A general importance sampling algorithm for estimating portfolio loss probabilities in linear factor models

This paper develops a novel importance sampling algorithm for estimating the probability of large portfolio losses in the conditional independence framework. We apply exponential tilts to (i) the distribution of the natural sufficient statistics of the systematic risk factors and (ii) conditional de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Insurance, mathematics & economics Ročník 64; s. 279 - 293
Hlavní autoři: Scott, Alexandre, Metzler, Adam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.09.2015
Elsevier Sequoia S.A
Témata:
ISSN:0167-6687, 1873-5959
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper develops a novel importance sampling algorithm for estimating the probability of large portfolio losses in the conditional independence framework. We apply exponential tilts to (i) the distribution of the natural sufficient statistics of the systematic risk factors and (ii) conditional default probabilities, given the simulated values of the systematic risk factors, and select parameter values by minimizing the Kullback–Leibler divergence of the resulting parametric family from the ideal (zero-variance) importance density. Optimal parameter values are shown to satisfy intuitive moment-matching conditions, and the asymptotic behaviour of large portfolios is used to approximate the requisite moments. In a sense we generalize the algorithm of Glasserman and Li (2005) so that it can be applied in a wider variety of models. We show how to implement our algorithm in the t copula model and compare its performance there to the algorithm developed by Chan and Kroese (2010). We find that our algorithm requires substantially less computational time (especially for large portfolios) but is slightly less accurate. Our algorithm can also be used to estimate more general risk measures, such as conditional tail expectations, whereas Chan and Kroese (2010) is specifically designed to estimate loss probabilities.
AbstractList This paper develops a novel importance sampling algorithm for estimating the probability of large portfolio losses in the conditional independence framework. We apply exponential tilts to (i) the distribution of the natural sufficient statistics of the systematic risk factors and (ii) conditional default probabilities, given the simulated values of the systematic risk factors, and select parameter values by minimizing the Kullback-Leibler divergence of the resulting parametric family from the ideal (zero-variance) importance density. Optimal parameter values are shown to satisfy intuitive moment-matching conditions, and the asymptotic behaviour of large portfolios is used to approximate the requisite moments. In a sense we generalize the algorithm of Glasserman and Li (2005) so that it can be applied in a wider variety of models. We show how to implement our algorithm in the t copula model and compare its performance there to the algorithm developed by Chan and Kroese (2010). We find that our algorithm requires substantially less computational time (especially for large portfolios) but is slightly less accurate. Our algorithm can also be used to estimate more general risk measures, such as conditional tail expectations, whereas Chan and Kroese (2010) is specifically designed to estimate loss probabilities.
Author Metzler, Adam
Scott, Alexandre
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Scott
  fullname: Scott, Alexandre
  email: ascot7@uwo.ca
  organization: Department of Applied Mathematics, University of Western Ontario, Canada
– sequence: 2
  givenname: Adam
  surname: Metzler
  fullname: Metzler, Adam
  email: ametzler@wlu.ca
  organization: Department of Mathematics, Wilfrid Laurier University, Canada
BookMark eNqNkMFqGzEQhkVIII6TdxD0vFtpd6X1XgpuaNNAoJf2LCTtyJajlVxJCfTtO8aFQC_pSQd9_z8z3w25jCkCIZSzljMuPx5aH8ui6x5sajvGRctkyxi_ICu-GftGTGK6JCtEx0bKzXhNbko5MCQmOa7I85buIELWgfrlmHLV0QItejkGH3dUh13Kvu4X6lKmUKrHUaePE-pS8ImGVAo95mS08cFXD4X6SDENOlOnbcXgkmYI5ZZcOR0K3P191-Tn1y8_7r81T98fHu-3T40dOKvNLGHUbJ6M1LqT_ewmN1ljmIYJzEZ0DDHRM90LIxwzAkYxD4NhPfCR967v1-TDuRe3-vWCS6tDeskRRyokhqHrxMCR2pwpm_GCDE4dM16XfyvO1EmtOqg3teqkVjGpUBxGP_0Ttb6ilxRr1j78T8HncwFagVcPWRXrAc3PPoOtak7-_ZI_CwWhXA
CODEN IMECDX
CitedBy_id crossref_primary_10_1016_j_insmatheco_2017_02_003
crossref_primary_10_1287_mnsc_2019_3326
crossref_primary_10_1016_j_insmatheco_2018_05_003
crossref_primary_10_1109_ACCESS_2025_3551508
crossref_primary_10_1016_j_insmatheco_2015_10_005
crossref_primary_10_1016_j_apm_2018_05_010
crossref_primary_10_1007_s13385_017_0150_6
crossref_primary_10_1007_s11222_023_10374_5
Cites_doi 10.1016/S1042-9573(03)00040-8
10.1016/j.ejor.2010.01.003
10.1287/opre.1060.0367
10.1287/mnsc.1050.0415
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Sep 2015
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Sep 2015
DBID AAYXX
CITATION
8BJ
FQK
JBE
JQ2
DOI 10.1016/j.insmatheco.2015.06.001
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Business
Statistics
EISSN 1873-5959
EndPage 293
ExternalDocumentID 3814461411
10_1016_j_insmatheco_2015_06_001
S0167668715000955
Genre Feature
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29J
3R3
4.4
457
4G.
5GY
5VS
63O
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AEYQN
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMB
HMJ
HVGLF
HZ~
IHE
IXIXF
J1W
KOM
LPU
LY5
M26
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
SDF
SDG
SEB
SEE
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSF
SSW
SSZ
T5K
WUQ
YK3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
8BJ
FQK
JBE
JQ2
ID FETCH-LOGICAL-c410t-d6e7a0d9b6aa263df9f9cbb0ae9eb8520c41530a35b5f0b5e75d44b03e1713f33
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362133800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6687
IngestDate Mon Nov 10 01:16:05 EST 2025
Sat Nov 29 07:21:58 EST 2025
Tue Nov 18 21:53:46 EST 2025
Fri Feb 23 02:33:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kullback–Leibler divergence
t copula
Monte Carlo
Cross-entropy method
Portfolio loss
Gaussian copula
Importance sampling
Exponential tilts
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-d6e7a0d9b6aa263df9f9cbb0ae9eb8520c41530a35b5f0b5e75d44b03e1713f33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1714422541
PQPubID 46295
PageCount 15
ParticipantIDs proquest_journals_1714422541
crossref_primary_10_1016_j_insmatheco_2015_06_001
crossref_citationtrail_10_1016_j_insmatheco_2015_06_001
elsevier_sciencedirect_doi_10_1016_j_insmatheco_2015_06_001
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Insurance, mathematics & economics
PublicationYear 2015
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Glasserman, Li (br000020) 2005; 51
Asmussen, Glynn (br000005) 2007
Bickel, Doksum (br000010) 2001
Hu, Fu, Marcus (br000030) 2007; 55
Gordy (br000025) 2003; 12
Merino, Nyfeler (br000035) 2002; 15
Chan, Kroese (br000015) 2010; 205
Chan (10.1016/j.insmatheco.2015.06.001_br000015) 2010; 205
Gordy (10.1016/j.insmatheco.2015.06.001_br000025) 2003; 12
Glasserman (10.1016/j.insmatheco.2015.06.001_br000020) 2005; 51
Hu (10.1016/j.insmatheco.2015.06.001_br000030) 2007; 55
Bickel (10.1016/j.insmatheco.2015.06.001_br000010) 2001
Merino (10.1016/j.insmatheco.2015.06.001_br000035) 2002; 15
Asmussen (10.1016/j.insmatheco.2015.06.001_br000005) 2007
References_xml – year: 2007
  ident: br000005
  article-title: Stochastic Simulation: Algorithms and Analysis
– volume: 51
  start-page: 1643
  year: 2005
  end-page: 1656
  ident: br000020
  article-title: Importance sampling for portfolio credit risk
  publication-title: Manage. Sci.
– volume: 15
  start-page: 82
  year: 2002
  end-page: 86
  ident: br000035
  article-title: Calculating portfolio loss
  publication-title: Risk
– volume: 12
  start-page: 199
  year: 2003
  end-page: 232
  ident: br000025
  article-title: A risk-factor model foundation for ratings-based bank capital rules
  publication-title: J. Financ. Intermed.
– year: 2001
  ident: br000010
  article-title: Mathematical Statistics: Basice Ideas and Selected Topics, Vol. 1
– volume: 205
  start-page: 361
  year: 2010
  end-page: 367
  ident: br000015
  article-title: Efficient estimation of large portfolio loss probabilities in t-copula models
  publication-title: European J. Oper. Res.
– volume: 55
  start-page: 549
  year: 2007
  end-page: 568
  ident: br000030
  article-title: A model reference adaptive search method for global optimization
  publication-title: Oper. Res.
– volume: 12
  start-page: 199
  year: 2003
  ident: 10.1016/j.insmatheco.2015.06.001_br000025
  article-title: A risk-factor model foundation for ratings-based bank capital rules
  publication-title: J. Financ. Intermed.
  doi: 10.1016/S1042-9573(03)00040-8
– volume: 205
  start-page: 361
  issue: 2
  year: 2010
  ident: 10.1016/j.insmatheco.2015.06.001_br000015
  article-title: Efficient estimation of large portfolio loss probabilities in t-copula models
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2010.01.003
– volume: 55
  start-page: 549
  year: 2007
  ident: 10.1016/j.insmatheco.2015.06.001_br000030
  article-title: A model reference adaptive search method for global optimization
  publication-title: Oper. Res.
  doi: 10.1287/opre.1060.0367
– volume: 51
  start-page: 1643
  issue: 11
  year: 2005
  ident: 10.1016/j.insmatheco.2015.06.001_br000020
  article-title: Importance sampling for portfolio credit risk
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.1050.0415
– volume: 15
  start-page: 82
  issue: 8
  year: 2002
  ident: 10.1016/j.insmatheco.2015.06.001_br000035
  article-title: Calculating portfolio loss
  publication-title: Risk
– year: 2001
  ident: 10.1016/j.insmatheco.2015.06.001_br000010
– year: 2007
  ident: 10.1016/j.insmatheco.2015.06.001_br000005
SSID ssj0001967
Score 2.1252768
Snippet This paper develops a novel importance sampling algorithm for estimating the probability of large portfolio losses in the conditional independence framework....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms [formula omitted] copula
Algorithms
Copulas
Cross-entropy method
Exponential tilts
Gaussian copula
Importance sampling
Kullback–Leibler divergence
Mathematical models
Monte Carlo
Parameter estimation
Portfolio loss
Portfolio performance
Portfolios
Probability
Risk factors
Sampling
Statistics
Studies
Values
Title A general importance sampling algorithm for estimating portfolio loss probabilities in linear factor models
URI https://dx.doi.org/10.1016/j.insmatheco.2015.06.001
https://www.proquest.com/docview/1714422541
Volume 64
WOSCitedRecordID wos000362133800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5959
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001967
  issn: 0167-6687
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWLYJyQFBALRTkA7cqKInt2BGnCBVRBBUSBe0tchIvpGSz1SatKk78dMbxR5YCYkHiEkVRbNmZl5mx_WYGoaeKp6ISogxIKWVARUkCQIkMCKUyjhVh6bAP-fENPz4Ws1n6bjL55mJhLhretuLyMj37r6KGZyBsHTr7F-L2ncIDuAehwxXEDteNBJ_pqshqSKaxGJzrIYus1MxxHY_YfFqu6v7zwuT6hh9cu6w6Ih1enS-bennQgN3UvK3CpPCuB8rWgXZH5crW5zEFdLp1z_ao7c51kY5hg3Thk8F2A7aUDX_2Dvz70hJFbIDNGgVX9V9tdGJWycX6rkTEPO3Kb1SCAk4Sa0ytpk3ouqo0RWSs1Y1NncSfFLrZWziFVUg3DL3UAZsRe2bOkEYj5g7ur9g2zzh0ZLbTfOwp1z3lhtd3DW3FsHSKp2grOzqcvfbWHDQUd_nh9XwsG8xwBH89qt-5OFeM_eDBnNxBt-3SA2cGMnfRRLU76IaLfNhBN12QOtzfejtK8B76kmGLKTxiCjtMYY8pDJjCI6awxxTWmMI_YArXLTaYwgZT2GDqPvrw8vDkxavAVukIShqFfVAlisuwSotEyjgh1Tydp2VRhFKlqhAsDuE1RkJJWMHmYcEUZxWlRUhUxCMyJ-QBmrbLVu0iHAoax1EpCiYTmoaVZBXjlHGZFoKArdhD3H3YvLQp7HUllSb_k3j3UORbnpk0Lhu0ee5kl1t31LiZOYBzg9b7Tty51Q5dDjOmMEVGo4f_MKBHaHv81fbRtF-dq8foennR193qiQXud3lwwPY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+importance+sampling+algorithm+for+estimating+portfolio+loss+probabilities+in+linear+factor+models&rft.jtitle=Insurance%2C+mathematics+%26+economics&rft.au=Scott%2C+Alexandre&rft.au=Metzler%2C+Adam&rft.date=2015-09-01&rft.issn=0167-6687&rft.volume=64&rft.spage=279&rft.epage=293&rft_id=info:doi/10.1016%2Fj.insmatheco.2015.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_insmatheco_2015_06_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6687&client=summon