; s. e01774 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2023
Elsevier |
| Témata: | |
| ISSN: | 2214-5095, 2214-5095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Marshall Stability (MS), and Marshall Flow (MF) of asphalt mixes. A comprehensive and detailed database of 343 data points was established for both MS and MF. The predicting variables were chosen among the four most influential, and easy-to-determine parameters. The models were trained, tested, validated, and the outcomes of the newly developed models were compared with actual outcomes. The root squared error (RSE), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), regression coefficient (R2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed that in the case of MS, the rising order of input significance was bulk specific gravity of compacted aggregate, Gmb (38.56 %) > Percentage of Aggregates, Ps (19.84 %) > Bulk Specific Gravity of Aggregate, Gsb (19.43 %) > maximum specific gravity paving mix, Gmm (7.62 %), while in case of MF the order followed was: Ps (36.93 %) > Gsb (14.11 %) > Gmb (10.85 %) > Gmm (10.19 %). The outcomes of parametric analysis (PA) consistency of results in relation to previous research findings. The DT-Bagging model outperformed all other models with values of 0.971 and 0.980 (R), 16.88 and 0.24 (MAE), 28.27 and 0.36 (RMSE), 0.069 and 0.041 (RSE), 0.020 and 0.032 (RRMSE), 0.010 and 0.016 (PI), 0.931 and 0.959 (NSE), for MS and MF, respectively. The results of the comparison analysis showed that ANN, ANFIS, MEP, and DT-Bagging are all effective and reliable approaches for the estimation of MS and MF. The MEP-derived mathematical expressions represent the novelty of MEP and are relatively simple and reliable. Roverall values for MS and MF were in the order of DT-Bagging >MEP >ANFIS >ANN with all values exceeding the permitted range of 0.80 for both MS and MF. Hence, all the modeling approaches showed higher performance, possessed high generalization and predication capabilities, and assess the relative significance of input parameters in the prediction of MS and MF. Hence, the findings of this research study would assist in the safer, faster, and sustainable prediction of MS and MF, from the standpoint of resources and time required to perform the Marshall tests. |
|---|---|
| AbstractList | This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Marshall Stability (MS), and Marshall Flow (MF) of asphalt mixes. A comprehensive and detailed database of 343 data points was established for both MS and MF. The predicting variables were chosen among the four most influential, and easy-to-determine parameters. The models were trained, tested, validated, and the outcomes of the newly developed models were compared with actual outcomes. The root squared error (RSE), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), regression coefficient (R2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed that in the case of MS, the rising order of input significance was bulk specific gravity of compacted aggregate, Gmb (38.56 %) > Percentage of Aggregates, Ps (19.84 %) > Bulk Specific Gravity of Aggregate, Gsb (19.43 %) > maximum specific gravity paving mix, Gmm (7.62 %), while in case of MF the order followed was: Ps (36.93 %) > Gsb (14.11 %) > Gmb (10.85 %) > Gmm (10.19 %). The outcomes of parametric analysis (PA) consistency of results in relation to previous research findings. The DT-Bagging model outperformed all other models with values of 0.971 and 0.980 (R), 16.88 and 0.24 (MAE), 28.27 and 0.36 (RMSE), 0.069 and 0.041 (RSE), 0.020 and 0.032 (RRMSE), 0.010 and 0.016 (PI), 0.931 and 0.959 (NSE), for MS and MF, respectively. The results of the comparison analysis showed that ANN, ANFIS, MEP, and DT-Bagging are all effective and reliable approaches for the estimation of MS and MF. The MEP-derived mathematical expressions represent the novelty of MEP and are relatively simple and reliable. Roverall values for MS and MF were in the order of DT-Bagging >MEP >ANFIS >ANN with all values exceeding the permitted range of 0.80 for both MS and MF. Hence, all the modeling approaches showed higher performance, possessed high generalization and predication capabilities, and assess the relative significance of input parameters in the prediction of MS and MF. Hence, the findings of this research study would assist in the safer, faster, and sustainable prediction of MS and MF, from the standpoint of resources and time required to perform the Marshall tests. |
| ArticleNumber | e01774 |
| Author | Javed, Muhammad Faisal Althoey, Fadi Awan, Hamad Hassan Khan, Mohsin Ali Akhter, Muhammad Naveed Özkılıç, Yasin Onuralp Nagra, Zohaib Sattar Alanazi, Fayez Eldin, Sayed M. |
| Author_xml | – sequence: 1 givenname: Fadi surname: Althoey fullname: Althoey, Fadi email: fmalthoey@nu.edu.sa organization: Department of Civil Engineering, Najran University, Najran, Saudi Arabia – sequence: 2 givenname: Muhammad Naveed surname: Akhter fullname: Akhter, Muhammad Naveed email: naveed.akhtar@uet.edu.pk organization: Department of Electrical Engineering Rachna College of Engineering and technology (A constituent college of UET Lahore), Gujranwala, 52250, Pakistan – sequence: 3 givenname: Zohaib Sattar surname: Nagra fullname: Nagra, Zohaib Sattar email: Zohaibsattarnagra@gmail.com organization: School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan – sequence: 4 givenname: Hamad Hassan surname: Awan fullname: Awan, Hamad Hassan email: hhawan.tn18@nit.nust.edu.pk organization: School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan – sequence: 5 givenname: Fayez surname: Alanazi fullname: Alanazi, Fayez email: fkalanazi@ju.edu.sa organization: Civil Engineering Department, College of Engineering, Jouf University, Sakaka, 72238, Saudi Arabia – sequence: 6 givenname: Mohsin Ali surname: Khan fullname: Khan, Mohsin Ali email: mohsin.ali@cecos.edu.pk, moak.pg18mce@student.nust.edu.pk organization: Department of Civil Engineering, CECOS University of IT and Emerging Science, Peshawar, Pakistan – sequence: 7 givenname: Muhammad Faisal surname: Javed fullname: Javed, Muhammad Faisal email: arbabfaisal@cuiatd.edu.pk organization: Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan – sequence: 8 givenname: Sayed M. surname: Eldin fullname: Eldin, Sayed M. email: sayed.eldin22@fue.edu.eg organization: Center of Research Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt – sequence: 9 givenname: Yasin Onuralp surname: Özkılıç fullname: Özkılıç, Yasin Onuralp email: yozkilic@erbakan.edu.tr organization: Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey |
| BookMark | eNp9kc1u1TAQRiNUJErpC7DyC-QytuM4F7GpKn4qVYIFrK2JPb71VWJHdlrRl-CZcXoRQiy6sjX-zieNz-vmLKZITfOWw44D798dd7bYeSdAiB0B17p70ZwLwbtWwV6d_XN_1VyWcgQAMah-EPq8-fUtkwt2DSmyOTmaCvMpsxlzucNpYnP4yRbMONNKubD7EuKBjSG1IZYlVJYdKNIaLFtyOtTcvAUwOuaIltpj70IkNhHm-PSy1FwdUnnPrphN81a-hgdiZb13j2-alx6nQpd_zovmx6eP36-_tLdfP99cX922tuOwtk73toPeeg9OAnLpCHsPo-N-ABp5_QUhpLbY77VS4Ny-BrWVJLxWqKS8aG5OvS7h0Sw51IUfTcJgngYpHwzmutVEBpV3egCphg46GD1CJ8H7UVkvNUpXu8Spy-ZUSib_t4-D2QSZo9kEmU2QOQmq0PAfZMOKm4Y1Y5ieRz-c0CqLHgJlU2ygaKvHTHatG4Tn8N_-8bI- |
| CitedBy_id | crossref_primary_10_3389_fmats_2023_1242085 crossref_primary_10_36937_ben_2025_41034 crossref_primary_10_1007_s40808_024_02061_9 crossref_primary_10_1007_s42947_025_00591_8 crossref_primary_10_1080_10298436_2025_2515154 crossref_primary_10_1038_s41598_024_56088_0 crossref_primary_10_1109_ACCESS_2023_3321100 crossref_primary_10_24171_j_phrp_2023_0287 crossref_primary_10_1007_s40808_025_02540_7 crossref_primary_10_1016_j_est_2024_112547 crossref_primary_10_3389_fmats_2022_1115394 crossref_primary_10_1088_1757_899X_1321_1_012007 |
| Cites_doi | 10.1007/s00521-016-2320-x 10.1016/j.gsf.2019.12.003 10.1016/j.envsoft.2005.12.026 10.1016/j.trgeo.2020.100358 10.1016/j.conbuildmat.2019.117266 10.1061/(ASCE)MT.1943-5533.0000154 10.1080/17486025.2014.921333 10.3390/app112411710 10.1109/INISTA.2012.6246946 10.1016/j.psep.2022.10.005 10.1016/j.eswa.2009.12.042 10.12691/ajams-8-2-1 10.1007/s00521-008-0208-0 10.1016/j.jenvman.2018.11.047 10.1016/j.jenvman.2015.02.034 10.1016/j.trpro.2016.05.333 10.1007/s00521-012-1144-6 10.1016/j.enggeo.2020.105758 10.1016/j.conbuildmat.2014.10.035 10.1016/B978-0-12-398296-4.00008-8 10.1016/j.enggeo.2020.105506 10.4097/kja.19087 10.1016/j.jclepro.2022.131364 10.1016/j.jclepro.2020.120983 10.1016/j.jenvman.2020.111456 10.3390/app9153172 10.1109/INISTA.2017.8001152 10.25088/ComplexSystems.14.4.285 10.3390/app9173502 10.1016/j.compstruc.2013.10.006 10.1002/qsar.200710043 10.3390/w14060947 10.1007/s10462-020-09894-7 10.1016/j.heliyon.2021.e06136 10.1016/j.eswa.2010.11.018 10.1155/2009/308239 10.1016/j.compgeo.2015.05.021 10.1080/10298436.2017.1380807 10.1016/j.trpro.2016.05.315 10.3390/math8101799 10.1007/s00366-009-0140-7 10.1016/j.advengsoft.2015.05.007 10.1016/j.aej.2017.04.007 10.1155/2021/6618407 10.1109/TITS.2022.3164596 10.1007/s12205-021-2306-9 10.1016/j.nanoso.2018.12.001 10.1016/j.conbuildmat.2020.120756 10.1109/21.256541 10.1016/j.eswa.2007.06.006 10.1016/j.cageo.2012.07.001 10.1016/j.engappai.2013.03.014 10.1007/s11356-020-11490-9 10.3389/fmats.2021.621163 10.1016/j.solener.2019.02.060 10.1016/j.eswa.2020.113977 10.1139/T07-052 10.3390/infrastructures4020026 10.1016/S0927-0256(01)00160-4 10.1016/j.jenvman.2020.111915 10.1007/s12665-018-7348-z 10.1016/j.jhazmat.2019.121322 10.1016/j.scitotenv.2021.146524 10.3390/buildings12030314 10.1016/j.jclepro.2013.09.057 10.1016/j.molliq.2018.12.144 10.1007/s10346-019-01286-5 10.1007/s11356-018-3749-5 10.1016/j.conbuildmat.2015.07.054 10.1080/03772063.2016.1240633 10.1007/BF02823926 10.1080/10298436.2019.1575379 10.1007/BF02478259 10.1016/j.asoc.2019.105837 10.1016/j.cageo.2008.10.015 10.1016/B978-0-12-398296-4.00010-6 10.1016/j.cmpb.2018.05.029 10.1007/s42452-019-0883-8 10.1155/2015/721367 10.1016/j.jenvman.2019.03.057 10.1016/j.jenvman.2017.07.044 10.1016/j.icheatmasstransfer.2016.06.003 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.cscm.2022.e01774 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2214-5095 |
| ExternalDocumentID | oai_doaj_org_article_a5fd7803584040bfa0430ffb5cf37a3d 10_1016_j_cscm_2022_e01774 S2214509522009068 |
| GroupedDBID | 0R~ 4.4 457 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IXB KQ8 M41 M~E OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c410t-d76c406cff0d30a13dea6f0bd1f80eb1e012237ca697550dd9f0d7c3e2f75a533 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906543200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2214-5095 |
| IngestDate | Fri Oct 03 12:52:15 EDT 2025 Sat Nov 29 03:03:33 EST 2025 Tue Nov 18 22:36:29 EST 2025 Sun Apr 06 06:54:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bio-Inspired models Asphalt Prediction models Marshall Mix Parameter Deep Learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-d76c406cff0d30a13dea6f0bd1f80eb1e012237ca697550dd9f0d7c3e2f75a533 |
| OpenAccessLink | https://doaj.org/article/a5fd7803584040bfa0430ffb5cf37a3d |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a5fd7803584040bfa0430ffb5cf37a3d crossref_primary_10_1016_j_cscm_2022_e01774 crossref_citationtrail_10_1016_j_cscm_2022_e01774 elsevier_sciencedirect_doi_10_1016_j_cscm_2022_e01774 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Case Studies in Construction Materials |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Aldrees (bib80) 2022; 14 Shahin (bib66) 2013 Ribeiro, dos Santos Coelho (bib85) 2020; 86 Frank, Todeschini (bib106) 1994 García (bib3) 2014 Cheng, Zhou, Garg (bib78) 2020; 268 Li, Wu, Wang (bib11) 2019; 239 Malinov, Sha, McKeown (bib59) 2001; 21 Shahin (bib16) 2015 Guo, Fu, Sollazzo (bib26) 2021 Al-Jamimi, Bagudu, Saleh (bib94) 2019; 278 McCulloch, Pitts (bib27) 1943; 5 Yaman, Abd Elaty, Taman (bib29) 2017; 56 Cai (bib55) 2015 Mazari, Rodriguez (bib32) 2016; 3 Nguyen (bib41) 2019; 9 Alawi, Rajab (bib95) 2005 Ogundipe (bib97) 2016; 14 Kim, Kim (bib8) 2006; 10 Karbassi (bib82) 2014; 130 Shahin, Jaksa, Maier (bib20) 2009 Naresh Babu, Edla (bib58) 2017; 63 Dou (bib87) 2020; 17 Althoey (bib107) 2022; 17 Alade (bib13) 2018; 163 Alavi, Gandomi (bib64) 2011 Song (bib25) 2022 Maeda (bib88) 2018 Ramachandran, P., B. Zoph, and Q. Le, Searching for Activation Functions. arXiv Prepr. arXiv preprint arXiv:1710.05941, 2017. Nosratabadi (bib65) 2020; 8 Zaumanis, Mallick, Frank (bib5) 2016; 14 Zhang (bib10) 2020; 11 Saffarzadeh, Heidaripanah (bib42) 2009; 16 Awan (bib23) 2022; 12 Khoshnevisan (bib72) 2014; 73 Goldberg (bib73) 1989 Rekha (bib91) 2019 Iqbal (bib110) 2021; 780 Trucchia, Frunzo (bib111) 2021; 282 Gandomi, Roke (bib12) 2015; 88 Abunama (bib89) 2019; 26 Golafshani, Behnood, Arashpour (bib69) 2020; 232 Jang (bib30) 1993; 23 Venkatesh, Bind (bib51) 2020 Mistry, Roy (bib49) 2020; 19 Alade, Abd Rahman, Saleh (bib102) 2019; 17 Sugeno (bib31) 1985 Ahani, Salari, Shadman (bib34) 2020; 263 Sperotto (bib67) 2017; 202 Emamgholizadeh (bib105) 2017; 28 Shrestha (bib92) 2020; 8 Shahin (bib104) 2015; 10 Baykasoğlu (bib35) 2008; 35 Tapkın, Çevik, Uşar (bib40) 2010; 37 Erdal (bib83) 2013; 26 Oltean, Dumitrescu (bib33) 2002 Roy, Roy (bib109) 2008; 27 Gandomi (bib2) 2011; 23 Chaabene, Flah, Nehdi (bib84) 2020; 260 Alavi (bib36) 2010; 26 Sada, Ikpeseni (bib52) 2021; 7 Xu, B., R. Huang, and M. Li, Revise saturated activation functions. arXiv preprint arXiv:1602.05980, 2016. Kourgialas, Dokou, Karatzas (bib53) 2015; 154 Alavi (bib77) 2013; 23 Aldrees (bib86) 2022; 168 Khan (bib100) 2021; 8 Li (bib15) 2022 Das (bib18) 2013; 45 Wang, Yin (bib79) 2020; 276 Rahman, Mendez Larrain, Tarefder (bib9) 2019; 20 Miani (bib1) 2021; 11 Baldo, Manthos, Miani (bib44) 2019; 9 Koza (bib75) 1992; vol. 1 Alade, Abd Rahman, Saleh (bib101) 2019; 183 Mohammadzadeh (bib21) 2019; 4 Oltean, Grosan (bib81) 2003; 14 Morova, N., et al. Modelling Marshall Stability of fiber reinforced asphalt mixtures with ANFIS. in 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA). 2017. IEEE. Tahani, Vakili, Khosrojerdi (bib60) 2016; 76 Koçak, Şiray (bib54) 2021; 164 Khan (bib76) 2021 Islam (bib71) 2018; 77 Hanandeh, Ardah, Abu-Farsakh (bib63) 2020; 24 Pasandín, Pérez (bib4) 2015; 74 Mozumder, Laskar (bib98) 2015; 69 Nazar (bib74) 2022; 32 Serin (bib48) 2013 Cabalar, Cevik (bib38) 2009; 35 Tang, Y.-J., Q.-Y. Zhang, and W. Lin. Artificial neural network based spectrum sensing method for cognitive radio. in 2010 6th international conference on wireless communications networking and mobile computing (WiCOM). 2010. IEEE. Huang (bib24) 2022 Dorofki (bib62) 2012; 33 Zhang (bib22) 2021; 54 Kim (bib93) 2019; 72 Çanakcı, Baykasoğlu, Güllü (bib17) 2009; 18 Shah, Javed, Abunama (bib90) 2021; 28 Iqbal (bib14) 2020; 384 Erzin (bib108) 2007; 44 Kisi, Shiri, Tombul (bib103) 2013; 51 Pasetto, Baldo (bib7) 2016; 3 Sadeghizadeh (bib70) 2019; 232 Akan, Keskin (bib68) 2019; 1 Giustolisi (bib19) 2007; 22 Pasetto, Baldo (bib6) 2015; 94 Ozgan (bib43) 2011; 38 Morova, N., et al. Modeling Marshall Stability of light asphalt concretes fabricated using expanded clay aggregate with Artificial Neural Networks. in 2012 International Symposium on Innovations in Intelligent Systems and Applications. 2012. IEEE. Shahin, Jaksa, Maier (bib28) 2001; 36 Shah (bib45) 2020; 262 Alavi (bib37) 2012 Kandil (bib96) 2013; 11 Worthey, Yang, Kim (bib39) 2021; 25 Khan (bib99) 2022; 350 Fabani (bib50) 2021; 281 Rahman (10.1016/j.cscm.2022.e01774_bib9) 2019; 20 Song (10.1016/j.cscm.2022.e01774_bib25) 2022 Huang (10.1016/j.cscm.2022.e01774_bib24) 2022 Sugeno (10.1016/j.cscm.2022.e01774_bib31) 1985 Golafshani (10.1016/j.cscm.2022.e01774_bib69) 2020; 232 Giustolisi (10.1016/j.cscm.2022.e01774_bib19) 2007; 22 García (10.1016/j.cscm.2022.e01774_bib3) 2014 Shahin (10.1016/j.cscm.2022.e01774_bib28) 2001; 36 Alavi (10.1016/j.cscm.2022.e01774_bib77) 2013; 23 Shahin (10.1016/j.cscm.2022.e01774_bib16) 2015 Khan (10.1016/j.cscm.2022.e01774_bib99) 2022; 350 Cheng (10.1016/j.cscm.2022.e01774_bib78) 2020; 268 Koza (10.1016/j.cscm.2022.e01774_bib75) 1992; vol. 1 Emamgholizadeh (10.1016/j.cscm.2022.e01774_bib105) 2017; 28 Cai (10.1016/j.cscm.2022.e01774_bib55) 2015 Pasandín (10.1016/j.cscm.2022.e01774_bib4) 2015; 74 Zhang (10.1016/j.cscm.2022.e01774_bib22) 2021; 54 Iqbal (10.1016/j.cscm.2022.e01774_bib110) 2021; 780 Nguyen (10.1016/j.cscm.2022.e01774_bib41) 2019; 9 Mistry (10.1016/j.cscm.2022.e01774_bib49) 2020; 19 Karbassi (10.1016/j.cscm.2022.e01774_bib82) 2014; 130 Oltean (10.1016/j.cscm.2022.e01774_bib33) 2002 Alawi (10.1016/j.cscm.2022.e01774_bib95) 2005 Hanandeh (10.1016/j.cscm.2022.e01774_bib63) 2020; 24 Awan (10.1016/j.cscm.2022.e01774_bib23) 2022; 12 Alavi (10.1016/j.cscm.2022.e01774_bib36) 2010; 26 Saffarzadeh (10.1016/j.cscm.2022.e01774_bib42) 2009; 16 Dorofki (10.1016/j.cscm.2022.e01774_bib62) 2012; 33 Aldrees (10.1016/j.cscm.2022.e01774_bib86) 2022; 168 Tahani (10.1016/j.cscm.2022.e01774_bib60) 2016; 76 Dou (10.1016/j.cscm.2022.e01774_bib87) 2020; 17 Rekha (10.1016/j.cscm.2022.e01774_bib91) 2019 Çanakcı (10.1016/j.cscm.2022.e01774_bib17) 2009; 18 Aldrees (10.1016/j.cscm.2022.e01774_bib80) 2022; 14 Sadeghizadeh (10.1016/j.cscm.2022.e01774_bib70) 2019; 232 Abunama (10.1016/j.cscm.2022.e01774_bib89) 2019; 26 Roy (10.1016/j.cscm.2022.e01774_bib109) 2008; 27 Naresh Babu (10.1016/j.cscm.2022.e01774_bib58) 2017; 63 Alade (10.1016/j.cscm.2022.e01774_bib102) 2019; 17 Zhang (10.1016/j.cscm.2022.e01774_bib10) 2020; 11 Zaumanis (10.1016/j.cscm.2022.e01774_bib5) 2016; 14 McCulloch (10.1016/j.cscm.2022.e01774_bib27) 1943; 5 Alade (10.1016/j.cscm.2022.e01774_bib101) 2019; 183 Worthey (10.1016/j.cscm.2022.e01774_bib39) 2021; 25 Erzin (10.1016/j.cscm.2022.e01774_bib108) 2007; 44 Li (10.1016/j.cscm.2022.e01774_bib15) 2022 Jang (10.1016/j.cscm.2022.e01774_bib30) 1993; 23 Baldo (10.1016/j.cscm.2022.e01774_bib44) 2019; 9 Mazari (10.1016/j.cscm.2022.e01774_bib32) 2016; 3 Venkatesh (10.1016/j.cscm.2022.e01774_bib51) 2020 Wang (10.1016/j.cscm.2022.e01774_bib79) 2020; 276 Khan (10.1016/j.cscm.2022.e01774_bib100) 2021; 8 Pasetto (10.1016/j.cscm.2022.e01774_bib6) 2015; 94 Akan (10.1016/j.cscm.2022.e01774_bib68) 2019; 1 Shrestha (10.1016/j.cscm.2022.e01774_bib92) 2020; 8 Li (10.1016/j.cscm.2022.e01774_bib11) 2019; 239 10.1016/j.cscm.2022.e01774_bib56 Shah (10.1016/j.cscm.2022.e01774_bib90) 2021; 28 Tapkın (10.1016/j.cscm.2022.e01774_bib40) 2010; 37 10.1016/j.cscm.2022.e01774_bib57 Gandomi (10.1016/j.cscm.2022.e01774_bib2) 2011; 23 Al-Jamimi (10.1016/j.cscm.2022.e01774_bib94) 2019; 278 Miani (10.1016/j.cscm.2022.e01774_bib1) 2021; 11 Kourgialas (10.1016/j.cscm.2022.e01774_bib53) 2015; 154 Ogundipe (10.1016/j.cscm.2022.e01774_bib97) 2016; 14 Malinov (10.1016/j.cscm.2022.e01774_bib59) 2001; 21 Alade (10.1016/j.cscm.2022.e01774_bib13) 2018; 163 Khan (10.1016/j.cscm.2022.e01774_bib76) 2021 Yaman (10.1016/j.cscm.2022.e01774_bib29) 2017; 56 10.1016/j.cscm.2022.e01774_bib61 Erdal (10.1016/j.cscm.2022.e01774_bib83) 2013; 26 Gandomi (10.1016/j.cscm.2022.e01774_bib12) 2015; 88 Sperotto (10.1016/j.cscm.2022.e01774_bib67) 2017; 202 Ribeiro (10.1016/j.cscm.2022.e01774_bib85) 2020; 86 Fabani (10.1016/j.cscm.2022.e01774_bib50) 2021; 281 Mozumder (10.1016/j.cscm.2022.e01774_bib98) 2015; 69 Cabalar (10.1016/j.cscm.2022.e01774_bib38) 2009; 35 Frank (10.1016/j.cscm.2022.e01774_bib106) 1994 Mohammadzadeh (10.1016/j.cscm.2022.e01774_bib21) 2019; 4 Ahani (10.1016/j.cscm.2022.e01774_bib34) 2020; 263 Koçak (10.1016/j.cscm.2022.e01774_bib54) 2021; 164 Iqbal (10.1016/j.cscm.2022.e01774_bib14) 2020; 384 Oltean (10.1016/j.cscm.2022.e01774_bib81) 2003; 14 Shahin (10.1016/j.cscm.2022.e01774_bib104) 2015; 10 Shah (10.1016/j.cscm.2022.e01774_bib45) 2020; 262 Alavi (10.1016/j.cscm.2022.e01774_bib37) 2012 Goldberg (10.1016/j.cscm.2022.e01774_bib73) 1989 Althoey (10.1016/j.cscm.2022.e01774_bib107) 2022; 17 Kim (10.1016/j.cscm.2022.e01774_bib8) 2006; 10 Pasetto (10.1016/j.cscm.2022.e01774_bib7) 2016; 3 Serin (10.1016/j.cscm.2022.e01774_bib48) 2013 Das (10.1016/j.cscm.2022.e01774_bib18) 2013; 45 Baykasoğlu (10.1016/j.cscm.2022.e01774_bib35) 2008; 35 Nazar (10.1016/j.cscm.2022.e01774_bib74) 2022; 32 Sada (10.1016/j.cscm.2022.e01774_bib52) 2021; 7 Nosratabadi (10.1016/j.cscm.2022.e01774_bib65) 2020; 8 Shahin (10.1016/j.cscm.2022.e01774_bib20) 2009 Alavi (10.1016/j.cscm.2022.e01774_bib64) 2011 Ozgan (10.1016/j.cscm.2022.e01774_bib43) 2011; 38 Kim (10.1016/j.cscm.2022.e01774_bib93) 2019; 72 Islam (10.1016/j.cscm.2022.e01774_bib71) 2018; 77 Guo (10.1016/j.cscm.2022.e01774_bib26) 2021 Kisi (10.1016/j.cscm.2022.e01774_bib103) 2013; 51 Shahin (10.1016/j.cscm.2022.e01774_bib66) 2013 Trucchia (10.1016/j.cscm.2022.e01774_bib111) 2021; 282 10.1016/j.cscm.2022.e01774_bib46 10.1016/j.cscm.2022.e01774_bib47 Kandil (10.1016/j.cscm.2022.e01774_bib96) 2013; 11 Maeda (10.1016/j.cscm.2022.e01774_bib88) 2018 Khoshnevisan (10.1016/j.cscm.2022.e01774_bib72) 2014; 73 Chaabene (10.1016/j.cscm.2022.e01774_bib84) 2020; 260 |
| References_xml | – volume: 12 start-page: 314 year: 2022 ident: bib23 article-title: Predicting marshall flow and marshall stability of asphalt pavements using multi expression programming publication-title: Buildings – volume: 35 start-page: 111 year: 2008 end-page: 123 ident: bib35 article-title: Prediction of compressive and tensile strength of limestone via genetic programming publication-title: Expert Syst. Appl. – volume: 232 year: 2020 ident: bib69 article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer publication-title: Constr. Build. Mater. – year: 2021 ident: bib76 article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest publication-title: Adv. Civ. Eng. – volume: 63 start-page: 71 year: 2017 end-page: 79 ident: bib58 article-title: New algebraic activation function for multi-layered feed forward neural networks publication-title: IETE J. Res. – volume: 73 start-page: 183 year: 2014 end-page: 192 ident: bib72 article-title: Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system publication-title: J. Clean. Prod. – volume: 72 start-page: 558 year: 2019 end-page: 569 ident: bib93 article-title: Multicollinearity and misleading statistical results publication-title: Korean J. Anesthesiol. – year: 2018 ident: bib88 article-title: How to rationally compare the performances of different machine learning models? publication-title: PeerJ Prepr. – volume: 69 start-page: 291 year: 2015 end-page: 300 ident: bib98 article-title: Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network publication-title: Comput. Geotech. – volume: 1 start-page: 1 year: 2019 end-page: 11 ident: bib68 article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils publication-title: SN Appl. Sci. – volume: 281 year: 2021 ident: bib50 article-title: Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process publication-title: J. Environ. Manag. – year: 2015 ident: bib55 article-title: Deep neural networks with multistate activation functions publication-title: Comput. Intell. Neurosci. – volume: 45 start-page: 231 year: 2013 end-page: 267 ident: bib18 article-title: 10 Artificial neural networks in geotechnical engineering: modeling and application issues publication-title: Metaheuristics Water Geotech. Transp. Eng. – volume: 7 year: 2021 ident: bib52 article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance publication-title: Heliyon – reference: Tang, Y.-J., Q.-Y. Zhang, and W. Lin. Artificial neural network based spectrum sensing method for cognitive radio. in 2010 6th international conference on wireless communications networking and mobile computing (WiCOM). 2010. IEEE. – volume: 260 year: 2020 ident: bib84 article-title: Machine learning prediction of mechanical properties of concrete: critical review publication-title: Constr. Build. Mater. – year: 2022 ident: bib15 article-title: Sustainable use of chemically modified tyre rubber in concrete: machine learning based novel predictive model publication-title: Chem. Phys. Lett. – volume: 384 year: 2020 ident: bib14 article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming publication-title: J. Hazard. Mater. – volume: 17 start-page: 103 year: 2019 end-page: 111 ident: bib102 article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model publication-title: Nano-Struct. Nano-Objects – volume: 8 start-page: 1799 year: 2020 ident: bib65 article-title: Data science in economics: comprehensive review of advanced machine learning and deep learning methods publication-title: Mathematics – volume: 18 start-page: 1031 year: 2009 ident: bib17 article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming publication-title: Neural Comput. Appl. – volume: 26 start-page: 3368 year: 2019 end-page: 3381 ident: bib89 article-title: Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill publication-title: Environ. Sci. Pollut. Res. – reference: Morova, N., et al. Modelling Marshall Stability of fiber reinforced asphalt mixtures with ANFIS. in 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA). 2017. IEEE. – volume: 88 start-page: 63 year: 2015 end-page: 72 ident: bib12 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. – volume: 19 start-page: 209 year: 2020 end-page: 219 ident: bib49 article-title: Predicting Marshall stability and flow of bituminous mix containing waste fillers by the adaptive neuro-fuzzy inference system publication-title: Rev. De. la Constr. – volume: 17 start-page: 641 year: 2020 end-page: 658 ident: bib87 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan publication-title: Landslides – volume: 77 start-page: 1 year: 2018 end-page: 15 ident: bib71 article-title: Development of an intelligent system based on ANFIS model for predicting soil erosion publication-title: Environ. Earth Sci. – start-page: 1 year: 2020 end-page: 7 ident: bib51 article-title: ANN and neuro-fuzzy modeling for shear strength characterization of soils publication-title: Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. – volume: 164 year: 2021 ident: bib54 article-title: New activation functions for single layer feedforward neural network publication-title: Expert Syst. Appl. – volume: 183 start-page: 74 year: 2019 end-page: 82 ident: bib101 article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm publication-title: Sol. Energy – volume: 26 start-page: 111 year: 2010 end-page: 118 ident: bib36 article-title: Multi expression programming: a new approach to formulation of soil classification publication-title: Eng. Comput. – volume: 44 start-page: 1215 year: 2007 end-page: 1223 ident: bib108 article-title: Artificial neural networks approach for swell pressure versus soil suction behaviour publication-title: Can. Geotech. J. – year: 2013 ident: bib48 publication-title: Modeling Marshall stability of lightweight asphalt concretes fabricated using expanded clay aggregate with anfis – volume: 282 year: 2021 ident: bib111 article-title: Surrogate based global sensitivity analysis of ADM1-based anaerobic digestion model publication-title: J. Environ. Manag. – year: 2022 ident: bib25 article-title: An efficient and explainable ensemble learning model for asphalt pavement condition prediction based on LTPP dataset publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 16 start-page: 1 year: 2009 ident: bib42 article-title: Effect of asphalt content on the marshall stability of asphalt concrete using artificial neural networks publication-title: Sci. Iran. – volume: 86 year: 2020 ident: bib85 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl. Soft Comput. – volume: 168 start-page: 344 year: 2022 end-page: 361 ident: bib86 article-title: Prediction of water quality indexes with ensemble learners: bagging and boosting publication-title: Process Saf. Environ. Prot. – volume: 38 start-page: 6025 year: 2011 end-page: 6030 ident: bib43 article-title: Artificial neural network based modelling of the Marshall Stability of asphalt concrete publication-title: Expert Syst. Appl. – volume: 51 start-page: 108 year: 2013 end-page: 117 ident: bib103 article-title: Modeling rainfall-runoff process using soft computing techniques publication-title: Comput. Geosci. – volume: 23 start-page: 248 year: 2011 end-page: 263 ident: bib2 article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures publication-title: J. Mater. Civ. Eng. – volume: 37 start-page: 4660 year: 2010 end-page: 4670 ident: bib40 article-title: Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks publication-title: Expert Syst. Appl. – volume: 24 year: 2020 ident: bib63 article-title: Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula publication-title: Transp. Geotech. – year: 1985 ident: bib31 article-title: Industrial Applications of Fuzzy Control – volume: 22 start-page: 674 year: 2007 end-page: 682 ident: bib19 article-title: A multi-model approach to analysis of environmental phenomena publication-title: Environ. Model. Softw. – volume: 276 year: 2020 ident: bib79 article-title: High performance prediction of soil compaction parameters using multi expression programming publication-title: Eng. Geol. – volume: 27 start-page: 302 year: 2008 end-page: 313 ident: bib109 article-title: On some aspects of variable selection for partial least squares regression models publication-title: QSAR Comb. Sci. – volume: 350 year: 2022 ident: bib99 article-title: New prediction models for the compressive strength and dry-thermal conductivity of bio-composites using novel machine learning algorithms publication-title: J. Clean. Prod. – volume: 154 start-page: 86 year: 2015 end-page: 101 ident: bib53 article-title: Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed publication-title: J. Environ. Manag. – year: 2012 ident: bib37 article-title: Formulation of secant and reloading soil deformation moduli using multi expression programming publication-title: Eng. Comput. – volume: 232 start-page: 342 year: 2019 end-page: 353 ident: bib70 article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study publication-title: J. Environ. Manag. – volume: 239 start-page: 279 year: 2019 end-page: 286 ident: bib11 article-title: Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives publication-title: J. Environ. Manag. – volume: 54 start-page: 1863 year: 2021 end-page: 1885 ident: bib22 article-title: Genetic programming in civil engineering: advent, applications and future trends publication-title: Artif. Intell. Rev. – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: bib27 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 163 start-page: 135 year: 2018 end-page: 142 ident: bib13 article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model publication-title: Comput. Methods Prog. Biomed. – volume: 17 year: 2022 ident: bib107 article-title: Machine learning based computational approach for crack width detection of self-healing concrete publication-title: Case Stud. Constr. Mater. – volume: 25 start-page: 4231 year: 2021 end-page: 4239 ident: bib39 article-title: Tree-based ensemble methods: predicting asphalt mixture dynamic modulus for flexible pavement design publication-title: KSCE J. Civ. Eng. – volume: vol. 1 year: 1992 ident: bib75 publication-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection – volume: 8 year: 2021 ident: bib100 article-title: Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation publication-title: Front. Mater. – year: 2009 ident: bib20 article-title: Recent advances and future challenges for artificial neural systems in geotechnical engineering applications publication-title: Adv. Artif. Neural Syst. – volume: 8 start-page: 39 year: 2020 end-page: 42 ident: bib92 article-title: Detecting multicollinearity in regression analysis publication-title: Am. J. Appl. Math. Stat. – volume: 21 start-page: 375 year: 2001 end-page: 394 ident: bib59 article-title: Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network publication-title: Comput. Mater. Sci. – volume: 130 start-page: 46 year: 2014 end-page: 56 ident: bib82 article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm publication-title: Comput. Struct. – year: 2013 ident: bib66 article-title: Artificial intelligence in geotechnical engineering: applications, modeling aspects, and future directions publication-title: Metaheuristics Water Geotech. Transp. Eng. – year: 2002 ident: bib33 article-title: Multi expression programming publication-title: J. Genet. Program. Evol. Mach. Kluwer, Second Tour. Rev. – reference: Morova, N., et al. Modeling Marshall Stability of light asphalt concretes fabricated using expanded clay aggregate with Artificial Neural Networks. in 2012 International Symposium on Innovations in Intelligent Systems and Applications. 2012. IEEE. – volume: 94 start-page: 784 year: 2015 end-page: 790 ident: bib6 article-title: Computational analysis of the creep behaviour of bituminous mixtures publication-title: Constr. Build. Mater. – volume: 11 start-page: 11710 year: 2021 ident: bib1 article-title: Bituminous mixtures experimental data modeling using a hyperparameters-optimized machine learning approach publication-title: Appl. Sci. – volume: 20 start-page: 1055 year: 2019 end-page: 1064 ident: bib9 article-title: Development of a nonlinear rutting model for asphalt concrete based on Weibull parameters publication-title: Int. J. Pavement Eng. – volume: 3 start-page: 448 year: 2016 end-page: 455 ident: bib32 article-title: Prediction of pavement roughness using a hybrid gene expression programming-neural network technique publication-title: J. Traffic Transp. Eng. (Engl. Ed.) – volume: 268 year: 2020 ident: bib78 article-title: Genetic programming model for estimating soil suction in shallow soil layers in the vicinity of a tree publication-title: Eng. Geol. – volume: 3 start-page: 390 year: 2016 end-page: 397 ident: bib7 article-title: Numerical visco-elastoplastic constitutive modelization of creep recovery tests on hot mix asphalt publication-title: J. Traffic Transp. Eng. (Engl. Ed.) – volume: 23 start-page: 1771 year: 2013 end-page: 1786 ident: bib77 article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems publication-title: Neural Comput. Appl. – volume: 28 start-page: 13202 year: 2021 end-page: 13220 ident: bib90 article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques publication-title: Environ. Sci. Pollut. Res. – start-page: 37 year: 2015 end-page: 57 ident: bib16 article-title: Genetic programming for modelling of geotechnical engineering systems publication-title: Handbook of Genetic Programming Applications – volume: 33 start-page: 39 year: 2012 end-page: 44 ident: bib62 article-title: Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data publication-title: Int. Proc. Chem. Biol. Environ. Eng. – volume: 36 start-page: 49 year: 2001 end-page: 62 ident: bib28 article-title: Artificial neural network applications in geotechnical engineering publication-title: Aust. Geomech. – volume: 202 start-page: 320 year: 2017 end-page: 331 ident: bib67 article-title: Reviewing Bayesian networks potentials for climate change impacts assessment and management: a multi-risk perspective publication-title: J. Environ. Manag. – volume: 14 start-page: 685 year: 2016 end-page: 693 ident: bib97 article-title: Marshall stability and flow of lime-modified asphalt concrete publication-title: Transp. Res. Procedia – volume: 262 year: 2020 ident: bib45 article-title: Marshall stability and flow analysis of asphalt concrete under progressive temperature conditions: An application of advance decision-making approach publication-title: Constr. Build. Mater. – volume: 76 start-page: 358 year: 2016 end-page: 365 ident: bib60 article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid publication-title: Int. Commun. Heat. Mass Transf. – volume: 4 start-page: 26 year: 2019 ident: bib21 article-title: Prediction of compression index of fine-grained soils using a gene expression programming model publication-title: Infrastructures – year: 2011 ident: bib64 article-title: A robust data mining approach for formulation of geotechnical engineering systems publication-title: Eng. Comput. – volume: 28 start-page: 207 year: 2017 end-page: 216 ident: bib105 article-title: Estimation of soil dispersivity using soft computing approaches publication-title: Neural Comput. Appl. – volume: 780 year: 2021 ident: bib110 article-title: Sustainable utilization of foundry waste: forecasting mechanical properties of foundry sand based concrete using multi-expression programming publication-title: Sci. Total Environ. – year: 2019 ident: bib91 article-title: MLmuse: correlation and collinearity—how they can make or break a model publication-title: Correl. Anal. Colline | Data Sci. | Multicollinearity| Clairvoyant Blog (clairvoyantsoft.com.) – volume: 35 start-page: 1884 year: 2009 end-page: 1896 ident: bib38 article-title: Genetic programming-based attenuation relationship: an application of recent earthquakes in Turkey publication-title: Comput. Geosci. – volume: 14 start-page: 947 year: 2022 ident: bib80 article-title: Multi-Expression Programming (MEP): water quality assessment using water quality indices publication-title: Water – volume: 11 start-page: 1095 year: 2020 end-page: 1106 ident: bib10 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci. Front. – volume: 9 start-page: 3502 year: 2019 ident: bib44 article-title: Stiffness modulus and marshall parameters of hot mix asphalts: laboratory data modeling by artificial neural networks characterized by cross-validation publication-title: Appl. Sci. – start-page: 1 year: 2021 end-page: 14 ident: bib26 article-title: An ensemble learning model for asphalt pavement performance prediction based on gradient boosting decision tree publication-title: Int. J. Pavement Eng. – volume: 14 start-page: 285 year: 2003 end-page: 314 ident: bib81 article-title: A comparison of several linear genetic programming techniques publication-title: Complex Syst. – volume: 278 start-page: 376 year: 2019 end-page: 384 ident: bib94 article-title: An intelligent approach for the modeling and experimental optimization of molecular hydrodesulfurization over AlMoCoBi catalyst publication-title: J. Mol. Liq. – year: 2014 ident: bib3 article-title: Influence of Steel Wool Fibers on The Mechanical, Termal, and Healing Properties of Dense Asphalt Concrete – start-page: 1 year: 2022 end-page: 21 ident: bib24 article-title: Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete publication-title: Road. Mater. Pavement Des. – volume: 10 start-page: 109 year: 2015 end-page: 125 ident: bib104 article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering publication-title: Geomech. Geoengin. – volume: 263 year: 2020 ident: bib34 article-title: An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas publication-title: J. Clean. Prod. – volume: 32 year: 2022 ident: bib74 article-title: Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete publication-title: Mater. Today Communications – volume: 9 start-page: 3172 year: 2019 ident: bib41 article-title: Development of hybrid artificial intelligence approaches and a support vector machine algorithm for predicting the marshall parameters of stone matrix asphalt publication-title: Appl. Sci. – volume: 11 start-page: 106 year: 2013 end-page: 112 ident: bib96 article-title: Modeling marshall stability and flow for hot mix asphalt using artificial intelligence techniques publication-title: Nat. Sci. – year: 1994 ident: bib106 article-title: The Data Analysis Handbook – volume: 10 start-page: 91 year: 2006 end-page: 96 ident: bib8 article-title: Development of performance prediction models in flexible pavement using regression analysis method publication-title: KSCE J. Civ. Eng. – reference: Xu, B., R. Huang, and M. Li, Revise saturated activation functions. arXiv preprint arXiv:1602.05980, 2016. – reference: Ramachandran, P., B. Zoph, and Q. Le, Searching for Activation Functions. arXiv Prepr. arXiv preprint arXiv:1710.05941, 2017. – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: bib30 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst., Man, Cybern. – year: 2005 ident: bib95 article-title: Determination of optimum bitumen content and Marshall stability using neural networks for asphaltic concrete mixtures publication-title: Proc. 9th WSEAS Int. Conf. Comput. World Sci. Eng. Acad. Soc. (WSEAS) – volume: 26 start-page: 1689 year: 2013 end-page: 1697 ident: bib83 article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction publication-title: Eng. Appl. Artif. Intell. – volume: 56 start-page: 523 year: 2017 end-page: 532 ident: bib29 article-title: Predicting the ingredients of self compacting concrete using artificial neural network publication-title: Alex. Eng. J. – volume: 14 start-page: 3493 year: 2016 end-page: 3502 ident: bib5 article-title: 100% hot mix asphalt recycling: challenges and benefits publication-title: Transp. Res. Procedia – volume: 74 start-page: 151 year: 2015 end-page: 161 ident: bib4 article-title: Overview of bituminous mixtures made with recycled concrete aggregates publication-title: Constr. Build. Mater. – year: 1989 ident: bib73 article-title: Genetic algorithms in search, optimization, and machine learning publication-title: Addison – start-page: 1 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib51 article-title: ANN and neuro-fuzzy modeling for shear strength characterization of soils publication-title: Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. – volume: 32 year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib74 article-title: Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete publication-title: Mater. Today Communications – volume: 28 start-page: 207 issue: 1 year: 2017 ident: 10.1016/j.cscm.2022.e01774_bib105 article-title: Estimation of soil dispersivity using soft computing approaches publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2320-x – volume: 11 start-page: 1095 issue: 4 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib10 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci. Front. doi: 10.1016/j.gsf.2019.12.003 – year: 2014 ident: 10.1016/j.cscm.2022.e01774_bib3 – volume: 22 start-page: 674 issue: 5 year: 2007 ident: 10.1016/j.cscm.2022.e01774_bib19 article-title: A multi-model approach to analysis of environmental phenomena publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2005.12.026 – volume: 24 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib63 article-title: Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2020.100358 – volume: 232 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib69 article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117266 – volume: 23 start-page: 248 issue: 3 year: 2011 ident: 10.1016/j.cscm.2022.e01774_bib2 article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000154 – volume: 10 start-page: 109 issue: 2 year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib104 article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering publication-title: Geomech. Geoengin. doi: 10.1080/17486025.2014.921333 – volume: 260 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib84 article-title: Machine learning prediction of mechanical properties of concrete: critical review publication-title: Constr. Build. Mater. – volume: 11 start-page: 11710 issue: 24 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib1 article-title: Bituminous mixtures experimental data modeling using a hyperparameters-optimized machine learning approach publication-title: Appl. Sci. doi: 10.3390/app112411710 – ident: 10.1016/j.cscm.2022.e01774_bib46 doi: 10.1109/INISTA.2012.6246946 – volume: 11 start-page: 106 issue: 6 year: 2013 ident: 10.1016/j.cscm.2022.e01774_bib96 article-title: Modeling marshall stability and flow for hot mix asphalt using artificial intelligence techniques publication-title: Nat. Sci. – volume: 17 year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib107 article-title: Machine learning based computational approach for crack width detection of self-healing concrete publication-title: Case Stud. Constr. Mater. – volume: 168 start-page: 344 year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib86 article-title: Prediction of water quality indexes with ensemble learners: bagging and boosting publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.10.005 – ident: 10.1016/j.cscm.2022.e01774_bib56 – volume: 37 start-page: 4660 issue: 6 year: 2010 ident: 10.1016/j.cscm.2022.e01774_bib40 article-title: Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.042 – volume: 33 start-page: 39 year: 2012 ident: 10.1016/j.cscm.2022.e01774_bib62 article-title: Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data publication-title: Int. Proc. Chem. Biol. Environ. Eng. – volume: 8 start-page: 39 issue: 2 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib92 article-title: Detecting multicollinearity in regression analysis publication-title: Am. J. Appl. Math. Stat. doi: 10.12691/ajams-8-2-1 – volume: 18 start-page: 1031 issue: 8 year: 2009 ident: 10.1016/j.cscm.2022.e01774_bib17 article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming publication-title: Neural Comput. Appl. doi: 10.1007/s00521-008-0208-0 – volume: 232 start-page: 342 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib70 article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.11.047 – volume: 154 start-page: 86 year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib53 article-title: Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.02.034 – volume: 14 start-page: 685 year: 2016 ident: 10.1016/j.cscm.2022.e01774_bib97 article-title: Marshall stability and flow of lime-modified asphalt concrete publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2016.05.333 – year: 1985 ident: 10.1016/j.cscm.2022.e01774_bib31 – year: 2018 ident: 10.1016/j.cscm.2022.e01774_bib88 article-title: How to rationally compare the performances of different machine learning models? publication-title: PeerJ Prepr. – volume: 23 start-page: 1771 issue: 6 year: 2013 ident: 10.1016/j.cscm.2022.e01774_bib77 article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1144-6 – year: 2005 ident: 10.1016/j.cscm.2022.e01774_bib95 article-title: Determination of optimum bitumen content and Marshall stability using neural networks for asphaltic concrete mixtures publication-title: Proc. 9th WSEAS Int. Conf. Comput. World Sci. Eng. Acad. Soc. (WSEAS) – volume: 276 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib79 article-title: High performance prediction of soil compaction parameters using multi expression programming publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105758 – volume: 74 start-page: 151 year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib4 article-title: Overview of bituminous mixtures made with recycled concrete aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.10.035 – ident: 10.1016/j.cscm.2022.e01774_bib57 – year: 2013 ident: 10.1016/j.cscm.2022.e01774_bib66 article-title: Artificial intelligence in geotechnical engineering: applications, modeling aspects, and future directions publication-title: Metaheuristics Water Geotech. Transp. Eng. doi: 10.1016/B978-0-12-398296-4.00008-8 – volume: 268 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib78 article-title: Genetic programming model for estimating soil suction in shallow soil layers in the vicinity of a tree publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105506 – volume: 72 start-page: 558 issue: 6 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib93 article-title: Multicollinearity and misleading statistical results publication-title: Korean J. Anesthesiol. doi: 10.4097/kja.19087 – volume: 350 year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib99 article-title: New prediction models for the compressive strength and dry-thermal conductivity of bio-composites using novel machine learning algorithms publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131364 – volume: 263 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib34 article-title: An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120983 – volume: 282 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib111 article-title: Surrogate based global sensitivity analysis of ADM1-based anaerobic digestion model publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111456 – volume: 9 start-page: 3172 issue: 15 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib41 article-title: Development of hybrid artificial intelligence approaches and a support vector machine algorithm for predicting the marshall parameters of stone matrix asphalt publication-title: Appl. Sci. doi: 10.3390/app9153172 – ident: 10.1016/j.cscm.2022.e01774_bib47 doi: 10.1109/INISTA.2017.8001152 – volume: 14 start-page: 285 issue: 4 year: 2003 ident: 10.1016/j.cscm.2022.e01774_bib81 article-title: A comparison of several linear genetic programming techniques publication-title: Complex Syst. doi: 10.25088/ComplexSystems.14.4.285 – volume: 9 start-page: 3502 issue: 17 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib44 article-title: Stiffness modulus and marshall parameters of hot mix asphalts: laboratory data modeling by artificial neural networks characterized by cross-validation publication-title: Appl. Sci. doi: 10.3390/app9173502 – volume: 130 start-page: 46 year: 2014 ident: 10.1016/j.cscm.2022.e01774_bib82 article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.10.006 – volume: 27 start-page: 302 issue: 3 year: 2008 ident: 10.1016/j.cscm.2022.e01774_bib109 article-title: On some aspects of variable selection for partial least squares regression models publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200710043 – volume: 14 start-page: 947 issue: 6 year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib80 article-title: Multi-Expression Programming (MEP): water quality assessment using water quality indices publication-title: Water doi: 10.3390/w14060947 – volume: 54 start-page: 1863 issue: 3 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib22 article-title: Genetic programming in civil engineering: advent, applications and future trends publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09894-7 – volume: 7 issue: 2 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib52 article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06136 – volume: 38 start-page: 6025 issue: 5 year: 2011 ident: 10.1016/j.cscm.2022.e01774_bib43 article-title: Artificial neural network based modelling of the Marshall Stability of asphalt concrete publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.018 – year: 2009 ident: 10.1016/j.cscm.2022.e01774_bib20 article-title: Recent advances and future challenges for artificial neural systems in geotechnical engineering applications publication-title: Adv. Artif. Neural Syst. doi: 10.1155/2009/308239 – volume: 69 start-page: 291 year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib98 article-title: Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2015.05.021 – volume: 20 start-page: 1055 issue: 9 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib9 article-title: Development of a nonlinear rutting model for asphalt concrete based on Weibull parameters publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2017.1380807 – volume: 14 start-page: 3493 year: 2016 ident: 10.1016/j.cscm.2022.e01774_bib5 article-title: 100% hot mix asphalt recycling: challenges and benefits publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2016.05.315 – volume: 8 start-page: 1799 issue: 10 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib65 article-title: Data science in economics: comprehensive review of advanced machine learning and deep learning methods publication-title: Mathematics doi: 10.3390/math8101799 – volume: 26 start-page: 111 issue: 2 year: 2010 ident: 10.1016/j.cscm.2022.e01774_bib36 article-title: Multi expression programming: a new approach to formulation of soil classification publication-title: Eng. Comput. doi: 10.1007/s00366-009-0140-7 – volume: 88 start-page: 63 year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib12 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib91 article-title: MLmuse: correlation and collinearity—how they can make or break a model publication-title: Correl. Anal. Colline | Data Sci. | Multicollinearity| Clairvoyant Blog (clairvoyantsoft.com.) – volume: 56 start-page: 523 issue: 4 year: 2017 ident: 10.1016/j.cscm.2022.e01774_bib29 article-title: Predicting the ingredients of self compacting concrete using artificial neural network publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.04.007 – volume: 3 start-page: 448 issue: 5 year: 2016 ident: 10.1016/j.cscm.2022.e01774_bib32 article-title: Prediction of pavement roughness using a hybrid gene expression programming-neural network technique publication-title: J. Traffic Transp. Eng. (Engl. Ed.) – year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib76 article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest publication-title: Adv. Civ. Eng. doi: 10.1155/2021/6618407 – year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib25 article-title: An efficient and explainable ensemble learning model for asphalt pavement condition prediction based on LTPP dataset publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3164596 – volume: 25 start-page: 4231 issue: 11 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib39 article-title: Tree-based ensemble methods: predicting asphalt mixture dynamic modulus for flexible pavement design publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-021-2306-9 – year: 2002 ident: 10.1016/j.cscm.2022.e01774_bib33 article-title: Multi expression programming publication-title: J. Genet. Program. Evol. Mach. Kluwer, Second Tour. Rev. – volume: 17 start-page: 103 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib102 article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model publication-title: Nano-Struct. Nano-Objects doi: 10.1016/j.nanoso.2018.12.001 – start-page: 37 year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib16 article-title: Genetic programming for modelling of geotechnical engineering systems – volume: 262 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib45 article-title: Marshall stability and flow analysis of asphalt concrete under progressive temperature conditions: An application of advance decision-making approach publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120756 – volume: 36 start-page: 49 issue: 1 year: 2001 ident: 10.1016/j.cscm.2022.e01774_bib28 article-title: Artificial neural network applications in geotechnical engineering publication-title: Aust. Geomech. – volume: 19 start-page: 209 issue: 2 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib49 article-title: Predicting Marshall stability and flow of bituminous mix containing waste fillers by the adaptive neuro-fuzzy inference system publication-title: Rev. De. la Constr. – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 10.1016/j.cscm.2022.e01774_bib30 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/21.256541 – volume: 35 start-page: 111 issue: 1–2 year: 2008 ident: 10.1016/j.cscm.2022.e01774_bib35 article-title: Prediction of compressive and tensile strength of limestone via genetic programming publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.06.006 – volume: 16 start-page: 1 year: 2009 ident: 10.1016/j.cscm.2022.e01774_bib42 article-title: Effect of asphalt content on the marshall stability of asphalt concrete using artificial neural networks publication-title: Sci. Iran. – volume: 51 start-page: 108 year: 2013 ident: 10.1016/j.cscm.2022.e01774_bib103 article-title: Modeling rainfall-runoff process using soft computing techniques publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.07.001 – volume: 26 start-page: 1689 issue: 7 year: 2013 ident: 10.1016/j.cscm.2022.e01774_bib83 article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.03.014 – volume: 28 start-page: 13202 issue: 11 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib90 article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11490-9 – volume: 8 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib100 article-title: Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation publication-title: Front. Mater. doi: 10.3389/fmats.2021.621163 – ident: 10.1016/j.cscm.2022.e01774_bib61 – year: 2012 ident: 10.1016/j.cscm.2022.e01774_bib37 article-title: Formulation of secant and reloading soil deformation moduli using multi expression programming publication-title: Eng. Comput. – volume: 183 start-page: 74 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib101 article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.060 – volume: 164 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib54 article-title: New activation functions for single layer feedforward neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113977 – volume: 44 start-page: 1215 issue: 10 year: 2007 ident: 10.1016/j.cscm.2022.e01774_bib108 article-title: Artificial neural networks approach for swell pressure versus soil suction behaviour publication-title: Can. Geotech. J. doi: 10.1139/T07-052 – year: 1994 ident: 10.1016/j.cscm.2022.e01774_bib106 – volume: 4 start-page: 26 issue: 2 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib21 article-title: Prediction of compression index of fine-grained soils using a gene expression programming model publication-title: Infrastructures doi: 10.3390/infrastructures4020026 – volume: 21 start-page: 375 issue: 3 year: 2001 ident: 10.1016/j.cscm.2022.e01774_bib59 article-title: Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(01)00160-4 – volume: 281 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib50 article-title: Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111915 – volume: 3 start-page: 390 issue: 5 year: 2016 ident: 10.1016/j.cscm.2022.e01774_bib7 article-title: Numerical visco-elastoplastic constitutive modelization of creep recovery tests on hot mix asphalt publication-title: J. Traffic Transp. Eng. (Engl. Ed.) – volume: 77 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.cscm.2022.e01774_bib71 article-title: Development of an intelligent system based on ANFIS model for predicting soil erosion publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7348-z – volume: 384 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib14 article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121322 – start-page: 1 year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib24 article-title: Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete publication-title: Road. Mater. Pavement Des. – volume: 780 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib110 article-title: Sustainable utilization of foundry waste: forecasting mechanical properties of foundry sand based concrete using multi-expression programming publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146524 – volume: 12 start-page: 314 issue: 3 year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib23 article-title: Predicting marshall flow and marshall stability of asphalt pavements using multi expression programming publication-title: Buildings doi: 10.3390/buildings12030314 – volume: 73 start-page: 183 year: 2014 ident: 10.1016/j.cscm.2022.e01774_bib72 article-title: Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.09.057 – volume: 278 start-page: 376 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib94 article-title: An intelligent approach for the modeling and experimental optimization of molecular hydrodesulfurization over AlMoCoBi catalyst publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.12.144 – volume: 17 start-page: 641 issue: 3 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib87 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan publication-title: Landslides doi: 10.1007/s10346-019-01286-5 – volume: 26 start-page: 3368 issue: 4 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib89 article-title: Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3749-5 – year: 2013 ident: 10.1016/j.cscm.2022.e01774_bib48 publication-title: Modeling Marshall stability of lightweight asphalt concretes fabricated using expanded clay aggregate with anfis – volume: 94 start-page: 784 year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib6 article-title: Computational analysis of the creep behaviour of bituminous mixtures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.07.054 – volume: 63 start-page: 71 issue: 1 year: 2017 ident: 10.1016/j.cscm.2022.e01774_bib58 article-title: New algebraic activation function for multi-layered feed forward neural networks publication-title: IETE J. Res. doi: 10.1080/03772063.2016.1240633 – volume: 10 start-page: 91 issue: 2 year: 2006 ident: 10.1016/j.cscm.2022.e01774_bib8 article-title: Development of performance prediction models in flexible pavement using regression analysis method publication-title: KSCE J. Civ. Eng. doi: 10.1007/BF02823926 – volume: vol. 1 year: 1992 ident: 10.1016/j.cscm.2022.e01774_bib75 – year: 2011 ident: 10.1016/j.cscm.2022.e01774_bib64 article-title: A robust data mining approach for formulation of geotechnical engineering systems publication-title: Eng. Comput. – start-page: 1 year: 2021 ident: 10.1016/j.cscm.2022.e01774_bib26 article-title: An ensemble learning model for asphalt pavement performance prediction based on gradient boosting decision tree publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2019.1575379 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 10.1016/j.cscm.2022.e01774_bib27 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 86 year: 2020 ident: 10.1016/j.cscm.2022.e01774_bib85 article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105837 – volume: 35 start-page: 1884 issue: 9 year: 2009 ident: 10.1016/j.cscm.2022.e01774_bib38 article-title: Genetic programming-based attenuation relationship: an application of recent earthquakes in Turkey publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.10.015 – year: 1989 ident: 10.1016/j.cscm.2022.e01774_bib73 article-title: Genetic algorithms in search, optimization, and machine learning publication-title: Addison. Read. – volume: 45 start-page: 231 year: 2013 ident: 10.1016/j.cscm.2022.e01774_bib18 article-title: 10 Artificial neural networks in geotechnical engineering: modeling and application issues publication-title: Metaheuristics Water Geotech. Transp. Eng. doi: 10.1016/B978-0-12-398296-4.00010-6 – volume: 163 start-page: 135 year: 2018 ident: 10.1016/j.cscm.2022.e01774_bib13 article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2018.05.029 – year: 2022 ident: 10.1016/j.cscm.2022.e01774_bib15 article-title: Sustainable use of chemically modified tyre rubber in concrete: machine learning based novel predictive model publication-title: Chem. Phys. Lett. – volume: 1 start-page: 1 issue: 8 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib68 article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0883-8 – year: 2015 ident: 10.1016/j.cscm.2022.e01774_bib55 article-title: Deep neural networks with multistate activation functions publication-title: Comput. Intell. Neurosci. doi: 10.1155/2015/721367 – volume: 239 start-page: 279 year: 2019 ident: 10.1016/j.cscm.2022.e01774_bib11 article-title: Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.03.057 – volume: 202 start-page: 320 year: 2017 ident: 10.1016/j.cscm.2022.e01774_bib67 article-title: Reviewing Bayesian networks potentials for climate change impacts assessment and management: a multi-risk perspective publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.07.044 – volume: 76 start-page: 358 year: 2016 ident: 10.1016/j.cscm.2022.e01774_bib60 article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid publication-title: Int. Commun. Heat. Mass Transf. doi: 10.1016/j.icheatmasstransfer.2016.06.003 |
| SSID | ssj0002856827 |
| Score | 2.412029 |
| Snippet | This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | e01774 |
| SubjectTerms | Asphalt Bio-Inspired models Deep Learning Marshall Mix Parameter Prediction models |
| Title | Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study |
| URI | https://dx.doi.org/10.1016/j.cscm.2022.e01774 https://doaj.org/article/a5fd7803584040bfa0430ffb5cf37a3d |
| Volume | 18 |
| WOSCitedRecordID | wos000906543200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2214-5095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002856827 issn: 2214-5095 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2214-5095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002856827 issn: 2214-5095 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIECUlzywoYCdOHbCVlARA1QMIHWLHD9QEA2oKYiJn8Bv5i5xS1lgYcmQXJzId_F3F999R8iRyjMmhNORNLKMhINwRyv88Lxksc6EZ7wtFL5Ww2E2GuW3C62-MCesowfuJu5Up96qjCUAlGBvpddIUuV9mRqfKJ1YXH2ZyheCqcf2l1Eqs7ZfaxxzEQEqpqFipkvuMo3BMvQ4PnFgkkr8QKWWvH8BnBYA53KdrAVPkfa7N9wgS67eJJ-3E9xZwdmkbRObhoLXSccQnmJXFDqu3imyeY8xy6WhmNX-QMvqOapq3FJ3loLBYN0iDYlZYxTQtaXWuRcYB1MrHQ29JOBKoBx3zRntU_NNFU5bXtotcn85uLu4ikJLhcgIzqaRVdIAhBvvmU2Y5ol1WnpWWu4zBsu2w522RBktcwWxi7U5CCqTuNirVINruE2W6-fa7RDqRG4k57kRQovYAu5zbaTMYN4BGI3rET6b0sIEvnFse_FUzBLLHgtUQ4FqKDo19Mjx_J6Xjm3jV-lz1NRcEpmy2xNgP0Wwn-Iv--mRdKbnIjgdnTMBQ1W_PHz3Px6-R1axfX2X_rtPlqeTV3dAVszbtGomh61Jw_HmY_AFelr99w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+models+for+marshall+mix+parameters+using+bio-inspired+genetic+programming+and+deep+machine+learning+approaches%3A+A+comparative+study&rft.jtitle=Case+Studies+in+Construction+Materials&rft.au=Fadi+Althoey&rft.au=Muhammad+Naveed+Akhter&rft.au=Zohaib+Sattar+Nagra&rft.au=Hamad+Hassan+Awan&rft.date=2023-07-01&rft.pub=Elsevier&rft.issn=2214-5095&rft.eissn=2214-5095&rft.volume=18&rft.spage=e01774&rft_id=info:doi/10.1016%2Fj.cscm.2022.e01774&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a5fd7803584040bfa0430ffb5cf37a3d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5095&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5095&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5095&client=summon |