Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study

This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Ma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Case Studies in Construction Materials Ročník 18; s. e01774
Hlavní autoři: Althoey, Fadi, Akhter, Muhammad Naveed, Nagra, Zohaib Sattar, Awan, Hamad Hassan, Alanazi, Fayez, Khan, Mohsin Ali, Javed, Muhammad Faisal, Eldin, Sayed M., Özkılıç, Yasin Onuralp
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2023
Elsevier
Témata:
ISSN:2214-5095, 2214-5095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Marshall Stability (MS), and Marshall Flow (MF) of asphalt mixes. A comprehensive and detailed database of 343 data points was established for both MS and MF. The predicting variables were chosen among the four most influential, and easy-to-determine parameters. The models were trained, tested, validated, and the outcomes of the newly developed models were compared with actual outcomes. The root squared error (RSE), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), regression coefficient (R2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed that in the case of MS, the rising order of input significance was bulk specific gravity of compacted aggregate, Gmb (38.56 %) > Percentage of Aggregates, Ps (19.84 %) > Bulk Specific Gravity of Aggregate, Gsb (19.43 %) > maximum specific gravity paving mix, Gmm (7.62 %), while in case of MF the order followed was: Ps (36.93 %) > Gsb (14.11 %) > Gmb (10.85 %) > Gmm (10.19 %). The outcomes of parametric analysis (PA) consistency of results in relation to previous research findings. The DT-Bagging model outperformed all other models with values of 0.971 and 0.980 (R), 16.88 and 0.24 (MAE), 28.27 and 0.36 (RMSE), 0.069 and 0.041 (RSE), 0.020 and 0.032 (RRMSE), 0.010 and 0.016 (PI), 0.931 and 0.959 (NSE), for MS and MF, respectively. The results of the comparison analysis showed that ANN, ANFIS, MEP, and DT-Bagging are all effective and reliable approaches for the estimation of MS and MF. The MEP-derived mathematical expressions represent the novelty of MEP and are relatively simple and reliable. Roverall values for MS and MF were in the order of DT-Bagging >MEP >ANFIS >ANN with all values exceeding the permitted range of 0.80 for both MS and MF. Hence, all the modeling approaches showed higher performance, possessed high generalization and predication capabilities, and assess the relative significance of input parameters in the prediction of MS and MF. Hence, the findings of this research study would assist in the safer, faster, and sustainable prediction of MS and MF, from the standpoint of resources and time required to perform the Marshall tests.
AbstractList This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Marshall Stability (MS), and Marshall Flow (MF) of asphalt mixes. A comprehensive and detailed database of 343 data points was established for both MS and MF. The predicting variables were chosen among the four most influential, and easy-to-determine parameters. The models were trained, tested, validated, and the outcomes of the newly developed models were compared with actual outcomes. The root squared error (RSE), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), regression coefficient (R2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed that in the case of MS, the rising order of input significance was bulk specific gravity of compacted aggregate, Gmb (38.56 %) > Percentage of Aggregates, Ps (19.84 %) > Bulk Specific Gravity of Aggregate, Gsb (19.43 %) > maximum specific gravity paving mix, Gmm (7.62 %), while in case of MF the order followed was: Ps (36.93 %) > Gsb (14.11 %) > Gmb (10.85 %) > Gmm (10.19 %). The outcomes of parametric analysis (PA) consistency of results in relation to previous research findings. The DT-Bagging model outperformed all other models with values of 0.971 and 0.980 (R), 16.88 and 0.24 (MAE), 28.27 and 0.36 (RMSE), 0.069 and 0.041 (RSE), 0.020 and 0.032 (RRMSE), 0.010 and 0.016 (PI), 0.931 and 0.959 (NSE), for MS and MF, respectively. The results of the comparison analysis showed that ANN, ANFIS, MEP, and DT-Bagging are all effective and reliable approaches for the estimation of MS and MF. The MEP-derived mathematical expressions represent the novelty of MEP and are relatively simple and reliable. Roverall values for MS and MF were in the order of DT-Bagging >MEP >ANFIS >ANN with all values exceeding the permitted range of 0.80 for both MS and MF. Hence, all the modeling approaches showed higher performance, possessed high generalization and predication capabilities, and assess the relative significance of input parameters in the prediction of MS and MF. Hence, the findings of this research study would assist in the safer, faster, and sustainable prediction of MS and MF, from the standpoint of resources and time required to perform the Marshall tests.
ArticleNumber e01774
Author Javed, Muhammad Faisal
Althoey, Fadi
Awan, Hamad Hassan
Khan, Mohsin Ali
Akhter, Muhammad Naveed
Özkılıç, Yasin Onuralp
Nagra, Zohaib Sattar
Alanazi, Fayez
Eldin, Sayed M.
Author_xml – sequence: 1
  givenname: Fadi
  surname: Althoey
  fullname: Althoey, Fadi
  email: fmalthoey@nu.edu.sa
  organization: Department of Civil Engineering, Najran University, Najran, Saudi Arabia
– sequence: 2
  givenname: Muhammad Naveed
  surname: Akhter
  fullname: Akhter, Muhammad Naveed
  email: naveed.akhtar@uet.edu.pk
  organization: Department of Electrical Engineering Rachna College of Engineering and technology (A constituent college of UET Lahore), Gujranwala, 52250, Pakistan
– sequence: 3
  givenname: Zohaib Sattar
  surname: Nagra
  fullname: Nagra, Zohaib Sattar
  email: Zohaibsattarnagra@gmail.com
  organization: School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan
– sequence: 4
  givenname: Hamad Hassan
  surname: Awan
  fullname: Awan, Hamad Hassan
  email: hhawan.tn18@nit.nust.edu.pk
  organization: School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan
– sequence: 5
  givenname: Fayez
  surname: Alanazi
  fullname: Alanazi, Fayez
  email: fkalanazi@ju.edu.sa
  organization: Civil Engineering Department, College of Engineering, Jouf University, Sakaka, 72238, Saudi Arabia
– sequence: 6
  givenname: Mohsin Ali
  surname: Khan
  fullname: Khan, Mohsin Ali
  email: mohsin.ali@cecos.edu.pk, moak.pg18mce@student.nust.edu.pk
  organization: Department of Civil Engineering, CECOS University of IT and Emerging Science, Peshawar, Pakistan
– sequence: 7
  givenname: Muhammad Faisal
  surname: Javed
  fullname: Javed, Muhammad Faisal
  email: arbabfaisal@cuiatd.edu.pk
  organization: Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
– sequence: 8
  givenname: Sayed M.
  surname: Eldin
  fullname: Eldin, Sayed M.
  email: sayed.eldin22@fue.edu.eg
  organization: Center of Research Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
– sequence: 9
  givenname: Yasin Onuralp
  surname: Özkılıç
  fullname: Özkılıç, Yasin Onuralp
  email: yozkilic@erbakan.edu.tr
  organization: Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
BookMark eNp9kc1u1TAQRiNUJErpC7DyC-QytuM4F7GpKn4qVYIFrK2JPb71VWJHdlrRl-CZcXoRQiy6sjX-zieNz-vmLKZITfOWw44D798dd7bYeSdAiB0B17p70ZwLwbtWwV6d_XN_1VyWcgQAMah-EPq8-fUtkwt2DSmyOTmaCvMpsxlzucNpYnP4yRbMONNKubD7EuKBjSG1IZYlVJYdKNIaLFtyOtTcvAUwOuaIltpj70IkNhHm-PSy1FwdUnnPrphN81a-hgdiZb13j2-alx6nQpd_zovmx6eP36-_tLdfP99cX922tuOwtk73toPeeg9OAnLpCHsPo-N-ABp5_QUhpLbY77VS4Ny-BrWVJLxWqKS8aG5OvS7h0Sw51IUfTcJgngYpHwzmutVEBpV3egCphg46GD1CJ8H7UVkvNUpXu8Spy-ZUSib_t4-D2QSZo9kEmU2QOQmq0PAfZMOKm4Y1Y5ieRz-c0CqLHgJlU2ygaKvHTHatG4Tn8N_-8bI-
CitedBy_id crossref_primary_10_3389_fmats_2023_1242085
crossref_primary_10_36937_ben_2025_41034
crossref_primary_10_1007_s40808_024_02061_9
crossref_primary_10_1007_s42947_025_00591_8
crossref_primary_10_1080_10298436_2025_2515154
crossref_primary_10_1038_s41598_024_56088_0
crossref_primary_10_1109_ACCESS_2023_3321100
crossref_primary_10_24171_j_phrp_2023_0287
crossref_primary_10_1007_s40808_025_02540_7
crossref_primary_10_1016_j_est_2024_112547
crossref_primary_10_3389_fmats_2022_1115394
crossref_primary_10_1088_1757_899X_1321_1_012007
Cites_doi 10.1007/s00521-016-2320-x
10.1016/j.gsf.2019.12.003
10.1016/j.envsoft.2005.12.026
10.1016/j.trgeo.2020.100358
10.1016/j.conbuildmat.2019.117266
10.1061/(ASCE)MT.1943-5533.0000154
10.1080/17486025.2014.921333
10.3390/app112411710
10.1109/INISTA.2012.6246946
10.1016/j.psep.2022.10.005
10.1016/j.eswa.2009.12.042
10.12691/ajams-8-2-1
10.1007/s00521-008-0208-0
10.1016/j.jenvman.2018.11.047
10.1016/j.jenvman.2015.02.034
10.1016/j.trpro.2016.05.333
10.1007/s00521-012-1144-6
10.1016/j.enggeo.2020.105758
10.1016/j.conbuildmat.2014.10.035
10.1016/B978-0-12-398296-4.00008-8
10.1016/j.enggeo.2020.105506
10.4097/kja.19087
10.1016/j.jclepro.2022.131364
10.1016/j.jclepro.2020.120983
10.1016/j.jenvman.2020.111456
10.3390/app9153172
10.1109/INISTA.2017.8001152
10.25088/ComplexSystems.14.4.285
10.3390/app9173502
10.1016/j.compstruc.2013.10.006
10.1002/qsar.200710043
10.3390/w14060947
10.1007/s10462-020-09894-7
10.1016/j.heliyon.2021.e06136
10.1016/j.eswa.2010.11.018
10.1155/2009/308239
10.1016/j.compgeo.2015.05.021
10.1080/10298436.2017.1380807
10.1016/j.trpro.2016.05.315
10.3390/math8101799
10.1007/s00366-009-0140-7
10.1016/j.advengsoft.2015.05.007
10.1016/j.aej.2017.04.007
10.1155/2021/6618407
10.1109/TITS.2022.3164596
10.1007/s12205-021-2306-9
10.1016/j.nanoso.2018.12.001
10.1016/j.conbuildmat.2020.120756
10.1109/21.256541
10.1016/j.eswa.2007.06.006
10.1016/j.cageo.2012.07.001
10.1016/j.engappai.2013.03.014
10.1007/s11356-020-11490-9
10.3389/fmats.2021.621163
10.1016/j.solener.2019.02.060
10.1016/j.eswa.2020.113977
10.1139/T07-052
10.3390/infrastructures4020026
10.1016/S0927-0256(01)00160-4
10.1016/j.jenvman.2020.111915
10.1007/s12665-018-7348-z
10.1016/j.jhazmat.2019.121322
10.1016/j.scitotenv.2021.146524
10.3390/buildings12030314
10.1016/j.jclepro.2013.09.057
10.1016/j.molliq.2018.12.144
10.1007/s10346-019-01286-5
10.1007/s11356-018-3749-5
10.1016/j.conbuildmat.2015.07.054
10.1080/03772063.2016.1240633
10.1007/BF02823926
10.1080/10298436.2019.1575379
10.1007/BF02478259
10.1016/j.asoc.2019.105837
10.1016/j.cageo.2008.10.015
10.1016/B978-0-12-398296-4.00010-6
10.1016/j.cmpb.2018.05.029
10.1007/s42452-019-0883-8
10.1155/2015/721367
10.1016/j.jenvman.2019.03.057
10.1016/j.jenvman.2017.07.044
10.1016/j.icheatmasstransfer.2016.06.003
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.cscm.2022.e01774
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2214-5095
ExternalDocumentID oai_doaj_org_article_a5fd7803584040bfa0430ffb5cf37a3d
10_1016_j_cscm_2022_e01774
S2214509522009068
GroupedDBID 0R~
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IXB
KQ8
M41
M~E
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-d76c406cff0d30a13dea6f0bd1f80eb1e012237ca697550dd9f0d7c3e2f75a533
IEDL.DBID DOA
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906543200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-5095
IngestDate Fri Oct 03 12:52:15 EDT 2025
Sat Nov 29 03:03:33 EST 2025
Tue Nov 18 22:36:29 EST 2025
Sun Apr 06 06:54:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bio-Inspired models
Asphalt
Prediction models
Marshall Mix Parameter
Deep Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-d76c406cff0d30a13dea6f0bd1f80eb1e012237ca697550dd9f0d7c3e2f75a533
OpenAccessLink https://doaj.org/article/a5fd7803584040bfa0430ffb5cf37a3d
ParticipantIDs doaj_primary_oai_doaj_org_article_a5fd7803584040bfa0430ffb5cf37a3d
crossref_primary_10_1016_j_cscm_2022_e01774
crossref_citationtrail_10_1016_j_cscm_2022_e01774
elsevier_sciencedirect_doi_10_1016_j_cscm_2022_e01774
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Case Studies in Construction Materials
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Aldrees (bib80) 2022; 14
Shahin (bib66) 2013
Ribeiro, dos Santos Coelho (bib85) 2020; 86
Frank, Todeschini (bib106) 1994
García (bib3) 2014
Cheng, Zhou, Garg (bib78) 2020; 268
Li, Wu, Wang (bib11) 2019; 239
Malinov, Sha, McKeown (bib59) 2001; 21
Shahin (bib16) 2015
Guo, Fu, Sollazzo (bib26) 2021
Al-Jamimi, Bagudu, Saleh (bib94) 2019; 278
McCulloch, Pitts (bib27) 1943; 5
Yaman, Abd Elaty, Taman (bib29) 2017; 56
Cai (bib55) 2015
Mazari, Rodriguez (bib32) 2016; 3
Nguyen (bib41) 2019; 9
Alawi, Rajab (bib95) 2005
Ogundipe (bib97) 2016; 14
Kim, Kim (bib8) 2006; 10
Karbassi (bib82) 2014; 130
Shahin, Jaksa, Maier (bib20) 2009
Naresh Babu, Edla (bib58) 2017; 63
Dou (bib87) 2020; 17
Althoey (bib107) 2022; 17
Alade (bib13) 2018; 163
Alavi, Gandomi (bib64) 2011
Song (bib25) 2022
Maeda (bib88) 2018
Ramachandran, P., B. Zoph, and Q. Le, Searching for Activation Functions. arXiv Prepr. arXiv preprint arXiv:1710.05941, 2017.
Nosratabadi (bib65) 2020; 8
Zaumanis, Mallick, Frank (bib5) 2016; 14
Zhang (bib10) 2020; 11
Saffarzadeh, Heidaripanah (bib42) 2009; 16
Awan (bib23) 2022; 12
Khoshnevisan (bib72) 2014; 73
Goldberg (bib73) 1989
Rekha (bib91) 2019
Iqbal (bib110) 2021; 780
Trucchia, Frunzo (bib111) 2021; 282
Gandomi, Roke (bib12) 2015; 88
Abunama (bib89) 2019; 26
Golafshani, Behnood, Arashpour (bib69) 2020; 232
Jang (bib30) 1993; 23
Venkatesh, Bind (bib51) 2020
Mistry, Roy (bib49) 2020; 19
Alade, Abd Rahman, Saleh (bib102) 2019; 17
Sugeno (bib31) 1985
Ahani, Salari, Shadman (bib34) 2020; 263
Sperotto (bib67) 2017; 202
Emamgholizadeh (bib105) 2017; 28
Shrestha (bib92) 2020; 8
Shahin (bib104) 2015; 10
Baykasoğlu (bib35) 2008; 35
Tapkın, Çevik, Uşar (bib40) 2010; 37
Erdal (bib83) 2013; 26
Oltean, Dumitrescu (bib33) 2002
Roy, Roy (bib109) 2008; 27
Gandomi (bib2) 2011; 23
Chaabene, Flah, Nehdi (bib84) 2020; 260
Alavi (bib36) 2010; 26
Sada, Ikpeseni (bib52) 2021; 7
Xu, B., R. Huang, and M. Li, Revise saturated activation functions. arXiv preprint arXiv:1602.05980, 2016.
Kourgialas, Dokou, Karatzas (bib53) 2015; 154
Alavi (bib77) 2013; 23
Aldrees (bib86) 2022; 168
Khan (bib100) 2021; 8
Li (bib15) 2022
Das (bib18) 2013; 45
Wang, Yin (bib79) 2020; 276
Rahman, Mendez Larrain, Tarefder (bib9) 2019; 20
Miani (bib1) 2021; 11
Baldo, Manthos, Miani (bib44) 2019; 9
Koza (bib75) 1992; vol. 1
Alade, Abd Rahman, Saleh (bib101) 2019; 183
Mohammadzadeh (bib21) 2019; 4
Oltean, Grosan (bib81) 2003; 14
Morova, N., et al. Modelling Marshall Stability of fiber reinforced asphalt mixtures with ANFIS. in 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA). 2017. IEEE.
Tahani, Vakili, Khosrojerdi (bib60) 2016; 76
Koçak, Şiray (bib54) 2021; 164
Khan (bib76) 2021
Islam (bib71) 2018; 77
Hanandeh, Ardah, Abu-Farsakh (bib63) 2020; 24
Pasandín, Pérez (bib4) 2015; 74
Mozumder, Laskar (bib98) 2015; 69
Nazar (bib74) 2022; 32
Serin (bib48) 2013
Cabalar, Cevik (bib38) 2009; 35
Tang, Y.-J., Q.-Y. Zhang, and W. Lin. Artificial neural network based spectrum sensing method for cognitive radio. in 2010 6th international conference on wireless communications networking and mobile computing (WiCOM). 2010. IEEE.
Huang (bib24) 2022
Dorofki (bib62) 2012; 33
Zhang (bib22) 2021; 54
Kim (bib93) 2019; 72
Çanakcı, Baykasoğlu, Güllü (bib17) 2009; 18
Shah, Javed, Abunama (bib90) 2021; 28
Iqbal (bib14) 2020; 384
Erzin (bib108) 2007; 44
Kisi, Shiri, Tombul (bib103) 2013; 51
Pasetto, Baldo (bib7) 2016; 3
Sadeghizadeh (bib70) 2019; 232
Akan, Keskin (bib68) 2019; 1
Giustolisi (bib19) 2007; 22
Pasetto, Baldo (bib6) 2015; 94
Ozgan (bib43) 2011; 38
Morova, N., et al. Modeling Marshall Stability of light asphalt concretes fabricated using expanded clay aggregate with Artificial Neural Networks. in 2012 International Symposium on Innovations in Intelligent Systems and Applications. 2012. IEEE.
Shahin, Jaksa, Maier (bib28) 2001; 36
Shah (bib45) 2020; 262
Alavi (bib37) 2012
Kandil (bib96) 2013; 11
Worthey, Yang, Kim (bib39) 2021; 25
Khan (bib99) 2022; 350
Fabani (bib50) 2021; 281
Rahman (10.1016/j.cscm.2022.e01774_bib9) 2019; 20
Song (10.1016/j.cscm.2022.e01774_bib25) 2022
Huang (10.1016/j.cscm.2022.e01774_bib24) 2022
Sugeno (10.1016/j.cscm.2022.e01774_bib31) 1985
Golafshani (10.1016/j.cscm.2022.e01774_bib69) 2020; 232
Giustolisi (10.1016/j.cscm.2022.e01774_bib19) 2007; 22
García (10.1016/j.cscm.2022.e01774_bib3) 2014
Shahin (10.1016/j.cscm.2022.e01774_bib28) 2001; 36
Alavi (10.1016/j.cscm.2022.e01774_bib77) 2013; 23
Shahin (10.1016/j.cscm.2022.e01774_bib16) 2015
Khan (10.1016/j.cscm.2022.e01774_bib99) 2022; 350
Cheng (10.1016/j.cscm.2022.e01774_bib78) 2020; 268
Koza (10.1016/j.cscm.2022.e01774_bib75) 1992; vol. 1
Emamgholizadeh (10.1016/j.cscm.2022.e01774_bib105) 2017; 28
Cai (10.1016/j.cscm.2022.e01774_bib55) 2015
Pasandín (10.1016/j.cscm.2022.e01774_bib4) 2015; 74
Zhang (10.1016/j.cscm.2022.e01774_bib22) 2021; 54
Iqbal (10.1016/j.cscm.2022.e01774_bib110) 2021; 780
Nguyen (10.1016/j.cscm.2022.e01774_bib41) 2019; 9
Mistry (10.1016/j.cscm.2022.e01774_bib49) 2020; 19
Karbassi (10.1016/j.cscm.2022.e01774_bib82) 2014; 130
Oltean (10.1016/j.cscm.2022.e01774_bib33) 2002
Alawi (10.1016/j.cscm.2022.e01774_bib95) 2005
Hanandeh (10.1016/j.cscm.2022.e01774_bib63) 2020; 24
Awan (10.1016/j.cscm.2022.e01774_bib23) 2022; 12
Alavi (10.1016/j.cscm.2022.e01774_bib36) 2010; 26
Saffarzadeh (10.1016/j.cscm.2022.e01774_bib42) 2009; 16
Dorofki (10.1016/j.cscm.2022.e01774_bib62) 2012; 33
Aldrees (10.1016/j.cscm.2022.e01774_bib86) 2022; 168
Tahani (10.1016/j.cscm.2022.e01774_bib60) 2016; 76
Dou (10.1016/j.cscm.2022.e01774_bib87) 2020; 17
Rekha (10.1016/j.cscm.2022.e01774_bib91) 2019
Çanakcı (10.1016/j.cscm.2022.e01774_bib17) 2009; 18
Aldrees (10.1016/j.cscm.2022.e01774_bib80) 2022; 14
Sadeghizadeh (10.1016/j.cscm.2022.e01774_bib70) 2019; 232
Abunama (10.1016/j.cscm.2022.e01774_bib89) 2019; 26
Roy (10.1016/j.cscm.2022.e01774_bib109) 2008; 27
Naresh Babu (10.1016/j.cscm.2022.e01774_bib58) 2017; 63
Alade (10.1016/j.cscm.2022.e01774_bib102) 2019; 17
Zhang (10.1016/j.cscm.2022.e01774_bib10) 2020; 11
Zaumanis (10.1016/j.cscm.2022.e01774_bib5) 2016; 14
McCulloch (10.1016/j.cscm.2022.e01774_bib27) 1943; 5
Alade (10.1016/j.cscm.2022.e01774_bib101) 2019; 183
Worthey (10.1016/j.cscm.2022.e01774_bib39) 2021; 25
Erzin (10.1016/j.cscm.2022.e01774_bib108) 2007; 44
Li (10.1016/j.cscm.2022.e01774_bib15) 2022
Jang (10.1016/j.cscm.2022.e01774_bib30) 1993; 23
Baldo (10.1016/j.cscm.2022.e01774_bib44) 2019; 9
Mazari (10.1016/j.cscm.2022.e01774_bib32) 2016; 3
Venkatesh (10.1016/j.cscm.2022.e01774_bib51) 2020
Wang (10.1016/j.cscm.2022.e01774_bib79) 2020; 276
Khan (10.1016/j.cscm.2022.e01774_bib100) 2021; 8
Pasetto (10.1016/j.cscm.2022.e01774_bib6) 2015; 94
Akan (10.1016/j.cscm.2022.e01774_bib68) 2019; 1
Shrestha (10.1016/j.cscm.2022.e01774_bib92) 2020; 8
Li (10.1016/j.cscm.2022.e01774_bib11) 2019; 239
10.1016/j.cscm.2022.e01774_bib56
Shah (10.1016/j.cscm.2022.e01774_bib90) 2021; 28
Tapkın (10.1016/j.cscm.2022.e01774_bib40) 2010; 37
10.1016/j.cscm.2022.e01774_bib57
Gandomi (10.1016/j.cscm.2022.e01774_bib2) 2011; 23
Al-Jamimi (10.1016/j.cscm.2022.e01774_bib94) 2019; 278
Miani (10.1016/j.cscm.2022.e01774_bib1) 2021; 11
Kourgialas (10.1016/j.cscm.2022.e01774_bib53) 2015; 154
Ogundipe (10.1016/j.cscm.2022.e01774_bib97) 2016; 14
Malinov (10.1016/j.cscm.2022.e01774_bib59) 2001; 21
Alade (10.1016/j.cscm.2022.e01774_bib13) 2018; 163
Khan (10.1016/j.cscm.2022.e01774_bib76) 2021
Yaman (10.1016/j.cscm.2022.e01774_bib29) 2017; 56
10.1016/j.cscm.2022.e01774_bib61
Erdal (10.1016/j.cscm.2022.e01774_bib83) 2013; 26
Gandomi (10.1016/j.cscm.2022.e01774_bib12) 2015; 88
Sperotto (10.1016/j.cscm.2022.e01774_bib67) 2017; 202
Ribeiro (10.1016/j.cscm.2022.e01774_bib85) 2020; 86
Fabani (10.1016/j.cscm.2022.e01774_bib50) 2021; 281
Mozumder (10.1016/j.cscm.2022.e01774_bib98) 2015; 69
Cabalar (10.1016/j.cscm.2022.e01774_bib38) 2009; 35
Frank (10.1016/j.cscm.2022.e01774_bib106) 1994
Mohammadzadeh (10.1016/j.cscm.2022.e01774_bib21) 2019; 4
Ahani (10.1016/j.cscm.2022.e01774_bib34) 2020; 263
Koçak (10.1016/j.cscm.2022.e01774_bib54) 2021; 164
Iqbal (10.1016/j.cscm.2022.e01774_bib14) 2020; 384
Oltean (10.1016/j.cscm.2022.e01774_bib81) 2003; 14
Shahin (10.1016/j.cscm.2022.e01774_bib104) 2015; 10
Shah (10.1016/j.cscm.2022.e01774_bib45) 2020; 262
Alavi (10.1016/j.cscm.2022.e01774_bib37) 2012
Goldberg (10.1016/j.cscm.2022.e01774_bib73) 1989
Althoey (10.1016/j.cscm.2022.e01774_bib107) 2022; 17
Kim (10.1016/j.cscm.2022.e01774_bib8) 2006; 10
Pasetto (10.1016/j.cscm.2022.e01774_bib7) 2016; 3
Serin (10.1016/j.cscm.2022.e01774_bib48) 2013
Das (10.1016/j.cscm.2022.e01774_bib18) 2013; 45
Baykasoğlu (10.1016/j.cscm.2022.e01774_bib35) 2008; 35
Nazar (10.1016/j.cscm.2022.e01774_bib74) 2022; 32
Sada (10.1016/j.cscm.2022.e01774_bib52) 2021; 7
Nosratabadi (10.1016/j.cscm.2022.e01774_bib65) 2020; 8
Shahin (10.1016/j.cscm.2022.e01774_bib20) 2009
Alavi (10.1016/j.cscm.2022.e01774_bib64) 2011
Ozgan (10.1016/j.cscm.2022.e01774_bib43) 2011; 38
Kim (10.1016/j.cscm.2022.e01774_bib93) 2019; 72
Islam (10.1016/j.cscm.2022.e01774_bib71) 2018; 77
Guo (10.1016/j.cscm.2022.e01774_bib26) 2021
Kisi (10.1016/j.cscm.2022.e01774_bib103) 2013; 51
Shahin (10.1016/j.cscm.2022.e01774_bib66) 2013
Trucchia (10.1016/j.cscm.2022.e01774_bib111) 2021; 282
10.1016/j.cscm.2022.e01774_bib46
10.1016/j.cscm.2022.e01774_bib47
Kandil (10.1016/j.cscm.2022.e01774_bib96) 2013; 11
Maeda (10.1016/j.cscm.2022.e01774_bib88) 2018
Khoshnevisan (10.1016/j.cscm.2022.e01774_bib72) 2014; 73
Chaabene (10.1016/j.cscm.2022.e01774_bib84) 2020; 260
References_xml – volume: 12
  start-page: 314
  year: 2022
  ident: bib23
  article-title: Predicting marshall flow and marshall stability of asphalt pavements using multi expression programming
  publication-title: Buildings
– volume: 35
  start-page: 111
  year: 2008
  end-page: 123
  ident: bib35
  article-title: Prediction of compressive and tensile strength of limestone via genetic programming
  publication-title: Expert Syst. Appl.
– volume: 232
  year: 2020
  ident: bib69
  article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer
  publication-title: Constr. Build. Mater.
– year: 2021
  ident: bib76
  article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest
  publication-title: Adv. Civ. Eng.
– volume: 63
  start-page: 71
  year: 2017
  end-page: 79
  ident: bib58
  article-title: New algebraic activation function for multi-layered feed forward neural networks
  publication-title: IETE J. Res.
– volume: 73
  start-page: 183
  year: 2014
  end-page: 192
  ident: bib72
  article-title: Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system
  publication-title: J. Clean. Prod.
– volume: 72
  start-page: 558
  year: 2019
  end-page: 569
  ident: bib93
  article-title: Multicollinearity and misleading statistical results
  publication-title: Korean J. Anesthesiol.
– year: 2018
  ident: bib88
  article-title: How to rationally compare the performances of different machine learning models?
  publication-title: PeerJ Prepr.
– volume: 69
  start-page: 291
  year: 2015
  end-page: 300
  ident: bib98
  article-title: Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network
  publication-title: Comput. Geotech.
– volume: 1
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib68
  article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils
  publication-title: SN Appl. Sci.
– volume: 281
  year: 2021
  ident: bib50
  article-title: Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process
  publication-title: J. Environ. Manag.
– year: 2015
  ident: bib55
  article-title: Deep neural networks with multistate activation functions
  publication-title: Comput. Intell. Neurosci.
– volume: 45
  start-page: 231
  year: 2013
  end-page: 267
  ident: bib18
  article-title: 10 Artificial neural networks in geotechnical engineering: modeling and application issues
  publication-title: Metaheuristics Water Geotech. Transp. Eng.
– volume: 7
  year: 2021
  ident: bib52
  article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance
  publication-title: Heliyon
– reference: Tang, Y.-J., Q.-Y. Zhang, and W. Lin. Artificial neural network based spectrum sensing method for cognitive radio. in 2010 6th international conference on wireless communications networking and mobile computing (WiCOM). 2010. IEEE.
– volume: 260
  year: 2020
  ident: bib84
  article-title: Machine learning prediction of mechanical properties of concrete: critical review
  publication-title: Constr. Build. Mater.
– year: 2022
  ident: bib15
  article-title: Sustainable use of chemically modified tyre rubber in concrete: machine learning based novel predictive model
  publication-title: Chem. Phys. Lett.
– volume: 384
  year: 2020
  ident: bib14
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: J. Hazard. Mater.
– volume: 17
  start-page: 103
  year: 2019
  end-page: 111
  ident: bib102
  article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model
  publication-title: Nano-Struct. Nano-Objects
– volume: 8
  start-page: 1799
  year: 2020
  ident: bib65
  article-title: Data science in economics: comprehensive review of advanced machine learning and deep learning methods
  publication-title: Mathematics
– volume: 18
  start-page: 1031
  year: 2009
  ident: bib17
  article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming
  publication-title: Neural Comput. Appl.
– volume: 26
  start-page: 3368
  year: 2019
  end-page: 3381
  ident: bib89
  article-title: Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill
  publication-title: Environ. Sci. Pollut. Res.
– reference: Morova, N., et al. Modelling Marshall Stability of fiber reinforced asphalt mixtures with ANFIS. in 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA). 2017. IEEE.
– volume: 88
  start-page: 63
  year: 2015
  end-page: 72
  ident: bib12
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
– volume: 19
  start-page: 209
  year: 2020
  end-page: 219
  ident: bib49
  article-title: Predicting Marshall stability and flow of bituminous mix containing waste fillers by the adaptive neuro-fuzzy inference system
  publication-title: Rev. De. la Constr.
– volume: 17
  start-page: 641
  year: 2020
  end-page: 658
  ident: bib87
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan
  publication-title: Landslides
– volume: 77
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib71
  article-title: Development of an intelligent system based on ANFIS model for predicting soil erosion
  publication-title: Environ. Earth Sci.
– start-page: 1
  year: 2020
  end-page: 7
  ident: bib51
  article-title: ANN and neuro-fuzzy modeling for shear strength characterization of soils
  publication-title: Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci.
– volume: 164
  year: 2021
  ident: bib54
  article-title: New activation functions for single layer feedforward neural network
  publication-title: Expert Syst. Appl.
– volume: 183
  start-page: 74
  year: 2019
  end-page: 82
  ident: bib101
  article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm
  publication-title: Sol. Energy
– volume: 26
  start-page: 111
  year: 2010
  end-page: 118
  ident: bib36
  article-title: Multi expression programming: a new approach to formulation of soil classification
  publication-title: Eng. Comput.
– volume: 44
  start-page: 1215
  year: 2007
  end-page: 1223
  ident: bib108
  article-title: Artificial neural networks approach for swell pressure versus soil suction behaviour
  publication-title: Can. Geotech. J.
– year: 2013
  ident: bib48
  publication-title: Modeling Marshall stability of lightweight asphalt concretes fabricated using expanded clay aggregate with anfis
– volume: 282
  year: 2021
  ident: bib111
  article-title: Surrogate based global sensitivity analysis of ADM1-based anaerobic digestion model
  publication-title: J. Environ. Manag.
– year: 2022
  ident: bib25
  article-title: An efficient and explainable ensemble learning model for asphalt pavement condition prediction based on LTPP dataset
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 16
  start-page: 1
  year: 2009
  ident: bib42
  article-title: Effect of asphalt content on the marshall stability of asphalt concrete using artificial neural networks
  publication-title: Sci. Iran.
– volume: 86
  year: 2020
  ident: bib85
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl. Soft Comput.
– volume: 168
  start-page: 344
  year: 2022
  end-page: 361
  ident: bib86
  article-title: Prediction of water quality indexes with ensemble learners: bagging and boosting
  publication-title: Process Saf. Environ. Prot.
– volume: 38
  start-page: 6025
  year: 2011
  end-page: 6030
  ident: bib43
  article-title: Artificial neural network based modelling of the Marshall Stability of asphalt concrete
  publication-title: Expert Syst. Appl.
– volume: 51
  start-page: 108
  year: 2013
  end-page: 117
  ident: bib103
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Comput. Geosci.
– volume: 23
  start-page: 248
  year: 2011
  end-page: 263
  ident: bib2
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: J. Mater. Civ. Eng.
– volume: 37
  start-page: 4660
  year: 2010
  end-page: 4670
  ident: bib40
  article-title: Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks
  publication-title: Expert Syst. Appl.
– volume: 24
  year: 2020
  ident: bib63
  article-title: Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula
  publication-title: Transp. Geotech.
– year: 1985
  ident: bib31
  article-title: Industrial Applications of Fuzzy Control
– volume: 22
  start-page: 674
  year: 2007
  end-page: 682
  ident: bib19
  article-title: A multi-model approach to analysis of environmental phenomena
  publication-title: Environ. Model. Softw.
– volume: 276
  year: 2020
  ident: bib79
  article-title: High performance prediction of soil compaction parameters using multi expression programming
  publication-title: Eng. Geol.
– volume: 27
  start-page: 302
  year: 2008
  end-page: 313
  ident: bib109
  article-title: On some aspects of variable selection for partial least squares regression models
  publication-title: QSAR Comb. Sci.
– volume: 350
  year: 2022
  ident: bib99
  article-title: New prediction models for the compressive strength and dry-thermal conductivity of bio-composites using novel machine learning algorithms
  publication-title: J. Clean. Prod.
– volume: 154
  start-page: 86
  year: 2015
  end-page: 101
  ident: bib53
  article-title: Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed
  publication-title: J. Environ. Manag.
– year: 2012
  ident: bib37
  article-title: Formulation of secant and reloading soil deformation moduli using multi expression programming
  publication-title: Eng. Comput.
– volume: 232
  start-page: 342
  year: 2019
  end-page: 353
  ident: bib70
  article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study
  publication-title: J. Environ. Manag.
– volume: 239
  start-page: 279
  year: 2019
  end-page: 286
  ident: bib11
  article-title: Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives
  publication-title: J. Environ. Manag.
– volume: 54
  start-page: 1863
  year: 2021
  end-page: 1885
  ident: bib22
  article-title: Genetic programming in civil engineering: advent, applications and future trends
  publication-title: Artif. Intell. Rev.
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: bib27
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 163
  start-page: 135
  year: 2018
  end-page: 142
  ident: bib13
  article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model
  publication-title: Comput. Methods Prog. Biomed.
– volume: 17
  year: 2022
  ident: bib107
  article-title: Machine learning based computational approach for crack width detection of self-healing concrete
  publication-title: Case Stud. Constr. Mater.
– volume: 25
  start-page: 4231
  year: 2021
  end-page: 4239
  ident: bib39
  article-title: Tree-based ensemble methods: predicting asphalt mixture dynamic modulus for flexible pavement design
  publication-title: KSCE J. Civ. Eng.
– volume: vol. 1
  year: 1992
  ident: bib75
  publication-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection
– volume: 8
  year: 2021
  ident: bib100
  article-title: Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation
  publication-title: Front. Mater.
– year: 2009
  ident: bib20
  article-title: Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
  publication-title: Adv. Artif. Neural Syst.
– volume: 8
  start-page: 39
  year: 2020
  end-page: 42
  ident: bib92
  article-title: Detecting multicollinearity in regression analysis
  publication-title: Am. J. Appl. Math. Stat.
– volume: 21
  start-page: 375
  year: 2001
  end-page: 394
  ident: bib59
  article-title: Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network
  publication-title: Comput. Mater. Sci.
– volume: 130
  start-page: 46
  year: 2014
  end-page: 56
  ident: bib82
  article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm
  publication-title: Comput. Struct.
– year: 2013
  ident: bib66
  article-title: Artificial intelligence in geotechnical engineering: applications, modeling aspects, and future directions
  publication-title: Metaheuristics Water Geotech. Transp. Eng.
– year: 2002
  ident: bib33
  article-title: Multi expression programming
  publication-title: J. Genet. Program. Evol. Mach. Kluwer, Second Tour. Rev.
– reference: Morova, N., et al. Modeling Marshall Stability of light asphalt concretes fabricated using expanded clay aggregate with Artificial Neural Networks. in 2012 International Symposium on Innovations in Intelligent Systems and Applications. 2012. IEEE.
– volume: 94
  start-page: 784
  year: 2015
  end-page: 790
  ident: bib6
  article-title: Computational analysis of the creep behaviour of bituminous mixtures
  publication-title: Constr. Build. Mater.
– volume: 11
  start-page: 11710
  year: 2021
  ident: bib1
  article-title: Bituminous mixtures experimental data modeling using a hyperparameters-optimized machine learning approach
  publication-title: Appl. Sci.
– volume: 20
  start-page: 1055
  year: 2019
  end-page: 1064
  ident: bib9
  article-title: Development of a nonlinear rutting model for asphalt concrete based on Weibull parameters
  publication-title: Int. J. Pavement Eng.
– volume: 3
  start-page: 448
  year: 2016
  end-page: 455
  ident: bib32
  article-title: Prediction of pavement roughness using a hybrid gene expression programming-neural network technique
  publication-title: J. Traffic Transp. Eng. (Engl. Ed.)
– volume: 268
  year: 2020
  ident: bib78
  article-title: Genetic programming model for estimating soil suction in shallow soil layers in the vicinity of a tree
  publication-title: Eng. Geol.
– volume: 3
  start-page: 390
  year: 2016
  end-page: 397
  ident: bib7
  article-title: Numerical visco-elastoplastic constitutive modelization of creep recovery tests on hot mix asphalt
  publication-title: J. Traffic Transp. Eng. (Engl. Ed.)
– volume: 23
  start-page: 1771
  year: 2013
  end-page: 1786
  ident: bib77
  article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems
  publication-title: Neural Comput. Appl.
– volume: 28
  start-page: 13202
  year: 2021
  end-page: 13220
  ident: bib90
  article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques
  publication-title: Environ. Sci. Pollut. Res.
– start-page: 37
  year: 2015
  end-page: 57
  ident: bib16
  article-title: Genetic programming for modelling of geotechnical engineering systems
  publication-title: Handbook of Genetic Programming Applications
– volume: 33
  start-page: 39
  year: 2012
  end-page: 44
  ident: bib62
  article-title: Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data
  publication-title: Int. Proc. Chem. Biol. Environ. Eng.
– volume: 36
  start-page: 49
  year: 2001
  end-page: 62
  ident: bib28
  article-title: Artificial neural network applications in geotechnical engineering
  publication-title: Aust. Geomech.
– volume: 202
  start-page: 320
  year: 2017
  end-page: 331
  ident: bib67
  article-title: Reviewing Bayesian networks potentials for climate change impacts assessment and management: a multi-risk perspective
  publication-title: J. Environ. Manag.
– volume: 14
  start-page: 685
  year: 2016
  end-page: 693
  ident: bib97
  article-title: Marshall stability and flow of lime-modified asphalt concrete
  publication-title: Transp. Res. Procedia
– volume: 262
  year: 2020
  ident: bib45
  article-title: Marshall stability and flow analysis of asphalt concrete under progressive temperature conditions: An application of advance decision-making approach
  publication-title: Constr. Build. Mater.
– volume: 76
  start-page: 358
  year: 2016
  end-page: 365
  ident: bib60
  article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid
  publication-title: Int. Commun. Heat. Mass Transf.
– volume: 4
  start-page: 26
  year: 2019
  ident: bib21
  article-title: Prediction of compression index of fine-grained soils using a gene expression programming model
  publication-title: Infrastructures
– year: 2011
  ident: bib64
  article-title: A robust data mining approach for formulation of geotechnical engineering systems
  publication-title: Eng. Comput.
– volume: 28
  start-page: 207
  year: 2017
  end-page: 216
  ident: bib105
  article-title: Estimation of soil dispersivity using soft computing approaches
  publication-title: Neural Comput. Appl.
– volume: 780
  year: 2021
  ident: bib110
  article-title: Sustainable utilization of foundry waste: forecasting mechanical properties of foundry sand based concrete using multi-expression programming
  publication-title: Sci. Total Environ.
– year: 2019
  ident: bib91
  article-title: MLmuse: correlation and collinearity—how they can make or break a model
  publication-title: Correl. Anal. Colline | Data Sci. | Multicollinearity| Clairvoyant Blog (clairvoyantsoft.com.)
– volume: 35
  start-page: 1884
  year: 2009
  end-page: 1896
  ident: bib38
  article-title: Genetic programming-based attenuation relationship: an application of recent earthquakes in Turkey
  publication-title: Comput. Geosci.
– volume: 14
  start-page: 947
  year: 2022
  ident: bib80
  article-title: Multi-Expression Programming (MEP): water quality assessment using water quality indices
  publication-title: Water
– volume: 11
  start-page: 1095
  year: 2020
  end-page: 1106
  ident: bib10
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci. Front.
– volume: 9
  start-page: 3502
  year: 2019
  ident: bib44
  article-title: Stiffness modulus and marshall parameters of hot mix asphalts: laboratory data modeling by artificial neural networks characterized by cross-validation
  publication-title: Appl. Sci.
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib26
  article-title: An ensemble learning model for asphalt pavement performance prediction based on gradient boosting decision tree
  publication-title: Int. J. Pavement Eng.
– volume: 14
  start-page: 285
  year: 2003
  end-page: 314
  ident: bib81
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst.
– volume: 278
  start-page: 376
  year: 2019
  end-page: 384
  ident: bib94
  article-title: An intelligent approach for the modeling and experimental optimization of molecular hydrodesulfurization over AlMoCoBi catalyst
  publication-title: J. Mol. Liq.
– year: 2014
  ident: bib3
  article-title: Influence of Steel Wool Fibers on The Mechanical, Termal, and Healing Properties of Dense Asphalt Concrete
– start-page: 1
  year: 2022
  end-page: 21
  ident: bib24
  article-title: Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete
  publication-title: Road. Mater. Pavement Des.
– volume: 10
  start-page: 109
  year: 2015
  end-page: 125
  ident: bib104
  article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering
  publication-title: Geomech. Geoengin.
– volume: 263
  year: 2020
  ident: bib34
  article-title: An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas
  publication-title: J. Clean. Prod.
– volume: 32
  year: 2022
  ident: bib74
  article-title: Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete
  publication-title: Mater. Today Communications
– volume: 9
  start-page: 3172
  year: 2019
  ident: bib41
  article-title: Development of hybrid artificial intelligence approaches and a support vector machine algorithm for predicting the marshall parameters of stone matrix asphalt
  publication-title: Appl. Sci.
– volume: 11
  start-page: 106
  year: 2013
  end-page: 112
  ident: bib96
  article-title: Modeling marshall stability and flow for hot mix asphalt using artificial intelligence techniques
  publication-title: Nat. Sci.
– year: 1994
  ident: bib106
  article-title: The Data Analysis Handbook
– volume: 10
  start-page: 91
  year: 2006
  end-page: 96
  ident: bib8
  article-title: Development of performance prediction models in flexible pavement using regression analysis method
  publication-title: KSCE J. Civ. Eng.
– reference: Xu, B., R. Huang, and M. Li, Revise saturated activation functions. arXiv preprint arXiv:1602.05980, 2016.
– reference: Ramachandran, P., B. Zoph, and Q. Le, Searching for Activation Functions. arXiv Prepr. arXiv preprint arXiv:1710.05941, 2017.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: bib30
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst., Man, Cybern.
– year: 2005
  ident: bib95
  article-title: Determination of optimum bitumen content and Marshall stability using neural networks for asphaltic concrete mixtures
  publication-title: Proc. 9th WSEAS Int. Conf. Comput. World Sci. Eng. Acad. Soc. (WSEAS)
– volume: 26
  start-page: 1689
  year: 2013
  end-page: 1697
  ident: bib83
  article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 56
  start-page: 523
  year: 2017
  end-page: 532
  ident: bib29
  article-title: Predicting the ingredients of self compacting concrete using artificial neural network
  publication-title: Alex. Eng. J.
– volume: 14
  start-page: 3493
  year: 2016
  end-page: 3502
  ident: bib5
  article-title: 100% hot mix asphalt recycling: challenges and benefits
  publication-title: Transp. Res. Procedia
– volume: 74
  start-page: 151
  year: 2015
  end-page: 161
  ident: bib4
  article-title: Overview of bituminous mixtures made with recycled concrete aggregates
  publication-title: Constr. Build. Mater.
– year: 1989
  ident: bib73
  article-title: Genetic algorithms in search, optimization, and machine learning
  publication-title: Addison
– start-page: 1
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib51
  article-title: ANN and neuro-fuzzy modeling for shear strength characterization of soils
  publication-title: Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci.
– volume: 32
  year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib74
  article-title: Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete
  publication-title: Mater. Today Communications
– volume: 28
  start-page: 207
  issue: 1
  year: 2017
  ident: 10.1016/j.cscm.2022.e01774_bib105
  article-title: Estimation of soil dispersivity using soft computing approaches
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2320-x
– volume: 11
  start-page: 1095
  issue: 4
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib10
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2019.12.003
– year: 2014
  ident: 10.1016/j.cscm.2022.e01774_bib3
– volume: 22
  start-page: 674
  issue: 5
  year: 2007
  ident: 10.1016/j.cscm.2022.e01774_bib19
  article-title: A multi-model approach to analysis of environmental phenomena
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2005.12.026
– volume: 24
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib63
  article-title: Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2020.100358
– volume: 232
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib69
  article-title: Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117266
– volume: 23
  start-page: 248
  issue: 3
  year: 2011
  ident: 10.1016/j.cscm.2022.e01774_bib2
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000154
– volume: 10
  start-page: 109
  issue: 2
  year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib104
  article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering
  publication-title: Geomech. Geoengin.
  doi: 10.1080/17486025.2014.921333
– volume: 260
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib84
  article-title: Machine learning prediction of mechanical properties of concrete: critical review
  publication-title: Constr. Build. Mater.
– volume: 11
  start-page: 11710
  issue: 24
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib1
  article-title: Bituminous mixtures experimental data modeling using a hyperparameters-optimized machine learning approach
  publication-title: Appl. Sci.
  doi: 10.3390/app112411710
– ident: 10.1016/j.cscm.2022.e01774_bib46
  doi: 10.1109/INISTA.2012.6246946
– volume: 11
  start-page: 106
  issue: 6
  year: 2013
  ident: 10.1016/j.cscm.2022.e01774_bib96
  article-title: Modeling marshall stability and flow for hot mix asphalt using artificial intelligence techniques
  publication-title: Nat. Sci.
– volume: 17
  year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib107
  article-title: Machine learning based computational approach for crack width detection of self-healing concrete
  publication-title: Case Stud. Constr. Mater.
– volume: 168
  start-page: 344
  year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib86
  article-title: Prediction of water quality indexes with ensemble learners: bagging and boosting
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.10.005
– ident: 10.1016/j.cscm.2022.e01774_bib56
– volume: 37
  start-page: 4660
  issue: 6
  year: 2010
  ident: 10.1016/j.cscm.2022.e01774_bib40
  article-title: Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.042
– volume: 33
  start-page: 39
  year: 2012
  ident: 10.1016/j.cscm.2022.e01774_bib62
  article-title: Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data
  publication-title: Int. Proc. Chem. Biol. Environ. Eng.
– volume: 8
  start-page: 39
  issue: 2
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib92
  article-title: Detecting multicollinearity in regression analysis
  publication-title: Am. J. Appl. Math. Stat.
  doi: 10.12691/ajams-8-2-1
– volume: 18
  start-page: 1031
  issue: 8
  year: 2009
  ident: 10.1016/j.cscm.2022.e01774_bib17
  article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-008-0208-0
– volume: 232
  start-page: 342
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib70
  article-title: Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.11.047
– volume: 154
  start-page: 86
  year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib53
  article-title: Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.02.034
– volume: 14
  start-page: 685
  year: 2016
  ident: 10.1016/j.cscm.2022.e01774_bib97
  article-title: Marshall stability and flow of lime-modified asphalt concrete
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2016.05.333
– year: 1985
  ident: 10.1016/j.cscm.2022.e01774_bib31
– year: 2018
  ident: 10.1016/j.cscm.2022.e01774_bib88
  article-title: How to rationally compare the performances of different machine learning models?
  publication-title: PeerJ Prepr.
– volume: 23
  start-page: 1771
  issue: 6
  year: 2013
  ident: 10.1016/j.cscm.2022.e01774_bib77
  article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1144-6
– year: 2005
  ident: 10.1016/j.cscm.2022.e01774_bib95
  article-title: Determination of optimum bitumen content and Marshall stability using neural networks for asphaltic concrete mixtures
  publication-title: Proc. 9th WSEAS Int. Conf. Comput. World Sci. Eng. Acad. Soc. (WSEAS)
– volume: 276
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib79
  article-title: High performance prediction of soil compaction parameters using multi expression programming
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105758
– volume: 74
  start-page: 151
  year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib4
  article-title: Overview of bituminous mixtures made with recycled concrete aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.10.035
– ident: 10.1016/j.cscm.2022.e01774_bib57
– year: 2013
  ident: 10.1016/j.cscm.2022.e01774_bib66
  article-title: Artificial intelligence in geotechnical engineering: applications, modeling aspects, and future directions
  publication-title: Metaheuristics Water Geotech. Transp. Eng.
  doi: 10.1016/B978-0-12-398296-4.00008-8
– volume: 268
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib78
  article-title: Genetic programming model for estimating soil suction in shallow soil layers in the vicinity of a tree
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105506
– volume: 72
  start-page: 558
  issue: 6
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib93
  article-title: Multicollinearity and misleading statistical results
  publication-title: Korean J. Anesthesiol.
  doi: 10.4097/kja.19087
– volume: 350
  year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib99
  article-title: New prediction models for the compressive strength and dry-thermal conductivity of bio-composites using novel machine learning algorithms
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131364
– volume: 263
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib34
  article-title: An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120983
– volume: 282
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib111
  article-title: Surrogate based global sensitivity analysis of ADM1-based anaerobic digestion model
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111456
– volume: 9
  start-page: 3172
  issue: 15
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib41
  article-title: Development of hybrid artificial intelligence approaches and a support vector machine algorithm for predicting the marshall parameters of stone matrix asphalt
  publication-title: Appl. Sci.
  doi: 10.3390/app9153172
– ident: 10.1016/j.cscm.2022.e01774_bib47
  doi: 10.1109/INISTA.2017.8001152
– volume: 14
  start-page: 285
  issue: 4
  year: 2003
  ident: 10.1016/j.cscm.2022.e01774_bib81
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst.
  doi: 10.25088/ComplexSystems.14.4.285
– volume: 9
  start-page: 3502
  issue: 17
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib44
  article-title: Stiffness modulus and marshall parameters of hot mix asphalts: laboratory data modeling by artificial neural networks characterized by cross-validation
  publication-title: Appl. Sci.
  doi: 10.3390/app9173502
– volume: 130
  start-page: 46
  year: 2014
  ident: 10.1016/j.cscm.2022.e01774_bib82
  article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.10.006
– volume: 27
  start-page: 302
  issue: 3
  year: 2008
  ident: 10.1016/j.cscm.2022.e01774_bib109
  article-title: On some aspects of variable selection for partial least squares regression models
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200710043
– volume: 14
  start-page: 947
  issue: 6
  year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib80
  article-title: Multi-Expression Programming (MEP): water quality assessment using water quality indices
  publication-title: Water
  doi: 10.3390/w14060947
– volume: 54
  start-page: 1863
  issue: 3
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib22
  article-title: Genetic programming in civil engineering: advent, applications and future trends
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09894-7
– volume: 7
  issue: 2
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib52
  article-title: Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06136
– volume: 38
  start-page: 6025
  issue: 5
  year: 2011
  ident: 10.1016/j.cscm.2022.e01774_bib43
  article-title: Artificial neural network based modelling of the Marshall Stability of asphalt concrete
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.018
– year: 2009
  ident: 10.1016/j.cscm.2022.e01774_bib20
  article-title: Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
  publication-title: Adv. Artif. Neural Syst.
  doi: 10.1155/2009/308239
– volume: 69
  start-page: 291
  year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib98
  article-title: Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.05.021
– volume: 20
  start-page: 1055
  issue: 9
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib9
  article-title: Development of a nonlinear rutting model for asphalt concrete based on Weibull parameters
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2017.1380807
– volume: 14
  start-page: 3493
  year: 2016
  ident: 10.1016/j.cscm.2022.e01774_bib5
  article-title: 100% hot mix asphalt recycling: challenges and benefits
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2016.05.315
– volume: 8
  start-page: 1799
  issue: 10
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib65
  article-title: Data science in economics: comprehensive review of advanced machine learning and deep learning methods
  publication-title: Mathematics
  doi: 10.3390/math8101799
– volume: 26
  start-page: 111
  issue: 2
  year: 2010
  ident: 10.1016/j.cscm.2022.e01774_bib36
  article-title: Multi expression programming: a new approach to formulation of soil classification
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-009-0140-7
– volume: 88
  start-page: 63
  year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib12
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib91
  article-title: MLmuse: correlation and collinearity—how they can make or break a model
  publication-title: Correl. Anal. Colline | Data Sci. | Multicollinearity| Clairvoyant Blog (clairvoyantsoft.com.)
– volume: 56
  start-page: 523
  issue: 4
  year: 2017
  ident: 10.1016/j.cscm.2022.e01774_bib29
  article-title: Predicting the ingredients of self compacting concrete using artificial neural network
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2017.04.007
– volume: 3
  start-page: 448
  issue: 5
  year: 2016
  ident: 10.1016/j.cscm.2022.e01774_bib32
  article-title: Prediction of pavement roughness using a hybrid gene expression programming-neural network technique
  publication-title: J. Traffic Transp. Eng. (Engl. Ed.)
– year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib76
  article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2021/6618407
– year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib25
  article-title: An efficient and explainable ensemble learning model for asphalt pavement condition prediction based on LTPP dataset
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3164596
– volume: 25
  start-page: 4231
  issue: 11
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib39
  article-title: Tree-based ensemble methods: predicting asphalt mixture dynamic modulus for flexible pavement design
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-021-2306-9
– year: 2002
  ident: 10.1016/j.cscm.2022.e01774_bib33
  article-title: Multi expression programming
  publication-title: J. Genet. Program. Evol. Mach. Kluwer, Second Tour. Rev.
– volume: 17
  start-page: 103
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib102
  article-title: Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model
  publication-title: Nano-Struct. Nano-Objects
  doi: 10.1016/j.nanoso.2018.12.001
– start-page: 37
  year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib16
  article-title: Genetic programming for modelling of geotechnical engineering systems
– volume: 262
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib45
  article-title: Marshall stability and flow analysis of asphalt concrete under progressive temperature conditions: An application of advance decision-making approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120756
– volume: 36
  start-page: 49
  issue: 1
  year: 2001
  ident: 10.1016/j.cscm.2022.e01774_bib28
  article-title: Artificial neural network applications in geotechnical engineering
  publication-title: Aust. Geomech.
– volume: 19
  start-page: 209
  issue: 2
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib49
  article-title: Predicting Marshall stability and flow of bituminous mix containing waste fillers by the adaptive neuro-fuzzy inference system
  publication-title: Rev. De. la Constr.
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.cscm.2022.e01774_bib30
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/21.256541
– volume: 35
  start-page: 111
  issue: 1–2
  year: 2008
  ident: 10.1016/j.cscm.2022.e01774_bib35
  article-title: Prediction of compressive and tensile strength of limestone via genetic programming
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.06.006
– volume: 16
  start-page: 1
  year: 2009
  ident: 10.1016/j.cscm.2022.e01774_bib42
  article-title: Effect of asphalt content on the marshall stability of asphalt concrete using artificial neural networks
  publication-title: Sci. Iran.
– volume: 51
  start-page: 108
  year: 2013
  ident: 10.1016/j.cscm.2022.e01774_bib103
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.07.001
– volume: 26
  start-page: 1689
  issue: 7
  year: 2013
  ident: 10.1016/j.cscm.2022.e01774_bib83
  article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.03.014
– volume: 28
  start-page: 13202
  issue: 11
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib90
  article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11490-9
– volume: 8
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib100
  article-title: Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.621163
– ident: 10.1016/j.cscm.2022.e01774_bib61
– year: 2012
  ident: 10.1016/j.cscm.2022.e01774_bib37
  article-title: Formulation of secant and reloading soil deformation moduli using multi expression programming
  publication-title: Eng. Comput.
– volume: 183
  start-page: 74
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib101
  article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.060
– volume: 164
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib54
  article-title: New activation functions for single layer feedforward neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113977
– volume: 44
  start-page: 1215
  issue: 10
  year: 2007
  ident: 10.1016/j.cscm.2022.e01774_bib108
  article-title: Artificial neural networks approach for swell pressure versus soil suction behaviour
  publication-title: Can. Geotech. J.
  doi: 10.1139/T07-052
– year: 1994
  ident: 10.1016/j.cscm.2022.e01774_bib106
– volume: 4
  start-page: 26
  issue: 2
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib21
  article-title: Prediction of compression index of fine-grained soils using a gene expression programming model
  publication-title: Infrastructures
  doi: 10.3390/infrastructures4020026
– volume: 21
  start-page: 375
  issue: 3
  year: 2001
  ident: 10.1016/j.cscm.2022.e01774_bib59
  article-title: Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(01)00160-4
– volume: 281
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib50
  article-title: Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111915
– volume: 3
  start-page: 390
  issue: 5
  year: 2016
  ident: 10.1016/j.cscm.2022.e01774_bib7
  article-title: Numerical visco-elastoplastic constitutive modelization of creep recovery tests on hot mix asphalt
  publication-title: J. Traffic Transp. Eng. (Engl. Ed.)
– volume: 77
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.cscm.2022.e01774_bib71
  article-title: Development of an intelligent system based on ANFIS model for predicting soil erosion
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7348-z
– volume: 384
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib14
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121322
– start-page: 1
  year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib24
  article-title: Investigating the effects of ensemble and weight optimization approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete
  publication-title: Road. Mater. Pavement Des.
– volume: 780
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib110
  article-title: Sustainable utilization of foundry waste: forecasting mechanical properties of foundry sand based concrete using multi-expression programming
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146524
– volume: 12
  start-page: 314
  issue: 3
  year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib23
  article-title: Predicting marshall flow and marshall stability of asphalt pavements using multi expression programming
  publication-title: Buildings
  doi: 10.3390/buildings12030314
– volume: 73
  start-page: 183
  year: 2014
  ident: 10.1016/j.cscm.2022.e01774_bib72
  article-title: Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.09.057
– volume: 278
  start-page: 376
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib94
  article-title: An intelligent approach for the modeling and experimental optimization of molecular hydrodesulfurization over AlMoCoBi catalyst
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.12.144
– volume: 17
  start-page: 641
  issue: 3
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib87
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan
  publication-title: Landslides
  doi: 10.1007/s10346-019-01286-5
– volume: 26
  start-page: 3368
  issue: 4
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib89
  article-title: Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3749-5
– year: 2013
  ident: 10.1016/j.cscm.2022.e01774_bib48
  publication-title: Modeling Marshall stability of lightweight asphalt concretes fabricated using expanded clay aggregate with anfis
– volume: 94
  start-page: 784
  year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib6
  article-title: Computational analysis of the creep behaviour of bituminous mixtures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.07.054
– volume: 63
  start-page: 71
  issue: 1
  year: 2017
  ident: 10.1016/j.cscm.2022.e01774_bib58
  article-title: New algebraic activation function for multi-layered feed forward neural networks
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2016.1240633
– volume: 10
  start-page: 91
  issue: 2
  year: 2006
  ident: 10.1016/j.cscm.2022.e01774_bib8
  article-title: Development of performance prediction models in flexible pavement using regression analysis method
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/BF02823926
– volume: vol. 1
  year: 1992
  ident: 10.1016/j.cscm.2022.e01774_bib75
– year: 2011
  ident: 10.1016/j.cscm.2022.e01774_bib64
  article-title: A robust data mining approach for formulation of geotechnical engineering systems
  publication-title: Eng. Comput.
– start-page: 1
  year: 2021
  ident: 10.1016/j.cscm.2022.e01774_bib26
  article-title: An ensemble learning model for asphalt pavement performance prediction based on gradient boosting decision tree
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2019.1575379
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.cscm.2022.e01774_bib27
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 86
  year: 2020
  ident: 10.1016/j.cscm.2022.e01774_bib85
  article-title: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105837
– volume: 35
  start-page: 1884
  issue: 9
  year: 2009
  ident: 10.1016/j.cscm.2022.e01774_bib38
  article-title: Genetic programming-based attenuation relationship: an application of recent earthquakes in Turkey
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.10.015
– year: 1989
  ident: 10.1016/j.cscm.2022.e01774_bib73
  article-title: Genetic algorithms in search, optimization, and machine learning
  publication-title: Addison. Read.
– volume: 45
  start-page: 231
  year: 2013
  ident: 10.1016/j.cscm.2022.e01774_bib18
  article-title: 10 Artificial neural networks in geotechnical engineering: modeling and application issues
  publication-title: Metaheuristics Water Geotech. Transp. Eng.
  doi: 10.1016/B978-0-12-398296-4.00010-6
– volume: 163
  start-page: 135
  year: 2018
  ident: 10.1016/j.cscm.2022.e01774_bib13
  article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.05.029
– year: 2022
  ident: 10.1016/j.cscm.2022.e01774_bib15
  article-title: Sustainable use of chemically modified tyre rubber in concrete: machine learning based novel predictive model
  publication-title: Chem. Phys. Lett.
– volume: 1
  start-page: 1
  issue: 8
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib68
  article-title: The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-0883-8
– year: 2015
  ident: 10.1016/j.cscm.2022.e01774_bib55
  article-title: Deep neural networks with multistate activation functions
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/721367
– volume: 239
  start-page: 279
  year: 2019
  ident: 10.1016/j.cscm.2022.e01774_bib11
  article-title: Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.03.057
– volume: 202
  start-page: 320
  year: 2017
  ident: 10.1016/j.cscm.2022.e01774_bib67
  article-title: Reviewing Bayesian networks potentials for climate change impacts assessment and management: a multi-risk perspective
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.07.044
– volume: 76
  start-page: 358
  year: 2016
  ident: 10.1016/j.cscm.2022.e01774_bib60
  article-title: Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid
  publication-title: Int. Commun. Heat. Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2016.06.003
SSID ssj0002856827
Score 2.412029
Snippet This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage e01774
SubjectTerms Asphalt
Bio-Inspired models
Deep Learning
Marshall Mix Parameter
Prediction models
Title Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study
URI https://dx.doi.org/10.1016/j.cscm.2022.e01774
https://doaj.org/article/a5fd7803584040bfa0430ffb5cf37a3d
Volume 18
WOSCitedRecordID wos000906543200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-5095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856827
  issn: 2214-5095
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-5095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856827
  issn: 2214-5095
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIECUlzywoYCdOHbCVlARA1QMIHWLHD9QEA2oKYiJn8Bv5i5xS1lgYcmQXJzId_F3F999R8iRyjMmhNORNLKMhINwRyv88Lxksc6EZ7wtFL5Ww2E2GuW3C62-MCesowfuJu5Up96qjCUAlGBvpddIUuV9mRqfKJ1YXH2ZyheCqcf2l1Eqs7ZfaxxzEQEqpqFipkvuMo3BMvQ4PnFgkkr8QKWWvH8BnBYA53KdrAVPkfa7N9wgS67eJJ-3E9xZwdmkbRObhoLXSccQnmJXFDqu3imyeY8xy6WhmNX-QMvqOapq3FJ3loLBYN0iDYlZYxTQtaXWuRcYB1MrHQ29JOBKoBx3zRntU_NNFU5bXtotcn85uLu4ikJLhcgIzqaRVdIAhBvvmU2Y5ol1WnpWWu4zBsu2w522RBktcwWxi7U5CCqTuNirVINruE2W6-fa7RDqRG4k57kRQovYAu5zbaTMYN4BGI3rET6b0sIEvnFse_FUzBLLHgtUQ4FqKDo19Mjx_J6Xjm3jV-lz1NRcEpmy2xNgP0Wwn-Iv--mRdKbnIjgdnTMBQ1W_PHz3Px6-R1axfX2X_rtPlqeTV3dAVszbtGomh61Jw_HmY_AFelr99w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+models+for+marshall+mix+parameters+using+bio-inspired+genetic+programming+and+deep+machine+learning+approaches%3A+A+comparative+study&rft.jtitle=Case+Studies+in+Construction+Materials&rft.au=Fadi+Althoey&rft.au=Muhammad+Naveed+Akhter&rft.au=Zohaib+Sattar+Nagra&rft.au=Hamad+Hassan+Awan&rft.date=2023-07-01&rft.pub=Elsevier&rft.issn=2214-5095&rft.eissn=2214-5095&rft.volume=18&rft.spage=e01774&rft_id=info:doi/10.1016%2Fj.cscm.2022.e01774&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a5fd7803584040bfa0430ffb5cf37a3d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5095&client=summon