A combination forecasting model of wind speed based on decomposition
Due to the intermittent, fluctuating and random characteristics of wind system, the output of wind power will become unstable with the change of wind, which brings severe challenges to the safe and stable operation of the power system. An effective way to solve this problem is to accurately forecast...
Saved in:
| Published in: | Energy reports Vol. 7; pp. 1217 - 1233 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2021
Elsevier |
| Subjects: | |
| ISSN: | 2352-4847, 2352-4847 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to the intermittent, fluctuating and random characteristics of wind system, the output of wind power will become unstable with the change of wind, which brings severe challenges to the safe and stable operation of the power system. An effective way to solve this problem is to accurately forecast the wind speed. This paper presents a novel wind speed combination forecasting model based on decomposition. The innovation of the forecasting model is as follows. (a) In view of the unstable characteristics of wind speed, variational mode decomposition algorithm is introduced to decompose the historical wind speed data to obtain a series of stable components with different frequencies. (b) Echo state network with good forecasting ability is selected as the forecasting model of each component. (c) To solve the problem that the forecasting performance of echo state network is greatly affected by the parameters of the reservoir, an improved whale optimization algorithm is proposed to optimize these parameters. The optimized echo state network improves the forecasting effect. (d) The final forecasting results are obtained by adding the forecasting values of each component. (e) The performance of the developed forecasting model is verified by using two actual collected data sets of ultra-short-term wind speed and short-term wind speed. Compared with some state-of-the-art forecasting models, the comparison result curve between the forecasting value and actual value of wind speed, the forecasting error distribution, the histogram of the forecasting error distribution, the performance indicators, related statistical indicators, and Taylor diagram show that the developed forecasting model has higher prediction accuracy and is able to reflect the change laws of wind speed correctly. |
|---|---|
| AbstractList | Due to the intermittent, fluctuating and random characteristics of wind system, the output of wind power will become unstable with the change of wind, which brings severe challenges to the safe and stable operation of the power system. An effective way to solve this problem is to accurately forecast the wind speed. This paper presents a novel wind speed combination forecasting model based on decomposition. The innovation of the forecasting model is as follows. (a) In view of the unstable characteristics of wind speed, variational mode decomposition algorithm is introduced to decompose the historical wind speed data to obtain a series of stable components with different frequencies. (b) Echo state network with good forecasting ability is selected as the forecasting model of each component. (c) To solve the problem that the forecasting performance of echo state network is greatly affected by the parameters of the reservoir, an improved whale optimization algorithm is proposed to optimize these parameters. The optimized echo state network improves the forecasting effect. (d) The final forecasting results are obtained by adding the forecasting values of each component. (e) The performance of the developed forecasting model is verified by using two actual collected data sets of ultra-short-term wind speed and short-term wind speed. Compared with some state-of-the-art forecasting models, the comparison result curve between the forecasting value and actual value of wind speed, the forecasting error distribution, the histogram of the forecasting error distribution, the performance indicators, related statistical indicators, and Taylor diagram show that the developed forecasting model has higher prediction accuracy and is able to reflect the change laws of wind speed correctly. |
| Author | Li, Feihong Tian, Zhongda Li, Hao |
| Author_xml | – sequence: 1 givenname: Zhongda surname: Tian fullname: Tian, Zhongda email: tianzhongda@sut.edu.cn – sequence: 2 givenname: Hao surname: Li fullname: Li, Hao – sequence: 3 givenname: Feihong surname: Li fullname: Li, Feihong |
| BookMark | eNp9kF1LwzAUhoMoOOf-gFf9A6snadqu4M2YX4OBN3od8nEyUrpmJEXZvzfdFMSL3SThcJ6XN88Nuex9j4TcUcgp0Oq-zXF7CDkDRnNgOQC7IBNWlGzOF7y-_PO-JrMYWwCgDQNeFRPyuMy03ynXy8H5PrM-oJZxcP0223mDXeZt9uV6k8U9osmUjOlMiwYTtvfRjdgtubKyizj7uafk4_npffU637y9rFfLzVxzCsPcADSs4tLU1jCpKS11DZXWdWltgY2SktOKFVKyVK1samp5DahKi7UpqVbFlKxPucbLVuyD28lwEF46cRz4sBUyDE53KJgFlIovoCqBK900xlaG1pBSlbLapqzFKUsHH2NAK7QbjhKGIF0nKIhRrmjFKFeMcgUwkeQmlP1Df6uchR5OECZBnw6DiNphr9G4pHxIP3Dn8G__y5Wk |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2024_08_041 crossref_primary_10_1016_j_egyr_2021_12_062 crossref_primary_10_1016_j_neucom_2023_02_061 crossref_primary_10_3390_jmse12030502 crossref_primary_10_1007_s12145_023_01123_3 crossref_primary_10_3390_su132212723 crossref_primary_10_1016_j_egyr_2022_12_062 crossref_primary_10_1016_j_rser_2022_112700 crossref_primary_10_3389_fenrg_2024_1346000 crossref_primary_10_1007_s00202_024_02574_7 crossref_primary_10_1002_ente_202100700 crossref_primary_10_1016_j_enconman_2021_114775 crossref_primary_10_1016_j_eswa_2022_118789 crossref_primary_10_3390_jmse13010149 crossref_primary_10_3390_jmse11122350 crossref_primary_10_1016_j_artmed_2022_102348 crossref_primary_10_1007_s00202_024_02685_1 crossref_primary_10_1061_JLEED9_EYENG_5474 crossref_primary_10_3390_math13132174 crossref_primary_10_1016_j_ijepes_2022_108552 crossref_primary_10_1016_j_egyr_2021_09_080 crossref_primary_10_1002_ente_202101061 crossref_primary_10_1007_s11227_023_05427_5 crossref_primary_10_1109_JSYST_2022_3150749 crossref_primary_10_1002_ese3_1183 crossref_primary_10_1080_00387010_2024_2449448 crossref_primary_10_1109_ACCESS_2021_3135201 crossref_primary_10_1016_j_jweia_2022_105237 crossref_primary_10_1007_s10614_024_10589_2 crossref_primary_10_1016_j_egyr_2025_07_005 crossref_primary_10_3390_en17051215 crossref_primary_10_1016_j_chemosphere_2022_135798 crossref_primary_10_1016_j_heliyon_2023_e23071 crossref_primary_10_1016_j_energy_2021_121121 crossref_primary_10_1016_j_energy_2021_122012 crossref_primary_10_1016_j_patcog_2022_108623 crossref_primary_10_1016_j_egyr_2021_09_150 crossref_primary_10_1002_dac_5097 crossref_primary_10_1016_j_epsr_2022_108863 crossref_primary_10_3389_fenrg_2023_1336675 crossref_primary_10_1016_j_egyr_2022_04_045 crossref_primary_10_1016_j_egyr_2022_10_399 crossref_primary_10_1049_cth2_12591 crossref_primary_10_1155_2022_6729608 crossref_primary_10_1038_s41467_025_58456_4 crossref_primary_10_1016_j_ocemod_2024_102404 crossref_primary_10_1016_j_rser_2024_114623 crossref_primary_10_3389_fnbot_2022_955179 crossref_primary_10_1007_s00500_024_09776_y crossref_primary_10_1016_j_compag_2023_107892 crossref_primary_10_1016_j_egyr_2022_02_077 crossref_primary_10_1109_ACCESS_2024_3435674 crossref_primary_10_1177_01423312221111607 crossref_primary_10_3390_atmos13081208 crossref_primary_10_1016_j_egyr_2021_10_102 crossref_primary_10_1016_j_egyr_2024_01_021 crossref_primary_10_1155_2022_8455629 crossref_primary_10_1016_j_egyr_2022_07_005 crossref_primary_10_1016_j_renene_2025_122951 crossref_primary_10_1109_JSTARS_2024_3386629 crossref_primary_10_1016_j_engappai_2022_104998 crossref_primary_10_2166_ws_2022_021 crossref_primary_10_1155_2022_5198315 crossref_primary_10_1007_s12145_023_01036_1 crossref_primary_10_1007_s12145_024_01493_2 crossref_primary_10_3390_app11083355 crossref_primary_10_1093_ce_zkad043 crossref_primary_10_1111_joes_70005 crossref_primary_10_1016_j_ins_2022_05_126 |
| Cites_doi | 10.1007/s12559-020-09730-8 10.1016/j.enconman.2020.113500 10.1016/j.engappai.2020.103801 10.1016/j.enconman.2018.03.030 10.3390/en13071666 10.3390/en12020254 10.1016/j.neucom.2019.12.069 10.1049/iet-rpg.2018.5673 10.3390/en13071596 10.5370/JEET.2016.11.6.1548 10.1016/j.renene.2020.05.182 10.1007/s00500-019-04292-w 10.1016/j.enconman.2020.112956 10.1002/we.2422 10.3390/en12010069 10.1016/j.eswa.2020.113612 10.1016/j.physa.2019.123383 10.1016/j.renene.2017.11.089 10.1016/j.apenergy.2018.12.076 10.1007/s10489-020-01659-7 10.1016/j.ijepes.2019.105814 10.1016/j.enconman.2019.112099 10.4316/AECE.2017.01001 10.1016/j.artint.2019.103176 10.1016/j.enconman.2018.07.070 10.1016/j.jweia.2018.07.007 10.1007/s11063-020-10300-0 10.1016/j.rser.2016.10.056 10.1016/j.advengsoft.2016.01.008 10.1016/j.enconman.2020.113324 10.1007/s00500-019-04608-w 10.1016/j.apenergy.2015.10.145 10.1007/s00521-020-04849-z 10.1177/0309524X19849867 10.1080/00051144.2020.1811571 10.1016/j.renene.2019.04.154 10.1016/j.measurement.2020.107901 10.1016/j.enconman.2019.04.006 10.1109/JIOT.2019.2913176 10.1016/j.renene.2019.07.161 10.1016/j.esd.2014.02.004 10.1016/j.chaos.2017.03.018 10.1016/j.enconman.2017.05.063 10.1016/j.asoc.2020.106390 10.1016/j.enconman.2020.113234 10.1016/j.renene.2020.09.109 10.1016/j.renene.2020.10.126 10.1080/15567036.2018.1495782 10.1177/0142331219885273 10.1016/j.asoc.2020.106463 10.1016/j.engappai.2020.103573 10.1080/15435075.2020.1731816 10.1016/j.enconman.2020.113076 10.1016/j.renene.2018.07.060 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.egyr.2021.02.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4847 |
| EndPage | 1233 |
| ExternalDocumentID | oai_doaj_org_article_2f0eab4806504bc99df6d170971bbfcf 10_1016_j_egyr_2021_02_002 S2352484721000998 |
| GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E O9- OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c410t-d009264ad7fd2ac115c706cc75ff3e9baa41623aa24635971f470eb5fe7d51cb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701691800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4847 |
| IngestDate | Fri Oct 03 12:52:59 EDT 2025 Thu Oct 16 04:34:48 EDT 2025 Tue Nov 18 22:23:50 EST 2025 Sat Nov 08 17:17:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Improved whale optimization algorithm Combination forecasting Variational mode decomposition Wind speed Echo state network |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-d009264ad7fd2ac115c706cc75ff3e9baa41623aa24635971f470eb5fe7d51cb3 |
| OpenAccessLink | https://doaj.org/article/2f0eab4806504bc99df6d170971bbfcf |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2f0eab4806504bc99df6d170971bbfcf crossref_citationtrail_10_1016_j_egyr_2021_02_002 crossref_primary_10_1016_j_egyr_2021_02_002 elsevier_sciencedirect_doi_10_1016_j_egyr_2021_02_002 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy reports |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Li, Xia, Liu, Li (b21) 2019; 13 Yu (b54) 2020; 17 Li, Zhang, Ji, Wu (b23) 2020; 6 Jiang, Liu, Zhao, Xin, Wu (b18) 2020; 220 Yu, Li, Zhang (b55) 2017; 148 Vinothkumar, Debba (b49) 2020; 24 Chen, Zeng, Lu, Weng (b6) 2019; 6 Moreno, da Silva, Mariani, Coelho (b32) 2020; 213 Zhao, Wei, Li, Zhang (b61) 2020; 13 Zhao, Guo, Su, Zhao, Xiao, Liu (b59) 2016; 162 Jiang, Liu, Peng, Zhao (b17) 2019; 200 Hu, Chen (b15) 2018; 173 Rana, Abd Latiff, Abdulhamid, Chiroma (b35) 2020; 32 Tian, Ren, Wang (b46) 2019; 41 Bokde, Feijoo, Al-Ansari, Tao, Yaseen (b3) 2020; 13 Wang, Wang, Yang (b52) 2019; 143 Liu, Li, Duan, Chen (b25) 2020; 224 Li, Yang, Wang (b22) 2019; 22 Natarajan, Nachimuthu (b33) 2020; 24 Zhou, Wang, Zhang (b62) 2020; 94 Chitsazan, Fadali, Trzynadlowski (b7) 2019; 131 Sim, Maaas, Lind (b39) 2019; 12 Moreno, Coelho (b30) 2018; 126 Hong, Satriani (b14) 2020; 2019 Hu, Wang, Tao (b16) 2021; 164 Li, Li (b19) 2018; 179 Liu, Cao, Zhang, Wang, Huang, Luo (b24) 2020; 121 Molina, Poyatos, Del Ser, Garcia, Hussain, Herrera (b29) 2020; 12 Tian (b43) 2020; 94 Do, Lee, Choi (b8) 2016; 11 da Silva, Ribeiro, Moreno, Mariani, Coelho (b38) 2021; 216 Bokde, Feijoo, Villanueva, Kulat (b4) 2019; 12 Mirjalili, Lewis (b28) 2016; 95 Wang, Han, Liu, Yan, Li (b51) 2019; 237 Tian, Li, Wang (b44) 2020; 23 Wang, Fu, Chen, Zhang, Xiong, Fang (b50) 2020; 222 He, Yu, Li, Xiang (b13) 2020; 205 Tian (b40) 2020 Zhang, Qin, Liu, Wang, Yao, Li, Li, Pei (b57) 2019; 192 Bedi, Toshniwal (b2) 2020; 93 Tian, Wang, Ren (b47) 2020; 44 Dupre, Drobinski, Alonzo, Badosa, Briard, Plougonven (b9) 2020; 145 Liu, Sun, Luo, Yang, Cao, Zhai (b26) 2020; 385 Mi, Zhao (b27) 2020; 216 Gai, Shen, Hu, Wang (b11) 2020; 162 Shao, Chao, Yang, Zhou (b37) 2017; 75 Navas, Prakash, Sasipraba (b34) 2020; 542 Zhang, Liu (b56) 2020; 226 Feng, Chen, Li, Luo (b10) 2020; 50 Shang, He, Song, Yang, Li, Chen (b36) 2020; 52 Tian (b42) 2020; 42 Zhang, Wang, Ni, Cheng, Lei (b58) 2017; 17 Moreno, Mariani, Coelho (b31) 2021; 164 Garcia, Huo, Prado, Bravo (b12) 2020; 161 Li, Li, Zhou, Wu, Shen, Liu, Gong (b20) 2020; 118 Tian (b41) 2020; 91 Zhao, Liu, Yu, Chang (b60) 2018; 164 Tian, Li, Wang, Sha (b45) 2017; 98 Yang, Chen (b53) 2019; 277 Chen, Li, Yang (b5) 2020; 158 Alam, Rehman, AI-Hadhrami, Meyer (b1) 2014; 22 Vidya, Janani (b48) 2020; 61 Jiang (10.1016/j.egyr.2021.02.002_b18) 2020; 220 Zhao (10.1016/j.egyr.2021.02.002_b60) 2018; 164 Chen (10.1016/j.egyr.2021.02.002_b6) 2019; 6 Tian (10.1016/j.egyr.2021.02.002_b45) 2017; 98 Yu (10.1016/j.egyr.2021.02.002_b55) 2017; 148 Sim (10.1016/j.egyr.2021.02.002_b39) 2019; 12 Alam (10.1016/j.egyr.2021.02.002_b1) 2014; 22 Jiang (10.1016/j.egyr.2021.02.002_b17) 2019; 200 Tian (10.1016/j.egyr.2021.02.002_b44) 2020; 23 Do (10.1016/j.egyr.2021.02.002_b8) 2016; 11 Bokde (10.1016/j.egyr.2021.02.002_b4) 2019; 12 Hong (10.1016/j.egyr.2021.02.002_b14) 2020; 2019 Feng (10.1016/j.egyr.2021.02.002_b10) 2020; 50 Gai (10.1016/j.egyr.2021.02.002_b11) 2020; 162 Hu (10.1016/j.egyr.2021.02.002_b16) 2021; 164 Rana (10.1016/j.egyr.2021.02.002_b35) 2020; 32 Tian (10.1016/j.egyr.2021.02.002_b46) 2019; 41 Moreno (10.1016/j.egyr.2021.02.002_b30) 2018; 126 Wang (10.1016/j.egyr.2021.02.002_b52) 2019; 143 Navas (10.1016/j.egyr.2021.02.002_b34) 2020; 542 Chen (10.1016/j.egyr.2021.02.002_b5) 2020; 158 Mi (10.1016/j.egyr.2021.02.002_b27) 2020; 216 Shang (10.1016/j.egyr.2021.02.002_b36) 2020; 52 Bokde (10.1016/j.egyr.2021.02.002_b3) 2020; 13 Moreno (10.1016/j.egyr.2021.02.002_b31) 2021; 164 Vinothkumar (10.1016/j.egyr.2021.02.002_b49) 2020; 24 Dupre (10.1016/j.egyr.2021.02.002_b9) 2020; 145 Liu (10.1016/j.egyr.2021.02.002_b25) 2020; 224 Liu (10.1016/j.egyr.2021.02.002_b26) 2020; 385 Tian (10.1016/j.egyr.2021.02.002_b47) 2020; 44 Mirjalili (10.1016/j.egyr.2021.02.002_b28) 2016; 95 Natarajan (10.1016/j.egyr.2021.02.002_b33) 2020; 24 Tian (10.1016/j.egyr.2021.02.002_b43) 2020; 94 Zhao (10.1016/j.egyr.2021.02.002_b59) 2016; 162 Li (10.1016/j.egyr.2021.02.002_b19) 2018; 179 Shao (10.1016/j.egyr.2021.02.002_b37) 2017; 75 Molina (10.1016/j.egyr.2021.02.002_b29) 2020; 12 Tian (10.1016/j.egyr.2021.02.002_b40) 2020 Zhao (10.1016/j.egyr.2021.02.002_b61) 2020; 13 Li (10.1016/j.egyr.2021.02.002_b22) 2019; 22 Li (10.1016/j.egyr.2021.02.002_b21) 2019; 13 Zhang (10.1016/j.egyr.2021.02.002_b57) 2019; 192 Tian (10.1016/j.egyr.2021.02.002_b41) 2020; 91 Wang (10.1016/j.egyr.2021.02.002_b50) 2020; 222 He (10.1016/j.egyr.2021.02.002_b13) 2020; 205 Zhou (10.1016/j.egyr.2021.02.002_b62) 2020; 94 Bedi (10.1016/j.egyr.2021.02.002_b2) 2020; 93 Chitsazan (10.1016/j.egyr.2021.02.002_b7) 2019; 131 Liu (10.1016/j.egyr.2021.02.002_b24) 2020; 121 Vidya (10.1016/j.egyr.2021.02.002_b48) 2020; 61 Wang (10.1016/j.egyr.2021.02.002_b51) 2019; 237 Zhang (10.1016/j.egyr.2021.02.002_b56) 2020; 226 Moreno (10.1016/j.egyr.2021.02.002_b32) 2020; 213 Hu (10.1016/j.egyr.2021.02.002_b15) 2018; 173 Garcia (10.1016/j.egyr.2021.02.002_b12) 2020; 161 Zhang (10.1016/j.egyr.2021.02.002_b58) 2017; 17 da Silva (10.1016/j.egyr.2021.02.002_b38) 2021; 216 Li (10.1016/j.egyr.2021.02.002_b20) 2020; 118 Yu (10.1016/j.egyr.2021.02.002_b54) 2020; 17 Yang (10.1016/j.egyr.2021.02.002_b53) 2019; 277 Tian (10.1016/j.egyr.2021.02.002_b42) 2020; 42 Li (10.1016/j.egyr.2021.02.002_b23) 2020; 6 |
| References_xml | – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b28 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 385 start-page: 310 year: 2020 end-page: 318 ident: b26 article-title: Echo state network optimization using binary grey wolf algorithm publication-title: Neurocomputing – volume: 126 start-page: 736 year: 2018 end-page: 754 ident: b30 article-title: Wind speed forecasting approach based on singular spectrum analysis and adaptive neuro fuzzy inference system publication-title: Renew. Energy – volume: 22 start-page: 11575 year: 2019 end-page: 11581 ident: b22 article-title: Short-term wind speed forecasting based on improved ant colony algorithm for LSSVM publication-title: Clust. Comput. J. Netw. Softw. Tools Appl. – volume: 216 year: 2021 ident: b38 article-title: A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting publication-title: Energy – volume: 237 start-page: 1 year: 2019 end-page: 10 ident: b51 article-title: Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system publication-title: Appl. Energy – volume: 22 start-page: 34 year: 2014 end-page: 47 ident: b1 article-title: Extraction of the inherent nature of wind speed using wavelets and FFT publication-title: Energy Sustain. Dev. – volume: 213 year: 2020 ident: b32 article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network publication-title: Energy Convers. Manage. – volume: 118 year: 2020 ident: b20 article-title: An adaptive time-resolution method for ultra-short-term wind prediction publication-title: Int. J. Electr. Power Energy Syst. – volume: 6 start-page: 890 year: 2020 end-page: 900 ident: b23 article-title: Ultra-short term wind speed prediction using mathematical morphology decomposition and long short-term memory publication-title: CSEE J. Power Energy Syst. – volume: 17 start-page: 3 year: 2017 end-page: 8 ident: b58 article-title: Wind power prediction based on LS-SVM model with error correction publication-title: Adv. Electr. Comput. Eng. – volume: 91 year: 2020 ident: b41 article-title: Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM publication-title: Eng. Appl. Artif. Intell. – volume: 143 start-page: 1172 year: 2019 end-page: 1192 ident: b52 article-title: A novel non-linear combination system for short-term wind speed forecast publication-title: Renew. Energy – volume: 32 start-page: 16245 year: 2020 end-page: 16277 ident: b35 article-title: Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments publication-title: Neural Comput. Appl. – volume: 222 year: 2020 ident: b50 article-title: A compound framework for wind speed forecasting based on comprehensive feature selection, quantile regression incorporated into convolutional simplified long short-term memory network and residual error correction publication-title: Energy Convers. Manage. – volume: 162 start-page: 808 year: 2016 end-page: 826 ident: b59 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl. Energy – volume: 145 start-page: 2373 year: 2020 end-page: 2379 ident: b9 article-title: Sub-hourly forecasting of wind speed and wind energy publication-title: Renew. Energy – volume: 24 start-page: 5345 year: 2020 end-page: 5355 ident: b49 article-title: Hybrid wind speed prediction model based on recurrent long short-term memory neural network and support vector machine models publication-title: Soft Comput. – volume: 13 start-page: 1115 year: 2019 end-page: 1122 ident: b21 article-title: States prediction for solar power and wind speed using BBA-SVM publication-title: IET Renew. Power Gener. – volume: 179 start-page: 541 year: 2018 end-page: 557 ident: b19 article-title: Non-Gaussian non-stationary wind pressure forecasting based on the improved empirical wavelet transform publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 131 start-page: 879 year: 2019 end-page: 889 ident: b7 article-title: Wind speed and wind direction forecasting using echo state network with nonlinear functions publication-title: Renew. Energy – volume: 94 year: 2020 ident: b43 article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications publication-title: Eng. Appl. Artif. Intell. – volume: 226 year: 2020 ident: b56 article-title: Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting publication-title: Energy Convers. Manage. – volume: 224 year: 2020 ident: b25 article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications publication-title: Energy Convers. Manage. – volume: 61 start-page: 657 year: 2020 end-page: 669 ident: b48 article-title: Tabu search algorithm based general regression neural network for long term wind speed predictions publication-title: Automatika – volume: 6 start-page: 6997 year: 2019 end-page: 7010 ident: b6 article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM publication-title: IEEE Internet Things J. – volume: 24 start-page: 11441 year: 2020 end-page: 11458 ident: b33 article-title: New SVM kernel soft computing models for wind speed prediction in renewable energy applications publication-title: Soft Comput. – volume: 13 start-page: 1596 year: 2020 ident: b61 article-title: A hybrid nonlinear forecasting strategy for short-term wind speed publication-title: Energies – volume: 12 start-page: 254 year: 2019 ident: b4 article-title: A review on hybrid empirical mode decomposition models for wind speed and wind power prediction publication-title: Energies – volume: 173 start-page: 123 year: 2018 end-page: 142 ident: b15 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm publication-title: Energy Convers. Manage. – volume: 42 start-page: 1135 year: 2020 end-page: 1150 ident: b42 article-title: Kernel principal component analysis-based least squares support vector machine optimized by improved grey wolf optimization algorithm and application in dynamic liquid level forecasting of beam pump publication-title: Trans. Inst. Meas. Control – volume: 13 start-page: 1666 year: 2020 ident: b3 article-title: The hybridization of ensemble empirical mode decomposition with forecasting models: application of short-term wind speed and power modeling publication-title: Energies – volume: 98 start-page: 158 year: 2017 end-page: 172 ident: b45 article-title: A prediction method based on wavelet transform and multiple models fusion for chaotic time series publication-title: Chaos Solitons Fractals – volume: 164 start-page: 1508 year: 2021 end-page: 1526 ident: b31 article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast publication-title: Renew. Energy – volume: 41 start-page: 26 year: 2019 end-page: 46 ident: b46 article-title: Short-term wind speed prediction based on improved PSO algorithm optimized EM-ELM publication-title: Energy Sources Part A – volume: 161 start-page: 55 year: 2020 end-page: 64 ident: b12 article-title: Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements publication-title: Renew. Energy – volume: 200 year: 2019 ident: b17 article-title: A novel wind speed prediction method based on robust local mean decomposition, group method of data handling and conditional kernel density estimation publication-title: Energy Convers. Manage. – volume: 44 start-page: 152 year: 2020 end-page: 167 ident: b47 article-title: Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation publication-title: Wind Eng. – volume: 220 year: 2020 ident: b18 article-title: Short-term wind speed prediction using time varying filter-based empirical mode decomposition and group method of data handling-based hybrid model publication-title: Energy Convers. Manage. – volume: 164 start-page: 729 year: 2021 end-page: 751 ident: b16 article-title: Wind speed forecasting based on variational mode decomposition and improved echo state network publication-title: Renew. Energy – volume: 162 year: 2020 ident: b11 article-title: An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing publication-title: Measurement – volume: 192 start-page: 37 year: 2019 end-page: 51 ident: b57 article-title: Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction publication-title: Energy Convers. Manage. – volume: 121 year: 2020 ident: b24 article-title: Short-term wind speed forecasting based on the Jaya-SVM model publication-title: Int. J. Electr. Power Energy – volume: 158 year: 2020 ident: b5 article-title: A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems publication-title: Expert Syst. Appl. – volume: 17 start-page: 332 year: 2020 end-page: 348 ident: b54 article-title: Short-term wind speed forecasting based on random forest model combining ensemble empirical mode decomposition and improved harmony search algorithm publication-title: Int. J. Green Eenergy – year: 2020 ident: b40 article-title: Chaotic characteristic analysis of short-term wind speed time series with different time scales publication-title: Energy Sources Part A – volume: 12 start-page: 897 year: 2020 end-page: 939 ident: b29 article-title: Comprehensive taxonomies of nature- and iio-inspired optimization: inspiration versus algorithmic behavior, critical analysis and recommendations publication-title: Cogn. Comput. – volume: 23 start-page: 177 year: 2020 end-page: 206 ident: b44 article-title: A prediction approach using ensemble empirical mode decomposition-permutation entropy and regularized extreme learning machine for short-term wind speed publication-title: Wind Energy – volume: 11 start-page: 1548 year: 2016 end-page: 1555 ident: b8 article-title: Hourly average wind speed simulation and forecast based on ARMA model in Jeju island, Korea publication-title: J. Electr. Eng. Technol. – volume: 12 start-page: 69 year: 2019 ident: b39 article-title: Wind speed modeling by nested ARIMA processes publication-title: Energies – volume: 542 year: 2020 ident: b34 article-title: Artificial neural network based computing model for wind speed prediction: A case study of coimbatore, Tamil Nadu, India publication-title: Physica A – volume: 164 start-page: 560 year: 2018 end-page: 569 ident: b60 article-title: One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data publication-title: Energy Convers. Manage. – volume: 75 start-page: 123 year: 2017 end-page: 136 ident: b37 article-title: A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting publication-title: Renew. Sustain. Energy Rev. – volume: 94 year: 2020 ident: b62 article-title: A combined forecasting system based on modified multi-objective optimization and sub-model selection strategy for short-term wind speed publication-title: Appl. Soft Comput. – volume: 277 year: 2019 ident: b53 article-title: Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods publication-title: Artificial Intelligence – volume: 216 year: 2020 ident: b27 article-title: Wind speed prediction based on singular spectrum analysis and neural network structural learning publication-title: Energy Convers. Manage. – volume: 2019 year: 2020 ident: b14 article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network publication-title: Energy – volume: 50 start-page: 2503 year: 2020 end-page: 2522 ident: b10 article-title: A novel community detection method based on whale optimization algorithm with evolutionary population publication-title: Appl. Intell. – volume: 205 year: 2020 ident: b13 article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning publication-title: Energy Convers. Manage. – volume: 93 year: 2020 ident: b2 article-title: Energy load time-series forecast using decomposition and autoencoder integrated memory network publication-title: Appl. Soft Comput. – volume: 148 start-page: 895 year: 2017 end-page: 904 ident: b55 article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on elman neural network publication-title: Energy Convers. Manage. – volume: 52 start-page: 1207 year: 2020 end-page: 1232 ident: b36 article-title: A novel combined model for short-term electric load forecasting based on whale optimization algorithm publication-title: Neural Process. Lett. – volume: 12 start-page: 897 issue: 5 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b29 article-title: Comprehensive taxonomies of nature- and iio-inspired optimization: inspiration versus algorithmic behavior, critical analysis and recommendations publication-title: Cogn. Comput. doi: 10.1007/s12559-020-09730-8 – volume: 226 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b56 article-title: Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113500 – volume: 94 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b43 article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103801 – volume: 164 start-page: 560 year: 2018 ident: 10.1016/j.egyr.2021.02.002_b60 article-title: One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.03.030 – volume: 13 start-page: 1666 issue: 7 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b3 article-title: The hybridization of ensemble empirical mode decomposition with forecasting models: application of short-term wind speed and power modeling publication-title: Energies doi: 10.3390/en13071666 – volume: 213 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b32 article-title: Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network publication-title: Energy Convers. Manage. – volume: 216 year: 2021 ident: 10.1016/j.egyr.2021.02.002_b38 article-title: A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting publication-title: Energy – volume: 12 start-page: 254 issue: 2 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b4 article-title: A review on hybrid empirical mode decomposition models for wind speed and wind power prediction publication-title: Energies doi: 10.3390/en12020254 – volume: 385 start-page: 310 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b26 article-title: Echo state network optimization using binary grey wolf algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.069 – volume: 13 start-page: 1115 issue: 7 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b21 article-title: States prediction for solar power and wind speed using BBA-SVM publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2018.5673 – volume: 13 start-page: 1596 issue: 7 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b61 article-title: A hybrid nonlinear forecasting strategy for short-term wind speed publication-title: Energies doi: 10.3390/en13071596 – volume: 11 start-page: 1548 issue: 6 year: 2016 ident: 10.1016/j.egyr.2021.02.002_b8 article-title: Hourly average wind speed simulation and forecast based on ARMA model in Jeju island, Korea publication-title: J. Electr. Eng. Technol. doi: 10.5370/JEET.2016.11.6.1548 – volume: 161 start-page: 55 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b12 article-title: Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements publication-title: Renew. Energy doi: 10.1016/j.renene.2020.05.182 – volume: 6 start-page: 890 issue: 4 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b23 article-title: Ultra-short term wind speed prediction using mathematical morphology decomposition and long short-term memory publication-title: CSEE J. Power Energy Syst. – volume: 24 start-page: 5345 issue: 7 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b49 article-title: Hybrid wind speed prediction model based on recurrent long short-term memory neural network and support vector machine models publication-title: Soft Comput. doi: 10.1007/s00500-019-04292-w – volume: 216 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b27 article-title: Wind speed prediction based on singular spectrum analysis and neural network structural learning publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112956 – volume: 23 start-page: 177 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b44 article-title: A prediction approach using ensemble empirical mode decomposition-permutation entropy and regularized extreme learning machine for short-term wind speed publication-title: Wind Energy doi: 10.1002/we.2422 – volume: 12 start-page: 69 issue: 1 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b39 article-title: Wind speed modeling by nested ARIMA processes publication-title: Energies doi: 10.3390/en12010069 – volume: 158 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b5 article-title: A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113612 – volume: 542 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b34 article-title: Artificial neural network based computing model for wind speed prediction: A case study of coimbatore, Tamil Nadu, India publication-title: Physica A doi: 10.1016/j.physa.2019.123383 – volume: 126 start-page: 736 year: 2018 ident: 10.1016/j.egyr.2021.02.002_b30 article-title: Wind speed forecasting approach based on singular spectrum analysis and adaptive neuro fuzzy inference system publication-title: Renew. Energy doi: 10.1016/j.renene.2017.11.089 – volume: 237 start-page: 1 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b51 article-title: Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.076 – volume: 50 start-page: 2503 issue: 8 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b10 article-title: A novel community detection method based on whale optimization algorithm with evolutionary population publication-title: Appl. Intell. doi: 10.1007/s10489-020-01659-7 – volume: 118 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b20 article-title: An adaptive time-resolution method for ultra-short-term wind prediction publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105814 – volume: 200 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b17 article-title: A novel wind speed prediction method based on robust local mean decomposition, group method of data handling and conditional kernel density estimation publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112099 – volume: 17 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.egyr.2021.02.002_b58 article-title: Wind power prediction based on LS-SVM model with error correction publication-title: Adv. Electr. Comput. Eng. doi: 10.4316/AECE.2017.01001 – volume: 277 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b53 article-title: Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods publication-title: Artificial Intelligence doi: 10.1016/j.artint.2019.103176 – volume: 173 start-page: 123 year: 2018 ident: 10.1016/j.egyr.2021.02.002_b15 article-title: A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.07.070 – volume: 179 start-page: 541 year: 2018 ident: 10.1016/j.egyr.2021.02.002_b19 article-title: Non-Gaussian non-stationary wind pressure forecasting based on the improved empirical wavelet transform publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2018.07.007 – volume: 52 start-page: 1207 issue: 2 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b36 article-title: A novel combined model for short-term electric load forecasting based on whale optimization algorithm publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10300-0 – volume: 75 start-page: 123 year: 2017 ident: 10.1016/j.egyr.2021.02.002_b37 article-title: A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.10.056 – volume: 121 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b24 article-title: Short-term wind speed forecasting based on the Jaya-SVM model publication-title: Int. J. Electr. Power Energy – volume: 205 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b13 article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning publication-title: Energy Convers. Manage. – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.egyr.2021.02.002_b28 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 224 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b25 article-title: A review on multi-objective optimization framework in wind energy forecasting techniques and applications publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113324 – volume: 24 start-page: 11441 issue: 15 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b33 article-title: New SVM kernel soft computing models for wind speed prediction in renewable energy applications publication-title: Soft Comput. doi: 10.1007/s00500-019-04608-w – volume: 162 start-page: 808 year: 2016 ident: 10.1016/j.egyr.2021.02.002_b59 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.10.145 – volume: 32 start-page: 16245 issue: 20 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b35 article-title: Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04849-z – volume: 44 start-page: 152 issue: 2 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b47 article-title: Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation publication-title: Wind Eng. doi: 10.1177/0309524X19849867 – year: 2020 ident: 10.1016/j.egyr.2021.02.002_b40 article-title: Chaotic characteristic analysis of short-term wind speed time series with different time scales publication-title: Energy Sources Part A – volume: 61 start-page: 657 issue: 4 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b48 article-title: Tabu search algorithm based general regression neural network for long term wind speed predictions publication-title: Automatika doi: 10.1080/00051144.2020.1811571 – volume: 143 start-page: 1172 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b52 article-title: A novel non-linear combination system for short-term wind speed forecast publication-title: Renew. Energy doi: 10.1016/j.renene.2019.04.154 – volume: 162 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b11 article-title: An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing publication-title: Measurement doi: 10.1016/j.measurement.2020.107901 – volume: 192 start-page: 37 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b57 article-title: Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.04.006 – volume: 6 start-page: 6997 issue: 4 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b6 article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2913176 – volume: 145 start-page: 2373 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b9 article-title: Sub-hourly forecasting of wind speed and wind energy publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.161 – volume: 22 start-page: 34 year: 2014 ident: 10.1016/j.egyr.2021.02.002_b1 article-title: Extraction of the inherent nature of wind speed using wavelets and FFT publication-title: Energy Sustain. Dev. doi: 10.1016/j.esd.2014.02.004 – volume: 22 start-page: 11575 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b22 article-title: Short-term wind speed forecasting based on improved ant colony algorithm for LSSVM publication-title: Clust. Comput. J. Netw. Softw. Tools Appl. – volume: 98 start-page: 158 year: 2017 ident: 10.1016/j.egyr.2021.02.002_b45 article-title: A prediction method based on wavelet transform and multiple models fusion for chaotic time series publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.03.018 – volume: 148 start-page: 895 year: 2017 ident: 10.1016/j.egyr.2021.02.002_b55 article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on elman neural network publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.05.063 – volume: 93 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b2 article-title: Energy load time-series forecast using decomposition and autoencoder integrated memory network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106390 – volume: 222 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b50 article-title: A compound framework for wind speed forecasting based on comprehensive feature selection, quantile regression incorporated into convolutional simplified long short-term memory network and residual error correction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113234 – volume: 164 start-page: 729 year: 2021 ident: 10.1016/j.egyr.2021.02.002_b16 article-title: Wind speed forecasting based on variational mode decomposition and improved echo state network publication-title: Renew. Energy doi: 10.1016/j.renene.2020.09.109 – volume: 164 start-page: 1508 year: 2021 ident: 10.1016/j.egyr.2021.02.002_b31 article-title: Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast publication-title: Renew. Energy doi: 10.1016/j.renene.2020.10.126 – volume: 41 start-page: 26 issue: 1 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b46 article-title: Short-term wind speed prediction based on improved PSO algorithm optimized EM-ELM publication-title: Energy Sources Part A doi: 10.1080/15567036.2018.1495782 – volume: 42 start-page: 1135 issue: 6 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b42 article-title: Kernel principal component analysis-based least squares support vector machine optimized by improved grey wolf optimization algorithm and application in dynamic liquid level forecasting of beam pump publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331219885273 – volume: 94 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b62 article-title: A combined forecasting system based on modified multi-objective optimization and sub-model selection strategy for short-term wind speed publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106463 – volume: 91 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b41 article-title: Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103573 – volume: 17 start-page: 332 issue: 5 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b54 article-title: Short-term wind speed forecasting based on random forest model combining ensemble empirical mode decomposition and improved harmony search algorithm publication-title: Int. J. Green Eenergy doi: 10.1080/15435075.2020.1731816 – volume: 220 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b18 article-title: Short-term wind speed prediction using time varying filter-based empirical mode decomposition and group method of data handling-based hybrid model publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113076 – volume: 2019 year: 2020 ident: 10.1016/j.egyr.2021.02.002_b14 article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network publication-title: Energy – volume: 131 start-page: 879 year: 2019 ident: 10.1016/j.egyr.2021.02.002_b7 article-title: Wind speed and wind direction forecasting using echo state network with nonlinear functions publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.060 |
| SSID | ssj0001920463 |
| Score | 2.4686356 |
| Snippet | Due to the intermittent, fluctuating and random characteristics of wind system, the output of wind power will become unstable with the change of wind, which... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1217 |
| SubjectTerms | Combination forecasting Echo state network Improved whale optimization algorithm Variational mode decomposition Wind speed |
| Title | A combination forecasting model of wind speed based on decomposition |
| URI | https://dx.doi.org/10.1016/j.egyr.2021.02.002 https://doaj.org/article/2f0eab4806504bc99df6d170971bbfcf |
| Volume | 7 |
| WOSCitedRecordID | wos000701691800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHgRRcX6IgdvsphNs69j1RYPWjwo9BbylBZpS1sVL_52ZzZpWS_14mUPIZvsfhMy35DJN4RcWqDJpVFVwpwTifClTzREDUjkTOU6mXBBxPWhGAzK4bB6apT6wpywIA8cgLvmnjmlBZ7_MaFNVVmf27RA6SOtvfG4-wLraQRT48BbUAqrriyX8UTAHhxvzITkLvf6hWKgPAp28l9eqRbvbzinhsPp75HdyBRpN3zhPtlykwNy16WwRCCarQGlwDidUQtMXaZ1TRs69fQTwmy6mIFbouijLIWO1mHueEzQOiQv_d7z7X0SCyEkRqRsmVhURsqFsoW3XBkgcaZguTFF5n3HVVopoFW8oxSHf4YIIfWiYE5n3hU2S43uHJHWZDpxx4SinExqM5NDu8DinCVKCJZOwJ4NZIy1SboCQpqoEo7FKt7kKh1sLBE8ieBJxiWA1yZX63dmQSNjY-8bxHfdE_Wt6wawuoxWl39ZvU2ylXVkpAqBAsBQow2Tn_zH5KdkB4cMNxLPSGs5f3fnZNt8LEeL-UW9EOH5-N37Adzl4YI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combination+forecasting+model+of+wind+speed+based+on+decomposition&rft.jtitle=Energy+reports&rft.au=Zhongda+Tian&rft.au=Hao+Li&rft.au=Feihong+Li&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=7&rft.spage=1217&rft.epage=1233&rft_id=info:doi/10.1016%2Fj.egyr.2021.02.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2f0eab4806504bc99df6d170971bbfcf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |