An optimal coordinated proton exchange membrane fuel cell heat management method based on large-scale multi-agent deep reinforcement learning
To improve the operating efficiency of proton exchange membrane fuel cells (PEMFCs), an optimal coordinated control strategy for addressing the poor coordination problem between the water pump and radiator in a PEMFC stack heat management system is proposed in this paper. To this end, a cooperative...
Gespeichert in:
| Veröffentlicht in: | Energy reports Jg. 7; S. 6054 - 6068 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2021
Elsevier |
| Schlagworte: | |
| ISSN: | 2352-4847, 2352-4847 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To improve the operating efficiency of proton exchange membrane fuel cells (PEMFCs), an optimal coordinated control strategy for addressing the poor coordination problem between the water pump and radiator in a PEMFC stack heat management system is proposed in this paper. To this end, a cooperative exploration strategy large-scale multiagent twin-delay deep policy gradient (CESL-MATD3) algorithm has been developed for this control strategy. In this algorithm, both the water pump and radiator are treated as individual agents, and the strategies of centralized training and decentralized execution are applied; thus, coordinated control over the two agents is realized. Moreover, the concepts of curriculum learning, imitation learning, and various novel parallel computing techniques are incorporated into the design of this algorithm, resulting in enhanced training efficiency; thus, a coordinated control strategy with better robustness is obtained. According to the experimental results, compared with other advanced control algorithms, this coordinated control strategy-based algorithm achieves better performance and robustness for PEMFC stack temperature management. The proposed method can effectively improve the response speed of the controllers, reduce the fluctuation and oscillation of the stack temperature and the temperature difference between the stack outlet and inlet (stack temperature difference) during heat management, and reduce the maximum overshoot of the stack temperature by 99.12% and of the stack temperature difference by 97.97%.
•A novel 9-order dynamic PEMFC stack heat management system model is proposed.•A novel PEMFC stack temperature coordinated control strategy is proposed.•A new large-scale deep reinforcement learning algorithm is proposed for the strategy.•The strategy coordinates of pump and radiator and improve the efficiency of PEMFC.•The proposed algorithm has better robustness compared with conventional algorithms. |
|---|---|
| AbstractList | To improve the operating efficiency of proton exchange membrane fuel cells (PEMFCs), an optimal coordinated control strategy for addressing the poor coordination problem between the water pump and radiator in a PEMFC stack heat management system is proposed in this paper. To this end, a cooperative exploration strategy large-scale multiagent twin-delay deep policy gradient (CESL-MATD3) algorithm has been developed for this control strategy. In this algorithm, both the water pump and radiator are treated as individual agents, and the strategies of centralized training and decentralized execution are applied; thus, coordinated control over the two agents is realized. Moreover, the concepts of curriculum learning, imitation learning, and various novel parallel computing techniques are incorporated into the design of this algorithm, resulting in enhanced training efficiency; thus, a coordinated control strategy with better robustness is obtained. According to the experimental results, compared with other advanced control algorithms, this coordinated control strategy-based algorithm achieves better performance and robustness for PEMFC stack temperature management. The proposed method can effectively improve the response speed of the controllers, reduce the fluctuation and oscillation of the stack temperature and the temperature difference between the stack outlet and inlet (stack temperature difference) during heat management, and reduce the maximum overshoot of the stack temperature by 99.12% and of the stack temperature difference by 97.97%. To improve the operating efficiency of proton exchange membrane fuel cells (PEMFCs), an optimal coordinated control strategy for addressing the poor coordination problem between the water pump and radiator in a PEMFC stack heat management system is proposed in this paper. To this end, a cooperative exploration strategy large-scale multiagent twin-delay deep policy gradient (CESL-MATD3) algorithm has been developed for this control strategy. In this algorithm, both the water pump and radiator are treated as individual agents, and the strategies of centralized training and decentralized execution are applied; thus, coordinated control over the two agents is realized. Moreover, the concepts of curriculum learning, imitation learning, and various novel parallel computing techniques are incorporated into the design of this algorithm, resulting in enhanced training efficiency; thus, a coordinated control strategy with better robustness is obtained. According to the experimental results, compared with other advanced control algorithms, this coordinated control strategy-based algorithm achieves better performance and robustness for PEMFC stack temperature management. The proposed method can effectively improve the response speed of the controllers, reduce the fluctuation and oscillation of the stack temperature and the temperature difference between the stack outlet and inlet (stack temperature difference) during heat management, and reduce the maximum overshoot of the stack temperature by 99.12% and of the stack temperature difference by 97.97%. •A novel 9-order dynamic PEMFC stack heat management system model is proposed.•A novel PEMFC stack temperature coordinated control strategy is proposed.•A new large-scale deep reinforcement learning algorithm is proposed for the strategy.•The strategy coordinates of pump and radiator and improve the efficiency of PEMFC.•The proposed algorithm has better robustness compared with conventional algorithms. |
| Author | Li, Jiawen Li, Yaping Yu, Tao |
| Author_xml | – sequence: 1 givenname: Jiawen surname: Li fullname: Li, Jiawen organization: College of Electric Power, South China University of Technology, 510640 Guangzhou, China – sequence: 2 givenname: Yaping surname: Li fullname: Li, Yaping organization: China Electric Power Research Institute (Nanjing), 210003 Nanjing, China – sequence: 3 givenname: Tao orcidid: 0000-0002-0143-261X surname: Yu fullname: Yu, Tao email: taoyu1@scut.edu.cn organization: College of Electric Power, South China University of Technology, 510640 Guangzhou, China |
| BookMark | eNp9kd1q3DAQhU1IoGmaF8iVXsCuJEu7NuQmhP4EArlJr8V4NPJqkaVFVkrzEH3narstlF4EBmYQ5zvM6LxvzmOK1DQ3gneCi83HfUfza-4kl6LjY8eFPmsuZa9lqwa1Pf9nftdcr-uecy5GydWmv2x-3kWWDsUvEBimlK2PUMiyQ04lRUY_cAdxJrbQMmWIxNwLVSWFwHYEhS0QYaaFYh2p7JJlE6yVr2yAPFO7IoSKv4Ti26qsOkt0YJl8dCnjCQ0EOfo4f2guHISVrv_0q-bb50_P91_bx6cvD_d3jy0qwUtrheyHXrpeT5orGJG01b0eldpOGzEJN03ktONcjpYrh5YUaVRuGiRabWV_1TycfG2CvTnken5-NQm8-f2Q8mwgF4-BjNpUUGja9grVlg-AFmUthFGOworqNZy8MKd1zeQM-gLFp1gy-GAEN8eUzN4cUzLHlAwfTU2povI_9O8qb0K3J4jqB333lM2KniKS9Zmw1Av8W_gvPiyxdw |
| CitedBy_id | crossref_primary_10_1016_j_etran_2022_100165 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123226 crossref_primary_10_1109_TIE_2024_3454468 crossref_primary_10_1016_j_engappai_2022_105551 crossref_primary_10_3390_machines13060480 crossref_primary_10_1016_j_egyr_2023_07_036 crossref_primary_10_3390_en18174597 crossref_primary_10_1016_j_apenergy_2025_126142 crossref_primary_10_1016_j_applthermaleng_2024_124806 crossref_primary_10_1016_j_egyr_2021_11_260 crossref_primary_10_1016_j_ijhydene_2023_12_179 crossref_primary_10_1016_j_jpowsour_2022_232617 |
| Cites_doi | 10.1016/j.apenergy.2020.116386 10.1016/j.ijhydene.2014.03.175 10.1016/j.ijhydene.2010.06.046 10.1016/j.energy.2021.120592 10.1016/j.ijepes.2015.07.036 10.1016/j.est.2020.101760 10.1109/TEC.2015.2511155 10.1016/j.trc.2018.10.024 10.1016/j.renene.2019.09.048 10.1016/j.ijhydene.2013.07.052 10.1016/j.ins.2019.08.005 10.1016/S0378-7753(96)02360-9 10.1016/j.simpat.2012.04.001 10.1002/fuce.201600181 10.1016/j.jpowsour.2007.12.066 10.1016/j.ijhydene.2016.10.134 10.1109/TPWRS.2020.2999890 10.1016/j.ijhydene.2017.06.208 10.1016/j.ces.2007.09.017 10.1109/TPWRS.2020.2990179 10.1016/j.jclepro.2020.121660 10.1115/1.2349528 10.1016/j.renene.2004.05.001 10.1016/j.electacta.2014.04.003 10.1109/TEC.2015.2510030 10.1115/1.4001763 10.1109/TVT.2020.3014788 10.1016/j.ijhydene.2015.12.120 10.1016/j.energy.2013.08.031 10.1016/j.ijhydene.2010.07.111 10.1016/j.jpowsour.2010.02.074 10.1016/j.egyr.2021.02.043 10.1016/j.jpowsour.2015.02.106 10.1149/1.1946408 10.1016/j.apenergy.2021.117541 10.1109/TEC.2016.2587162 10.1016/j.est.2018.03.020 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors |
| Copyright_xml | – notice: 2021 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.egyr.2021.09.015 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4847 |
| EndPage | 6068 |
| ExternalDocumentID | oai_doaj_org_article_46c4f15e734c4708acdc2dc2ca9291d1 10_1016_j_egyr_2021_09_015 S2352484721008192 |
| GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E O9- OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c410t-d123832f35b504a9ce5d5359447b61b1fbbef5f0029d04fcde4e5c4fb82cd5d23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706216300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4847 |
| IngestDate | Fri Oct 03 12:29:52 EDT 2025 Thu Oct 16 04:31:20 EDT 2025 Tue Nov 18 22:30:41 EST 2025 Sat Nov 08 17:17:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distributed deep reinforcement learning Cooperative exploration strategy large-scale multi-agent twin-delay deep policy gradient (CESL-MATD3), proton exchange membrane fuel cell (PEMFC), coordinated control of stack temperature Stack heat management system |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-d123832f35b504a9ce5d5359447b61b1fbbef5f0029d04fcde4e5c4fb82cd5d23 |
| ORCID | 0000-0002-0143-261X |
| OpenAccessLink | https://doaj.org/article/46c4f15e734c4708acdc2dc2ca9291d1 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_46c4f15e734c4708acdc2dc2ca9291d1 crossref_citationtrail_10_1016_j_egyr_2021_09_015 crossref_primary_10_1016_j_egyr_2021_09_015 elsevier_sciencedirect_doi_10_1016_j_egyr_2021_09_015 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy reports |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Cheng, Fang, Xu, Li, Ouyang (b7) 2016; 41 Hu, Cao, Zhu, Hu (b15) 2010; 35 Li, Yu (b20) 2021; 7 Zhu, Wang, Wang (b47) 2018; 97 Sun, Li, Hua, Jin (b33) 2020; 147 Liso, Nielsen, Kæ r, Mortensen (b24) 2014; 39 Pathapati, Xue, Tang (b29) 2005; 30 Pukrushpan (b30) 2003 Laribi, Mammar, Sahli, Koussa (b16) 2018; 17 Yang, Wang, Yu, Shu, Yu, Zhang, Yao, Sun (b40) 2020; 265 Li, Yu, Zhang, Li, Zhu (b22) 2021; 285 Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (b23) 2015 Yu, Han, Lee, Lee, Ahn (b42) 2010; 7 Cao, Li, Deng, Li, Qin (b5) 2013; 38 Chen, He, Chen, Xu (b6) 2018; 11 Guo, Yang (b12) 2016 You, Xu, Liu, Peng, Cheng (b41) 2014; 132 Lowe, Wu, Tamar, Harb, Abbeel, Mordatch (b25) 2017 Zhang, Mou, Gao, Jiang, Ding, Han (b44) 2020; 69 Zhou, Gao, Breaz, Ravey, Miraoui, Zhang (b46) 2016; 31 Han, Yu, Yi (b14) 2017; 42 Marsala, Ragusa (b26) 2012 Yang, Li, Zeng, Chen, Guo, Wang, Shu, Yu, Zhu (b39) 2021; 228 Ou, Wang, Kim (b28) 2017; 17 Yan, Xu (b37) 2020; 35 Nolan, Kolodziej (b27) 2010; 195 Chiou, Tsai, Liu (b8) 2012; 26 Pukrushpan, Stefanopoulou, Peng (b31) 2002 Cao, Li (b4) 2016; 31 Li, Li, Gao, Jin (b17) 2015; 283 Radu, Taccani (b32) 2006; 3 Wang, Ko (b35) 2010; 35 Hajimolana, Tonekabonimoghadam, Hussain, Chakrabarti, Jayakumar, Hashim (b13) 2013; 62 Li, Wang, Dai (b18) 2006 Gharibeh, Yazdankhah, Azizian (b9) 2020; 31 Li, Yu, Yang (b21) 2021 Zhan, Zhu, Guo, Rodrigue (b43) 2005 Ahn, Choe (b2) 2008; 179 Wang, Qin, Ou, Kim (b36) 2016; 31 Zhang, Wang, Wang, Wang (b45) 2020; 511 Ziegler, Yu, Schumacher (b48) 2005; 152 Grötsch, Mangold (b10) 2008; 63 Li, Yu (b19) 2021 Ahmadi, Abdi, Kakavand (b1) 2017; 42 Amphlett, Mann, Peppley, Roberge, Rodrigues (b3) 1996; 61 Guo, Chen, Liu, Li, Zhang (b11) 2016 Wang, Duan, Shi, Xu, Li, Diao (b34) 2020; 35 Yang, Jiang, Wang, Yao, Wu (b38) 2016; 74 Zhang (10.1016/j.egyr.2021.09.015_b45) 2020; 511 Amphlett (10.1016/j.egyr.2021.09.015_b3) 1996; 61 Li (10.1016/j.egyr.2021.09.015_b22) 2021; 285 Li (10.1016/j.egyr.2021.09.015_b19) 2021 Lowe (10.1016/j.egyr.2021.09.015_b25) 2017 Marsala (10.1016/j.egyr.2021.09.015_b26) 2012 Yu (10.1016/j.egyr.2021.09.015_b42) 2010; 7 Lillicrap (10.1016/j.egyr.2021.09.015_b23) 2015 Yang (10.1016/j.egyr.2021.09.015_b39) 2021; 228 You (10.1016/j.egyr.2021.09.015_b41) 2014; 132 Li (10.1016/j.egyr.2021.09.015_b20) 2021; 7 Guo (10.1016/j.egyr.2021.09.015_b11) 2016 Ziegler (10.1016/j.egyr.2021.09.015_b48) 2005; 152 Han (10.1016/j.egyr.2021.09.015_b14) 2017; 42 Pukrushpan (10.1016/j.egyr.2021.09.015_b30) 2003 Wang (10.1016/j.egyr.2021.09.015_b35) 2010; 35 Yang (10.1016/j.egyr.2021.09.015_b40) 2020; 265 Laribi (10.1016/j.egyr.2021.09.015_b16) 2018; 17 Hajimolana (10.1016/j.egyr.2021.09.015_b13) 2013; 62 Wang (10.1016/j.egyr.2021.09.015_b34) 2020; 35 Ahn (10.1016/j.egyr.2021.09.015_b2) 2008; 179 Liso (10.1016/j.egyr.2021.09.015_b24) 2014; 39 Wang (10.1016/j.egyr.2021.09.015_b36) 2016; 31 Ou (10.1016/j.egyr.2021.09.015_b28) 2017; 17 Li (10.1016/j.egyr.2021.09.015_b18) 2006 Nolan (10.1016/j.egyr.2021.09.015_b27) 2010; 195 Ahmadi (10.1016/j.egyr.2021.09.015_b1) 2017; 42 Radu (10.1016/j.egyr.2021.09.015_b32) 2006; 3 Yang (10.1016/j.egyr.2021.09.015_b38) 2016; 74 Li (10.1016/j.egyr.2021.09.015_b21) 2021 Chiou (10.1016/j.egyr.2021.09.015_b8) 2012; 26 Gharibeh (10.1016/j.egyr.2021.09.015_b9) 2020; 31 Cheng (10.1016/j.egyr.2021.09.015_b7) 2016; 41 Chen (10.1016/j.egyr.2021.09.015_b6) 2018; 11 Zhu (10.1016/j.egyr.2021.09.015_b47) 2018; 97 Guo (10.1016/j.egyr.2021.09.015_b12) 2016 Cao (10.1016/j.egyr.2021.09.015_b4) 2016; 31 Hu (10.1016/j.egyr.2021.09.015_b15) 2010; 35 Zhang (10.1016/j.egyr.2021.09.015_b44) 2020; 69 Zhou (10.1016/j.egyr.2021.09.015_b46) 2016; 31 Yan (10.1016/j.egyr.2021.09.015_b37) 2020; 35 Zhan (10.1016/j.egyr.2021.09.015_b43) 2005 Pathapati (10.1016/j.egyr.2021.09.015_b29) 2005; 30 Pukrushpan (10.1016/j.egyr.2021.09.015_b31) 2002 Cao (10.1016/j.egyr.2021.09.015_b5) 2013; 38 Grötsch (10.1016/j.egyr.2021.09.015_b10) 2008; 63 Li (10.1016/j.egyr.2021.09.015_b17) 2015; 283 Sun (10.1016/j.egyr.2021.09.015_b33) 2020; 147 |
| References_xml | – volume: 35 start-page: 10437 year: 2010 end-page: 10445 ident: b35 article-title: Multivariable robust PID control for a PEMFC system publication-title: Int. J. Hydrog. Energy – start-page: 4235 year: 2016 end-page: 4240 ident: b11 article-title: Temperature model and predictive control for fuel cells in switcher locomotive publication-title: 2016 35th Chinese Control Conference (CCC) – volume: 69 start-page: 11599 year: 2020 end-page: 11611 ident: b44 article-title: Uav-enabled secure communications by multi-agent deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. – year: 2021 ident: b21 article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning publication-title: Appl. Energy – volume: 195 start-page: 4743 year: 2010 end-page: 4752 ident: b27 article-title: Modeling of an automotive fuel cell thermal system publication-title: J. Power Sources – volume: 147 start-page: 1642 year: 2020 end-page: 1652 ident: b33 article-title: A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control publication-title: Renew. Energy – volume: 38 start-page: 12404 year: 2013 end-page: 12417 ident: b5 article-title: Thermal management oriented steady state analysis and optimization of a kW scale solid oxide fuel cell stand-alone system for maximum system efficiency publication-title: Int. J. Hydrog. Energy – volume: 42 start-page: 4328 year: 2017 end-page: 4341 ident: b14 article-title: Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm publication-title: Int. J. Hydrog. Energy – volume: 35 start-page: 9110 year: 2010 end-page: 9123 ident: b15 article-title: Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells publication-title: Int. J. Hydrog. Energy – year: 2005 ident: b43 article-title: An intelligent controller for PEM fuel cell power system based on double closed-loop control publication-title: Australasian Universities Power Engineering Conference – start-page: 1372 year: 2016 end-page: 1376 ident: b12 article-title: Temperature control of PEMFC stack based on BP neural network publication-title: 2016 4th International Conference on Machinery – volume: 17 start-page: 299 year: 2017 end-page: 307 ident: b28 article-title: Performance optimization for open-cathode fuel cell systems with overheating protection and air starvation prevention publication-title: Fuel Cells – volume: 31 year: 2020 ident: b9 article-title: Energy management of fuel cell electric vehicles based on working condition identification of energy storage systems, vehicle driving performance, and dynamic power factor publication-title: J. Energy Storage – year: 2015 ident: b23 article-title: Continuous control with deep reinforcement learning – volume: 7 start-page: 1267 year: 2021 end-page: 1279 ident: b20 article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system publication-title: Energy Rep. – volume: 61 start-page: 183 year: 1996 end-page: 188 ident: b3 article-title: A model predicting transient responses of proton exchange membrane fuel cells publication-title: J. Power Sources – volume: 152 start-page: A1555 year: 2005 end-page: A1567 ident: b48 article-title: Two-phase dynamic modeling of PEMFCs and simulation of cyclo-voltammograms publication-title: J. Electrochem. Soc. – volume: 42 start-page: 20430 year: 2017 end-page: 20443 ident: b1 article-title: Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller publication-title: Int. J. Hydrog. Energy – volume: 31 start-page: 596 year: 2016 end-page: 605 ident: b4 article-title: Thermal management-oriented multivariable robust control of a kW-scale solid oxide fuel cell stand-alone system publication-title: IEEE Trans. Energy Convers. – volume: 31 start-page: 1399 year: 2016 end-page: 1412 ident: b46 article-title: Dynamic phenomena coupling analysis and modeling of proton exchange membrane fuel cells publication-title: IEEE T. Energy Conver. – volume: 31 start-page: 667 year: 2016 end-page: 675 ident: b36 article-title: Temperature control for a polymer electrolyte membrane fuel cell by using fuzzy rule publication-title: IEEE Trans. Energy Convers. – volume: 62 start-page: 320 year: 2013 end-page: 329 ident: b13 article-title: Thermal stress management of a solid oxide fuel cell using neural network predictive control publication-title: Energy – volume: 3 start-page: 452 year: 2006 end-page: 458 ident: b32 article-title: Simulink-FEMLAB integrated dynamic simulation model for a PEM fuel cell system publication-title: J. Fuel Cell Sci. Technol. – year: 2003 ident: b30 article-title: Modeling and control of fuel cell systems and fuel processors – year: 2021 ident: b19 article-title: novel data-driven controller for solid oxide fuel cell via deep reinforcement learning publication-title: J. Cleaner Production – start-page: 908 year: 2012 end-page: 913 ident: b26 article-title: Increase of the performance of a low ripple boost converter for PEM FC applications using GA and PSO algorithms publication-title: 2012 IEEE Vehicle Power and Propulsion Conference – volume: 17 start-page: 327 year: 2018 end-page: 335 ident: b16 article-title: Air supply temperature impact on the PEMFC impedance publication-title: J. Energy Storage – volume: 41 start-page: 3313 year: 2016 ident: b7 article-title: Model-based temperature regulation of a PEM fuel cell system on a city bus (vol 40, pg 13566, 2015) publication-title: Int. J. Hydrog. Energy – volume: 179 start-page: 252 year: 2008 end-page: 264 ident: b2 article-title: Coolant controls of a PEM fuel cell system publication-title: J. Power Sources – year: 2017 ident: b25 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments – volume: 97 start-page: 348 year: 2018 end-page: 368 ident: b47 article-title: Human-like autonomous car-following model with deep reinforcement learning publication-title: Transp. Res. Part C Emerg. – volume: 39 start-page: 8410 year: 2014 end-page: 8420 ident: b24 article-title: Thermal modeling and temperature control of a PEM fuel cell system for forklift applications publication-title: Int. J. Hydrog. Energy – start-page: 3117 year: 2002 end-page: 3122 ident: b31 article-title: Modeling and control for PEM fuel cell stack system publication-title: Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301) – start-page: 2159 year: 2006 end-page: 2162 ident: b18 article-title: Using artificial neural network to control the temperature of fuel cell publication-title: 2006 International Conference on Communications, Circuits and Systems – volume: 511 start-page: 1 year: 2020 end-page: 17 ident: b45 article-title: Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system publication-title: Inform. Sci. – volume: 7 year: 2010 ident: b42 article-title: A dynamic model of PEMFC system for the simulation of residential power generation publication-title: J. Fuel Cell Sci. Tech. – volume: 132 start-page: 389 year: 2014 end-page: 396 ident: b41 article-title: Study on air-cooled self-humidifying PEMFC control method based on segmented predict negative feedback control publication-title: Electrochim. Acta – volume: 35 start-page: 4644 year: 2020 end-page: 4654 ident: b34 article-title: A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning publication-title: IEEE Trans. Power Syst. – volume: 265 year: 2020 ident: b40 article-title: A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms publication-title: J. Clean. Prod. – volume: 285 year: 2021 ident: b22 article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system publication-title: Appl. Energy – volume: 26 start-page: 49 year: 2012 end-page: 59 ident: b8 article-title: A PSO-based adaptive fuzzy PID-controllers publication-title: Simul. Model. Pract. Theory – volume: 35 start-page: 4599 year: 2020 end-page: 4608 ident: b37 article-title: A multi-agent deep reinforcement learning method for cooperative load frequency control of a multi-area power system publication-title: IEEE Trans. Power Syst. – volume: 74 start-page: 429 year: 2016 end-page: 436 ident: b38 article-title: Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine publication-title: Int. J. Elec. Power – volume: 30 start-page: 1 year: 2005 end-page: 22 ident: b29 article-title: A new dynamic model for predicting transient phenomena in a PEM fuel cell system publication-title: Renew. Energy – volume: 283 start-page: 452 year: 2015 end-page: 463 ident: b17 article-title: On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells publication-title: J. Power Sources – volume: 228 year: 2021 ident: b39 article-title: Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms publication-title: Energy – volume: 11 year: 2018 ident: b6 article-title: Control strategy of speed servo systems based on deep reinforcement learning publication-title: Algorithms – volume: 63 start-page: 434 year: 2008 end-page: 447 ident: b10 article-title: A two-phase PEMFC model for process control purposes publication-title: Chem. Eng. Sci. – volume: 285 year: 2021 ident: 10.1016/j.egyr.2021.09.015_b22 article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116386 – volume: 39 start-page: 8410 year: 2014 ident: 10.1016/j.egyr.2021.09.015_b24 article-title: Thermal modeling and temperature control of a PEM fuel cell system for forklift applications publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.03.175 – year: 2017 ident: 10.1016/j.egyr.2021.09.015_b25 – volume: 35 start-page: 9110 year: 2010 ident: 10.1016/j.egyr.2021.09.015_b15 article-title: Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.06.046 – volume: 228 year: 2021 ident: 10.1016/j.egyr.2021.09.015_b39 article-title: Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms publication-title: Energy doi: 10.1016/j.energy.2021.120592 – start-page: 1372 year: 2016 ident: 10.1016/j.egyr.2021.09.015_b12 article-title: Temperature control of PEMFC stack based on BP neural network – volume: 74 start-page: 429 year: 2016 ident: 10.1016/j.egyr.2021.09.015_b38 article-title: Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine publication-title: Int. J. Elec. Power doi: 10.1016/j.ijepes.2015.07.036 – volume: 31 year: 2020 ident: 10.1016/j.egyr.2021.09.015_b9 article-title: Energy management of fuel cell electric vehicles based on working condition identification of energy storage systems, vehicle driving performance, and dynamic power factor publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101760 – year: 2021 ident: 10.1016/j.egyr.2021.09.015_b19 article-title: novel data-driven controller for solid oxide fuel cell via deep reinforcement learning publication-title: J. Cleaner Production – volume: 31 start-page: 667 year: 2016 ident: 10.1016/j.egyr.2021.09.015_b36 article-title: Temperature control for a polymer electrolyte membrane fuel cell by using fuzzy rule publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2015.2511155 – volume: 97 start-page: 348 year: 2018 ident: 10.1016/j.egyr.2021.09.015_b47 article-title: Human-like autonomous car-following model with deep reinforcement learning publication-title: Transp. Res. Part C Emerg. doi: 10.1016/j.trc.2018.10.024 – volume: 11 issue: 65 year: 2018 ident: 10.1016/j.egyr.2021.09.015_b6 article-title: Control strategy of speed servo systems based on deep reinforcement learning publication-title: Algorithms – start-page: 2159 year: 2006 ident: 10.1016/j.egyr.2021.09.015_b18 article-title: Using artificial neural network to control the temperature of fuel cell – volume: 147 start-page: 1642 year: 2020 ident: 10.1016/j.egyr.2021.09.015_b33 article-title: A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control publication-title: Renew. Energy doi: 10.1016/j.renene.2019.09.048 – volume: 38 start-page: 12404 year: 2013 ident: 10.1016/j.egyr.2021.09.015_b5 article-title: Thermal management oriented steady state analysis and optimization of a kW scale solid oxide fuel cell stand-alone system for maximum system efficiency publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.07.052 – volume: 511 start-page: 1 year: 2020 ident: 10.1016/j.egyr.2021.09.015_b45 article-title: Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.08.005 – volume: 61 start-page: 183 issue: 1 year: 1996 ident: 10.1016/j.egyr.2021.09.015_b3 article-title: A model predicting transient responses of proton exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/S0378-7753(96)02360-9 – volume: 26 start-page: 49 year: 2012 ident: 10.1016/j.egyr.2021.09.015_b8 article-title: A PSO-based adaptive fuzzy PID-controllers publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2012.04.001 – volume: 17 start-page: 299 year: 2017 ident: 10.1016/j.egyr.2021.09.015_b28 article-title: Performance optimization for open-cathode fuel cell systems with overheating protection and air starvation prevention publication-title: Fuel Cells doi: 10.1002/fuce.201600181 – volume: 179 start-page: 252 year: 2008 ident: 10.1016/j.egyr.2021.09.015_b2 article-title: Coolant controls of a PEM fuel cell system publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.12.066 – volume: 42 start-page: 4328 year: 2017 ident: 10.1016/j.egyr.2021.09.015_b14 article-title: Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.10.134 – volume: 35 start-page: 4599 year: 2020 ident: 10.1016/j.egyr.2021.09.015_b37 article-title: A multi-agent deep reinforcement learning method for cooperative load frequency control of a multi-area power system publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2999890 – volume: 42 start-page: 20430 year: 2017 ident: 10.1016/j.egyr.2021.09.015_b1 article-title: Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.06.208 – volume: 63 start-page: 434 issue: 2 year: 2008 ident: 10.1016/j.egyr.2021.09.015_b10 article-title: A two-phase PEMFC model for process control purposes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.09.017 – year: 2015 ident: 10.1016/j.egyr.2021.09.015_b23 – volume: 35 start-page: 4644 year: 2020 ident: 10.1016/j.egyr.2021.09.015_b34 article-title: A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2990179 – volume: 265 year: 2020 ident: 10.1016/j.egyr.2021.09.015_b40 article-title: A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121660 – volume: 3 start-page: 452 issue: 4 year: 2006 ident: 10.1016/j.egyr.2021.09.015_b32 article-title: Simulink-FEMLAB integrated dynamic simulation model for a PEM fuel cell system publication-title: J. Fuel Cell Sci. Technol. doi: 10.1115/1.2349528 – volume: 30 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.egyr.2021.09.015_b29 article-title: A new dynamic model for predicting transient phenomena in a PEM fuel cell system publication-title: Renew. Energy doi: 10.1016/j.renene.2004.05.001 – volume: 132 start-page: 389 year: 2014 ident: 10.1016/j.egyr.2021.09.015_b41 article-title: Study on air-cooled self-humidifying PEMFC control method based on segmented predict negative feedback control publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.003 – volume: 31 start-page: 596 year: 2016 ident: 10.1016/j.egyr.2021.09.015_b4 article-title: Thermal management-oriented multivariable robust control of a kW-scale solid oxide fuel cell stand-alone system publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2015.2510030 – year: 2005 ident: 10.1016/j.egyr.2021.09.015_b43 article-title: An intelligent controller for PEM fuel cell power system based on double closed-loop control – start-page: 908 year: 2012 ident: 10.1016/j.egyr.2021.09.015_b26 article-title: Increase of the performance of a low ripple boost converter for PEM FC applications using GA and PSO algorithms – volume: 7 issue: 6 year: 2010 ident: 10.1016/j.egyr.2021.09.015_b42 article-title: A dynamic model of PEMFC system for the simulation of residential power generation publication-title: J. Fuel Cell Sci. Tech. doi: 10.1115/1.4001763 – volume: 69 start-page: 11599 year: 2020 ident: 10.1016/j.egyr.2021.09.015_b44 article-title: Uav-enabled secure communications by multi-agent deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3014788 – year: 2003 ident: 10.1016/j.egyr.2021.09.015_b30 – volume: 41 start-page: 3313 year: 2016 ident: 10.1016/j.egyr.2021.09.015_b7 article-title: Model-based temperature regulation of a PEM fuel cell system on a city bus (vol 40, pg 13566, 2015) publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.12.120 – volume: 62 start-page: 320 year: 2013 ident: 10.1016/j.egyr.2021.09.015_b13 article-title: Thermal stress management of a solid oxide fuel cell using neural network predictive control publication-title: Energy doi: 10.1016/j.energy.2013.08.031 – start-page: 3117 year: 2002 ident: 10.1016/j.egyr.2021.09.015_b31 article-title: Modeling and control for PEM fuel cell stack system – volume: 35 start-page: 10437 year: 2010 ident: 10.1016/j.egyr.2021.09.015_b35 article-title: Multivariable robust PID control for a PEMFC system publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.07.111 – volume: 195 start-page: 4743 year: 2010 ident: 10.1016/j.egyr.2021.09.015_b27 article-title: Modeling of an automotive fuel cell thermal system publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.02.074 – volume: 7 start-page: 1267 year: 2021 ident: 10.1016/j.egyr.2021.09.015_b20 article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.02.043 – volume: 283 start-page: 452 year: 2015 ident: 10.1016/j.egyr.2021.09.015_b17 article-title: On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.106 – volume: 152 start-page: A1555 issue: 8 year: 2005 ident: 10.1016/j.egyr.2021.09.015_b48 article-title: Two-phase dynamic modeling of PEMFCs and simulation of cyclo-voltammograms publication-title: J. Electrochem. Soc. doi: 10.1149/1.1946408 – year: 2021 ident: 10.1016/j.egyr.2021.09.015_b21 article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117541 – volume: 31 start-page: 1399 issue: 4 year: 2016 ident: 10.1016/j.egyr.2021.09.015_b46 article-title: Dynamic phenomena coupling analysis and modeling of proton exchange membrane fuel cells publication-title: IEEE T. Energy Conver. doi: 10.1109/TEC.2016.2587162 – start-page: 4235 year: 2016 ident: 10.1016/j.egyr.2021.09.015_b11 article-title: Temperature model and predictive control for fuel cells in switcher locomotive – volume: 17 start-page: 327 year: 2018 ident: 10.1016/j.egyr.2021.09.015_b16 article-title: Air supply temperature impact on the PEMFC impedance publication-title: J. Energy Storage doi: 10.1016/j.est.2018.03.020 |
| SSID | ssj0001920463 |
| Score | 2.27424 |
| Snippet | To improve the operating efficiency of proton exchange membrane fuel cells (PEMFCs), an optimal coordinated control strategy for addressing the poor... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 6054 |
| SubjectTerms | Cooperative exploration strategy large-scale multi-agent twin-delay deep policy gradient (CESL-MATD3), proton exchange membrane fuel cell (PEMFC), coordinated control of stack temperature Distributed deep reinforcement learning Stack heat management system |
| Title | An optimal coordinated proton exchange membrane fuel cell heat management method based on large-scale multi-agent deep reinforcement learning |
| URI | https://dx.doi.org/10.1016/j.egyr.2021.09.015 https://doaj.org/article/46c4f15e734c4708acdc2dc2ca9291d1 |
| Volume | 7 |
| WOSCitedRecordID | wos000706216300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29btwwDBaCoEOWoEUb5JK20NCtEGrZ1Ok8pkWCDm3QoQWyCfqhggvufMHlUrRL3iDvXNLyHTwlSwHDgy1KBkmJJEx-FOKD8d7Y0EZlrPYKvKctFZugtGXzguTx5h5n9pu9vJxdXbU_Rq2-OCeswAMXxn2CaYSsDdoGIthq5mOKNV3Rk2HXqQ98KtuOgqmb4rcwFFbfWc7UCugMHipmSnIXXv9lMNBa9yCn3BN3ZJV68P6RcRoZnIuX4nDwFOVZ-cJXYg-71-LxrJMr2uVLehNXFDjOO3IWk2S4hVUn8U8p5JVLXFIY3KHM90gjcbGQfOrK5S7bRZbe0ZLNWJJEu-CccHVHMiNyTjNUnsuuZEK8lWvsEVZjIR1aTVy_Eb8uzn9--aqGjgoqgq42KpGdoi2cGxNMBb6NaJJpTAtgw1QHnUPAbDL_qksV5JgQ0BD_w6yOyaS6ORL73arDYyGtJ_brae0jIGQPbQO-CqEJrW3QB5gIveWoiwPcOHe9WLhtXtmNYyk4loKrWkdSmIiPO5rbArbx5OjPLKjdSAbK7h-Q-rhBfdxz6jMRZitmN_gcxZegqeZPLH7yPxY_FQc8ZSltfCv2N-t7fCdexN-b-d36fa_RdP_-cP4PoOH-Cw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+coordinated+proton+exchange+membrane+fuel+cell+heat+management+method+based+on+large-scale+multi-agent+deep+reinforcement+learning&rft.jtitle=Energy+reports&rft.au=Jiawen+Li&rft.au=Yaping+Li&rft.au=Tao+Yu&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=7&rft.spage=6054&rft.epage=6068&rft_id=info:doi/10.1016%2Fj.egyr.2021.09.015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_46c4f15e734c4708acdc2dc2ca9291d1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |