Activity recognition using a combination of high gain observer and deep learning computer vision algorithms

•The paper develops a novel method to identify daily living activities of a person using a single wearable sensor on the person's chest.•This paper presents the idea of converting sensor readings to images using spectrograms, so that image processing algorithms can be utilized.•The paper demons...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Intelligent systems with applications Ročník 18; s. 200213
Hlavní autoři: Nouriani, A., McGovern, R., Rajamani, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2023
Elsevier
Témata:
ISSN:2667-3053, 2667-3053
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The paper develops a novel method to identify daily living activities of a person using a single wearable sensor on the person's chest.•This paper presents the idea of converting sensor readings to images using spectrograms, so that image processing algorithms can be utilized.•The paper demonstrates how a state estimation observer can highly improve the performance of a deep learning activity recognition algorithm by creating more meaningful input signals for the learning algorithm.•The paper shows how to perform transfer learning from networks pre-trained on millions of images, thus showing how we can train a powerful deep learning network for activity recognition even with just small datasets.•Extensive experimental validation by presenting data from 7 human subjects collected in their home environments. Inertial sensors have become increasingly popular in human activity classification due to their ease of use and affordability. This paper proposes a novel algorithm for human activity recognition that is a combination of a high-gain observer and deep learning computer vision classification algorithms. The nonlinear high-gain observer designed using Lyapunov analysis accurately estimates the attitude of the chest of a human subject using measurements from a single Inertial Measurement Unit (IMU). The signals processed by the observer are then converted into spectrograms to obtain “images” of the frequency response of the signals. The images for activities from a dataset of 7 human subjects are annotated and used for training/ fine-tuning of several well-known deep learning algorithms for image processing. The results from the best combination of our algorithms shows an exceptional accuracy of 98% for activity recognition. Using deep learning computer vision algorithms, this paper shows how to perform transfer learning from networks pre-trained on millions of images, thus showing how we can train a powerful deep learning network for activity recognition even with just small datasets. The algorithm that uses the high gain observer is shown to perform significantly better than an algorithm based on raw accelerometer and gyro signals.
AbstractList Inertial sensors have become increasingly popular in human activity classification due to their ease of use and affordability. This paper proposes a novel algorithm for human activity recognition that is a combination of a high-gain observer and deep learning computer vision classification algorithms. The nonlinear high-gain observer designed using Lyapunov analysis accurately estimates the attitude of the chest of a human subject using measurements from a single Inertial Measurement Unit (IMU). The signals processed by the observer are then converted into spectrograms to obtain “images” of the frequency response of the signals. The images for activities from a dataset of 7 human subjects are annotated and used for training/ fine-tuning of several well-known deep learning algorithms for image processing. The results from the best combination of our algorithms shows an exceptional accuracy of 98% for activity recognition. Using deep learning computer vision algorithms, this paper shows how to perform transfer learning from networks pre-trained on millions of images, thus showing how we can train a powerful deep learning network for activity recognition even with just small datasets. The algorithm that uses the high gain observer is shown to perform significantly better than an algorithm based on raw accelerometer and gyro signals.
•The paper develops a novel method to identify daily living activities of a person using a single wearable sensor on the person's chest.•This paper presents the idea of converting sensor readings to images using spectrograms, so that image processing algorithms can be utilized.•The paper demonstrates how a state estimation observer can highly improve the performance of a deep learning activity recognition algorithm by creating more meaningful input signals for the learning algorithm.•The paper shows how to perform transfer learning from networks pre-trained on millions of images, thus showing how we can train a powerful deep learning network for activity recognition even with just small datasets.•Extensive experimental validation by presenting data from 7 human subjects collected in their home environments. Inertial sensors have become increasingly popular in human activity classification due to their ease of use and affordability. This paper proposes a novel algorithm for human activity recognition that is a combination of a high-gain observer and deep learning computer vision classification algorithms. The nonlinear high-gain observer designed using Lyapunov analysis accurately estimates the attitude of the chest of a human subject using measurements from a single Inertial Measurement Unit (IMU). The signals processed by the observer are then converted into spectrograms to obtain “images” of the frequency response of the signals. The images for activities from a dataset of 7 human subjects are annotated and used for training/ fine-tuning of several well-known deep learning algorithms for image processing. The results from the best combination of our algorithms shows an exceptional accuracy of 98% for activity recognition. Using deep learning computer vision algorithms, this paper shows how to perform transfer learning from networks pre-trained on millions of images, thus showing how we can train a powerful deep learning network for activity recognition even with just small datasets. The algorithm that uses the high gain observer is shown to perform significantly better than an algorithm based on raw accelerometer and gyro signals.
ArticleNumber 200213
Author McGovern, R.
Rajamani, R.
Nouriani, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Nouriani
  fullname: Nouriani, A.
  email: nouri011@umn.edu
  organization: Mechanical Engineering at the University of Minnesota – Twin Cities, Minneapolis, MN 55455, United States of America
– sequence: 2
  givenname: R.
  surname: McGovern
  fullname: McGovern, R.
  email: rmcgover@umn.edu
  organization: Department of Neurosurgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455, United States of America
– sequence: 3
  givenname: R.
  orcidid: 0000-0001-9931-7419
  surname: Rajamani
  fullname: Rajamani, R.
  email: rajamani@umn.edu
  organization: Mechanical Engineering at the University of Minnesota – Twin Cities, Minneapolis, MN 55455, United States of America
BookMark eNp9kctqGzEUhoeSQNM0L5DVvIBd3WcM2YTQSyDQTbsWR7fxccaSkRSXvH01dguli2x0OdL3I53vQ3cRU_Rdd0vJmhKqPu3WWH7BmhHG20AY5e-6K6bUsOJE8ot_1u-7m1J2pN0ZKeVCXHXP97biEetrn71NU8SKKfYvBePUQ2_T3mCEUy2FfovTtp8A28YUn48-9xBd77w_9LOHHBeqMYeX2o6OWBYO5illrNt9-dhdBpiLv_kzX3c_v3z-8fBt9fT96-PD_dPKCkrqym4k0FEEIcMmCAGjM9JYRQyzynEQ3DhgMFBquXReSWmIcW4YOLNemsHx6-7xnOsS7PQh4x7yq06A-lRIedKQK9rZa-EY3Ug1bIaghB34OEolQ1BmZIGMAlrWeM6yOZWSfdAW66khNQPOmhK9ONA7vTjQiwN9dtBQ9h_69ylvQndnyLcGHdFnXSz6aL3DJqi2H-Bb-G9rq6Pz
CitedBy_id crossref_primary_10_1051_epjconf_202533002007
crossref_primary_10_1016_j_engappai_2024_109172
Cites_doi 10.1109/TPAMI.2017.2773081
10.1109/TIM.2015.2504078
10.1016/j.neucom.2021.06.102
10.1109/ACCESS.2020.3037715
10.1016/j.ymssp.2018.02.038
10.3389/fnagi.2023.1117802
10.1016/j.automatica.2020.108814
10.1007/s11263-022-01594-9
10.1016/j.automatica.2010.06.004
10.1016/j.gaitpost.2020.04.010
10.1016/j.automatica.2017.07.067
10.1109/TII.2020.3015934
10.1109/TAC.2018.2882417
10.1109/TAC.2016.2587385
10.1016/j.ifacol.2022.11.152
10.1109/JSEN.2021.3069927
10.1007/978-1-4939-0802-8
10.1016/j.future.2022.12.004
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.iswa.2023.200213
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2667-3053
ExternalDocumentID oai_doaj_org_article_4d21956797f64c7388565ff6b82f084a
10_1016_j_iswa_2023_200213
S2667305323000388
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
GROUPED_DOAJ
M41
M~E
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-c95a184f45f9f44a8db5bc60b2c6d3a43bda2a711c35de655b0bdd7732ce5b7d3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001307792900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2667-3053
IngestDate Fri Oct 03 12:50:40 EDT 2025
Tue Nov 18 21:19:02 EST 2025
Sat Nov 29 07:35:15 EST 2025
Sat Nov 04 15:30:39 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Activity recognition
Nonlinear observers
Inertial sensors
Daily living activities
Estimation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-c95a184f45f9f44a8db5bc60b2c6d3a43bda2a711c35de655b0bdd7732ce5b7d3
ORCID 0000-0001-9931-7419
OpenAccessLink https://doaj.org/article/4d21956797f64c7388565ff6b82f084a
ParticipantIDs doaj_primary_oai_doaj_org_article_4d21956797f64c7388565ff6b82f084a
crossref_citationtrail_10_1016_j_iswa_2023_200213
crossref_primary_10_1016_j_iswa_2023_200213
elsevier_sciencedirect_doi_10_1016_j_iswa_2023_200213
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Intelligent systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wang, Rajamani, Bevly (bib0023) 2017; 62
(accessed Aug. 29, 2020).
Simonyan, K. & Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image Recognition,” Sep. 2014.
García, Villar, Fáñez, Villar, de la Cal, Cho (bib0043) 2022; 500
Markley, F. & Crassidis, J., “Fundamentals of spacecraft attitude determination and control,” pp. 73–76, 2014.
Assidiq, Khalifa, Islam, Khan (bib0013) 2008
Scandaroli, Morin (bib0019) 2011
Mascret, Bielmann, Fall, Bouyer, Gosselin (bib0005) 2018
(accessed Dec. 19, 2021).
Tavor (bib0037) 2020
“OptiTrack V120 Duo & Trio Datasheet,” 2018.
Rajamani, Jeon, Movahedi, Zemouche (bib0031) 2020; 114
2017.
Crassidis, Markley (bib0018) 2006; 30
Nouriani, McGovern, Rajamani (bib48) 2023
Gulli, Pal (bib0035) 2017
Sani, Wiratunga, Massie, Cooper (bib0004) 2017
Zemouche, Rajamani, Phanomchoeng, Boulkroune, Rafaralahy, Zasadzinski (bib0021) 2017; 85
Hung, Thacher, White (bib0011) 1989
Nouriani (bib0046) 2023; 15
Hou (bib0001) 2020
Qiu, Wang, Zhao, Hu (bib0027) 2016; 65
“Runcam 5 Datasheet,” 2020.
Mekruksavanich, Jantawong, Jitpattanakul (bib0044) 2022
Krizhevsky, Sutskever, Hinton (bib0040) 2012; 25
Li, Hoiem (bib0010) 2016; 40
Zheng, Wang, Ordieres-Meré (bib0002) 2018; 18
Nouredanesh, Godfrey, Howcroft, Lemaire, Tung (bib0028) 2021; 85
Kong, Fu (bib0030) 2022; 130
Alema Khatun, Abu Yousuf (bib0009) 2020
Park, Kim, Seo (bib0012) 2020
Barra, Lesecq, Zarudniev, Debicki, Mareau, Ouvry (bib0015) 2019
Ramanujam, Perumal, Padmavathi (bib0007) 2021; 21
He, Zhang, Ren, Sun (bib0036) 2016
Khatun (bib0045) 2022; 10
Nouriani, McGovern, Rajamani (bib0024) 2021
Nouriani, McGovern, Rajamani (bib0047) 2022; 55
Demrozi, Pravadelli, Bihorac, Rashidi (bib0029) 2020; 8
Khalil (bib0020) 2015
Boizot, Busvelle, Gauthier (bib0022) 2010; 46
SparkFun OpenLog Artemis - DEV-16832 - SparkFun Electronics.
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., & Keutzer, K., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5MB model size,”
Wozniak, Wieczorek, Silka, Polap (bib0026) 2021; 17
Huang, Liu, van der Maaten, Weinberger (bib0041) 2017
Casale, Pujol, Radeva (bib0003) 2011
Li, Liu, Zhang, Hang (bib0014) 2014
Wang, Rajamani (bib0017) 2018; 109
Zemouche, Zhang, Mazenc, Rajamani (bib0032) 2019; 64
Woźniak, Wieczorek, Siłka (bib0025) 2023; 141
Hou (10.1016/j.iswa.2023.200213_bib0001) 2020
Woźniak (10.1016/j.iswa.2023.200213_bib0025) 2023; 141
Hung (10.1016/j.iswa.2023.200213_bib0011) 1989
Wang (10.1016/j.iswa.2023.200213_bib0017) 2018; 109
Li (10.1016/j.iswa.2023.200213_bib0014) 2014
Rajamani (10.1016/j.iswa.2023.200213_bib0031) 2020; 114
Wozniak (10.1016/j.iswa.2023.200213_bib0026) 2021; 17
Nouriani (10.1016/j.iswa.2023.200213_bib0047) 2022; 55
Boizot (10.1016/j.iswa.2023.200213_bib0022) 2010; 46
Qiu (10.1016/j.iswa.2023.200213_bib0027) 2016; 65
Sani (10.1016/j.iswa.2023.200213_bib0004) 2017
Assidiq (10.1016/j.iswa.2023.200213_bib0013) 2008
Mekruksavanich (10.1016/j.iswa.2023.200213_bib0044) 2022
10.1016/j.iswa.2023.200213_bib0033
Kong (10.1016/j.iswa.2023.200213_bib0030) 2022; 130
10.1016/j.iswa.2023.200213_bib0034
Tavor (10.1016/j.iswa.2023.200213_bib0037) 2020
Crassidis (10.1016/j.iswa.2023.200213_bib0018) 2006; 30
Khalil (10.1016/j.iswa.2023.200213_bib0020) 2015
10.1016/j.iswa.2023.200213_bib0016
10.1016/j.iswa.2023.200213_bib0038
Zemouche (10.1016/j.iswa.2023.200213_bib0032) 2019; 64
10.1016/j.iswa.2023.200213_bib0039
Wang (10.1016/j.iswa.2023.200213_bib0023) 2017; 62
García (10.1016/j.iswa.2023.200213_bib0043) 2022; 500
Casale (10.1016/j.iswa.2023.200213_bib0003) 2011
Nouredanesh (10.1016/j.iswa.2023.200213_bib0028) 2021; 85
Demrozi (10.1016/j.iswa.2023.200213_bib0029) 2020; 8
Li (10.1016/j.iswa.2023.200213_bib0010) 2016; 40
Krizhevsky (10.1016/j.iswa.2023.200213_bib0040) 2012; 25
Ramanujam (10.1016/j.iswa.2023.200213_bib0007) 2021; 21
Mascret (10.1016/j.iswa.2023.200213_bib0005) 2018
Zheng (10.1016/j.iswa.2023.200213_bib0002) 2018; 18
Nouriani (10.1016/j.iswa.2023.200213_bib0024) 2021
Gulli (10.1016/j.iswa.2023.200213_bib0035) 2017
Nouriani (10.1016/j.iswa.2023.200213_bib48) 2023
Park (10.1016/j.iswa.2023.200213_bib0012) 2020
Huang (10.1016/j.iswa.2023.200213_bib0041) 2017
10.1016/j.iswa.2023.200213_bib0042
Khatun (10.1016/j.iswa.2023.200213_bib0045) 2022; 10
Barra (10.1016/j.iswa.2023.200213_bib0015) 2019
Alema Khatun (10.1016/j.iswa.2023.200213_bib0009) 2020
Zemouche (10.1016/j.iswa.2023.200213_bib0021) 2017; 85
He (10.1016/j.iswa.2023.200213_bib0036) 2016
Nouriani (10.1016/j.iswa.2023.200213_bib0046) 2023; 15
Scandaroli (10.1016/j.iswa.2023.200213_bib0019) 2011
References_xml – start-page: 225
  year: 2020
  end-page: 234
  ident: bib0001
  article-title: A study on IMU-based human activity recognition using deep learning and traditional machine learning
  publication-title: 2020 5th Int. Conf. Comput. Commun. Syst. ICCCS 2020
– volume: 62
  start-page: 1940
  year: 2017
  end-page: 1945
  ident: bib0023
  article-title: Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation
  publication-title: IEEE Trans Automat Contr
– year: 2015
  ident: bib0020
  article-title: Nonlinear control
– volume: 114
  year: 2020
  ident: bib0031
  article-title: On the need for switched-gain observers for non-monotonic nonlinear systems
  publication-title: Automatica
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0041
  article-title: Densely Connected Convolutional Networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 141
  start-page: 489
  year: 2023
  end-page: 499
  ident: bib0025
  article-title: BiLSTM deep neural network model for imbalanced medical data of IoT systems
  publication-title: Futur Gener Comput Syst
– year: 2020
  ident: bib0009
  article-title: Human activity recognition using smartphone sensor based on selective classifiers
  publication-title: 2020 2nd Int. Conf. Sustain. Technol. Ind. 4.0, STI 2020
– start-page: 239
  year: 2018
  end-page: 242
  ident: bib0005
  article-title: Real-time human physical activity recognition with low latency prediction feedback using raw IMU Data
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
– start-page: 96
  year: 2017
  end-page: 104
  ident: bib0035
  article-title: Deep learning with keras
– volume: 8
  start-page: 210816
  year: 2020
  end-page: 210836
  ident: bib0029
  article-title: Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey
  publication-title: IEEE access : practical innovations, open solutions
– start-page: 7383
  year: 2020
  end-page: 7390
  ident: bib0037
  article-title: Do not have enough data? Seep learning to the rescue!
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 18
  start-page: 2146
  year: 2018
  ident: bib0002
  article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0
  publication-title: Sensors 2018
– start-page: 330
  year: 2017
  end-page: 344
  ident: bib0004
  article-title: kNN sampling for personalised human activity recognition
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 64
  start-page: 3194
  year: 2019
  end-page: 3209
  ident: bib0032
  article-title: High-Gain Nonlinear Observer With Lower Tuning Parameter
  publication-title: IEEE Trans Automat Contr
– volume: 55
  start-page: 1
  year: 2022
  end-page: 6
  ident: bib0047
  article-title: Deep-learning-based human activity recognition using wearable sensors
  publication-title: IFAC-PapersOnLine
– start-page: 1201
  year: 2019
  end-page: 1206
  ident: bib0015
  article-title: Localization system in GPS-denied environments using radar and imu measurements: Application to a smart white cane
  publication-title: 2019 18th Eur. Control Conf. ECC 2019
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0036
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: “OptiTrack V120 Duo & Trio Datasheet,” 2018.
– volume: 109
  start-page: 268
  year: 2018
  end-page: 284
  ident: bib0017
  article-title: Direction cosine matrix estimation with an inertial measurement unit
  publication-title: Mech Syst Signal Process
– volume: 46
  start-page: 1483
  year: 2010
  end-page: 1488
  ident: bib0022
  article-title: An adaptive high-gain observer for nonlinear systems
  publication-title: Automatica
– volume: 17
  start-page: 2101
  year: 2021
  end-page: 2111
  ident: bib0026
  article-title: Body pose prediction based on motion sensor data and recurrent neural network
  publication-title: IEEE Trans Ind Informatics
– start-page: 289
  year: 2011
  end-page: 296
  ident: bib0003
  article-title: Human activity recognition from accelerometer data using a wearable device
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 130
  start-page: 1366
  year: 2022
  end-page: 1401
  ident: bib0030
  article-title: Human action recognition and prediction: A survey
  publication-title: Int J Comput Vis
– volume: 65
  start-page: 939
  year: 2016
  end-page: 950
  ident: bib0027
  article-title: Using distributed wearable sensors to measure and evaluate human lower limb motions
  publication-title: Ieee Transactions on Instrumentation and Measurement
– reference: (accessed Aug. 29, 2020).
– reference: , 2017.
– reference: (accessed Dec. 19, 2021).
– volume: 30
  start-page: 12
  year: 2006
  end-page: 28
  ident: bib0018
  article-title: Survey of nonlinear attitude estimation methods
  publication-title: arcaiaaorg
– volume: 85
  start-page: 412
  year: 2017
  end-page: 425
  ident: bib0021
  article-title: Circle criterion-based
  publication-title: Automatica
– start-page: 4524
  year: 2011
  end-page: 4530
  ident: bib0019
  article-title: Nonlinear filter design for pose and IMU bias estimation
  publication-title: Proceedings - IEEE International Conference on Robotics and Automation
– volume: 85
  start-page: 178
  year: 2021
  end-page: 190
  ident: bib0028
  article-title: Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions
  publication-title: Gait & posture
– volume: 500
  start-page: 231
  year: 2022
  end-page: 240
  ident: bib0043
  article-title: Towards effective detection of elderly falls with CNN-LSTM neural networks
  publication-title: Neurocomputing
– start-page: 153
  year: 1989
  end-page: 158
  ident: bib0011
  article-title: Calibration of accelerometer triad of an IMU with drifting Z-accelerometer bias
  publication-title: IEEE proceedings of the national aerospace and electronics conference
– year: 2023
  ident: bib48
  publication-title: Activity Recognition Using a High Gain Observer and Spectrograms, Proceedings of the 2023 American Control Conference, May 31-June 2
– volume: 25
  year: 2012
  ident: bib0040
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– reference: Markley, F. & Crassidis, J., “Fundamentals of spacecraft attitude determination and control,” pp. 73–76, 2014.
– volume: 10
  year: 2022
  ident: bib0045
  article-title: Deep CNN-LSTM with self-attention model for human activity recognition using wearable sensor
  publication-title: IEEE J Transl Eng Heal Med
– reference: “Runcam 5 Datasheet,” 2020.
– start-page: 82
  year: 2008
  end-page: 88
  ident: bib0013
  article-title: Real time lane detection for autonomous vehicles
  publication-title: Proceedings of the International Conference on Computer and Communication Engineering 2008, ICCCE08: Global Links for Human Development
– volume: 21
  start-page: 1309
  year: 2021
  end-page: 13040
  ident: bib0007
  article-title: Human activity recognition with smartphone and wearable sensors using deep learning techniques: a review
  publication-title: IEEE Sens J
– year: 2014
  ident: bib0014
  article-title: LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments
  publication-title: 2014 DGON Inert. Sensors Syst. ISS 2014 - Proc.
– reference: “SparkFun OpenLog Artemis - DEV-16832 - SparkFun Electronics.”
– start-page: 342
  year: 2022
  end-page: 345
  ident: bib0044
  article-title: LSTM-XGB: a new deep learning model for human activity recognition based on LSTM and XGBoost
  publication-title: 7th Int. Conf. Digit. Arts, Media Technol. DAMT 2022 5th ECTI North. Sect. Conf. Electr. Electron. Comput. Telecommun. Eng. NCON 2022
– reference: Simonyan, K. & Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image Recognition,” Sep. 2014.
– volume: 15
  start-page: 91
  year: 2023
  ident: bib0046
  article-title: Real world validation of activity recognition algorithm and development of novel behavioral biomarkers of falls in aged control and movement disorder patients
  publication-title: Front Aging Neurosci
– reference: Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., & Keutzer, K., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5MB model size,”
– volume: 40
  start-page: 2935
  year: 2016
  end-page: 2947
  ident: bib0010
  article-title: Learning without forgetting
  publication-title: Ieee Transactions on Pattern Analysis and Machine Intelligence
– start-page: 12
  year: 2021
  end-page: 25
  ident: bib0024
  article-title: Step length estimation using inertial measurements units
  publication-title: Proceedings of the 2021 American Control Conference (ACC), May 25-28
– start-page: 800
  year: 2020
  end-page: 803
  ident: bib0012
  article-title: Effects of initial attitude estimation errors on loosely coupled smartphone GPS/IMU integration system
  publication-title: Int. Conf. Control. Autom. Syst.
– volume: 10
  year: 2022
  ident: 10.1016/j.iswa.2023.200213_bib0045
  article-title: Deep CNN-LSTM with self-attention model for human activity recognition using wearable sensor
  publication-title: IEEE J Transl Eng Heal Med
– volume: 40
  start-page: 2935
  issue: 12
  year: 2016
  ident: 10.1016/j.iswa.2023.200213_bib0010
  article-title: Learning without forgetting
  publication-title: Ieee Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2773081
– volume: 65
  start-page: 939
  issue: 4
  year: 2016
  ident: 10.1016/j.iswa.2023.200213_bib0027
  article-title: Using distributed wearable sensors to measure and evaluate human lower limb motions
  publication-title: Ieee Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2015.2504078
– volume: 18
  start-page: 2146
  year: 2018
  ident: 10.1016/j.iswa.2023.200213_bib0002
  article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0
– volume: 500
  start-page: 231
  year: 2022
  ident: 10.1016/j.iswa.2023.200213_bib0043
  article-title: Towards effective detection of elderly falls with CNN-LSTM neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.06.102
– volume: 8
  start-page: 210816
  year: 2020
  ident: 10.1016/j.iswa.2023.200213_bib0029
  article-title: Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey
  publication-title: IEEE access : practical innovations, open solutions
  doi: 10.1109/ACCESS.2020.3037715
– volume: 109
  start-page: 268
  year: 2018
  ident: 10.1016/j.iswa.2023.200213_bib0017
  article-title: Direction cosine matrix estimation with an inertial measurement unit
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.02.038
– start-page: 12
  year: 2021
  ident: 10.1016/j.iswa.2023.200213_bib0024
  article-title: Step length estimation using inertial measurements units
– start-page: 225
  year: 2020
  ident: 10.1016/j.iswa.2023.200213_bib0001
  article-title: A study on IMU-based human activity recognition using deep learning and traditional machine learning
– volume: 15
  start-page: 91
  year: 2023
  ident: 10.1016/j.iswa.2023.200213_bib0046
  article-title: Real world validation of activity recognition algorithm and development of novel behavioral biomarkers of falls in aged control and movement disorder patients
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2023.1117802
– volume: 114
  year: 2020
  ident: 10.1016/j.iswa.2023.200213_bib0031
  article-title: On the need for switched-gain observers for non-monotonic nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.108814
– start-page: 770
  year: 2016
  ident: 10.1016/j.iswa.2023.200213_bib0036
  article-title: Deep residual learning for image recognition
– ident: 10.1016/j.iswa.2023.200213_bib0039
– volume: 25
  year: 2012
  ident: 10.1016/j.iswa.2023.200213_bib0040
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
– volume: 130
  start-page: 1366
  issue: 5
  year: 2022
  ident: 10.1016/j.iswa.2023.200213_bib0030
  article-title: Human action recognition and prediction: A survey
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-022-01594-9
– year: 2020
  ident: 10.1016/j.iswa.2023.200213_bib0009
  article-title: Human activity recognition using smartphone sensor based on selective classifiers
– start-page: 82
  year: 2008
  ident: 10.1016/j.iswa.2023.200213_bib0013
  article-title: Real time lane detection for autonomous vehicles
– volume: 46
  start-page: 1483
  issue: 9
  year: 2010
  ident: 10.1016/j.iswa.2023.200213_bib0022
  article-title: An adaptive high-gain observer for nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.06.004
– volume: 30
  start-page: 12
  issue: 1
  year: 2006
  ident: 10.1016/j.iswa.2023.200213_bib0018
  article-title: Survey of nonlinear attitude estimation methods
  publication-title: arcaiaaorg
– volume: 85
  start-page: 178
  year: 2021
  ident: 10.1016/j.iswa.2023.200213_bib0028
  article-title: Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions
  publication-title: Gait & posture
  doi: 10.1016/j.gaitpost.2020.04.010
– start-page: 4700
  year: 2017
  ident: 10.1016/j.iswa.2023.200213_bib0041
  article-title: Densely Connected Convolutional Networks
– start-page: 239
  year: 2018
  ident: 10.1016/j.iswa.2023.200213_bib0005
  article-title: Real-time human physical activity recognition with low latency prediction feedback using raw IMU Data
– ident: 10.1016/j.iswa.2023.200213_bib0033
– start-page: 342
  year: 2022
  ident: 10.1016/j.iswa.2023.200213_bib0044
  article-title: LSTM-XGB: a new deep learning model for human activity recognition based on LSTM and XGBoost
– start-page: 800
  year: 2020
  ident: 10.1016/j.iswa.2023.200213_bib0012
  article-title: Effects of initial attitude estimation errors on loosely coupled smartphone GPS/IMU integration system
– volume: 85
  start-page: 412
  year: 2017
  ident: 10.1016/j.iswa.2023.200213_bib0021
  article-title: Circle criterion-basedH∞ observer design for Lipschitz and monotonic nonlinear systems – Enhanced LMI conditions and constructive discussions
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.07.067
– start-page: 1201
  year: 2019
  ident: 10.1016/j.iswa.2023.200213_bib0015
  article-title: Localization system in GPS-denied environments using radar and imu measurements: Application to a smart white cane
– volume: 17
  start-page: 2101
  issue: 3
  year: 2021
  ident: 10.1016/j.iswa.2023.200213_bib0026
  article-title: Body pose prediction based on motion sensor data and recurrent neural network
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2020.3015934
– year: 2014
  ident: 10.1016/j.iswa.2023.200213_bib0014
  article-title: LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments
– volume: 64
  start-page: 3194
  issue: 8
  year: 2019
  ident: 10.1016/j.iswa.2023.200213_bib0032
  article-title: High-Gain Nonlinear Observer With Lower Tuning Parameter
  publication-title: IEEE Trans Automat Contr
  doi: 10.1109/TAC.2018.2882417
– start-page: 153
  year: 1989
  ident: 10.1016/j.iswa.2023.200213_bib0011
  article-title: Calibration of accelerometer triad of an IMU with drifting Z-accelerometer bias
– start-page: 330
  year: 2017
  ident: 10.1016/j.iswa.2023.200213_bib0004
  article-title: kNN sampling for personalised human activity recognition
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– ident: 10.1016/j.iswa.2023.200213_bib0042
– year: 2023
  ident: 10.1016/j.iswa.2023.200213_bib48
– start-page: 7383
  year: 2020
  ident: 10.1016/j.iswa.2023.200213_bib0037
  article-title: Do not have enough data? Seep learning to the rescue!
– start-page: 96
  year: 2017
  ident: 10.1016/j.iswa.2023.200213_bib0035
– volume: 62
  start-page: 1940
  issue: 4
  year: 2017
  ident: 10.1016/j.iswa.2023.200213_bib0023
  article-title: Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation
  publication-title: IEEE Trans Automat Contr
  doi: 10.1109/TAC.2016.2587385
– ident: 10.1016/j.iswa.2023.200213_bib0038
– volume: 55
  start-page: 1
  issue: 37
  year: 2022
  ident: 10.1016/j.iswa.2023.200213_bib0047
  article-title: Deep-learning-based human activity recognition using wearable sensors
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.11.152
– volume: 21
  start-page: 1309
  issue: 12
  year: 2021
  ident: 10.1016/j.iswa.2023.200213_bib0007
  article-title: Human activity recognition with smartphone and wearable sensors using deep learning techniques: a review
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3069927
– ident: 10.1016/j.iswa.2023.200213_bib0016
  doi: 10.1007/978-1-4939-0802-8
– volume: 141
  start-page: 489
  year: 2023
  ident: 10.1016/j.iswa.2023.200213_bib0025
  article-title: BiLSTM deep neural network model for imbalanced medical data of IoT systems
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2022.12.004
– start-page: 289
  year: 2011
  ident: 10.1016/j.iswa.2023.200213_bib0003
  article-title: Human activity recognition from accelerometer data using a wearable device
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– year: 2015
  ident: 10.1016/j.iswa.2023.200213_bib0020
– ident: 10.1016/j.iswa.2023.200213_bib0034
– start-page: 4524
  year: 2011
  ident: 10.1016/j.iswa.2023.200213_bib0019
  article-title: Nonlinear filter design for pose and IMU bias estimation
SSID ssj0002811344
Score 2.27161
Snippet •The paper develops a novel method to identify daily living activities of a person using a single wearable sensor on the person's chest.•This paper presents...
Inertial sensors have become increasingly popular in human activity classification due to their ease of use and affordability. This paper proposes a novel...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 200213
SubjectTerms Activity recognition
Daily living activities
Deep learning
Estimation
Inertial sensors
Nonlinear observers
Title Activity recognition using a combination of high gain observer and deep learning computer vision algorithms
URI https://dx.doi.org/10.1016/j.iswa.2023.200213
https://doaj.org/article/4d21956797f64c7388565ff6b82f084a
Volume 18
WOSCitedRecordID wos001307792900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2667-3053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811344
  issn: 2667-3053
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2667-3053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811344
  issn: 2667-3053
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8sCGIuLYjpOxoFYsVAwgdYv8LCklrdoCG7-dc5xWZSkLS6REfkTns-476_N9CF2T2PDY5CqCXFlFzB80KUAWUeIAHQsFe4TqWmxC9PvZYJA_rUl9eU5YKA8cDHfLTOKvtIlcuJRpQbMMIIhzqcoSF2eshkaxyNeSqVF9ZEQIrZVcIQDBLgJXa27MBHJXOf_yRYcSGkgK9FdUqov3rwWntYDT20e7DVLEnfCHB2jLVodob6nCgJtNeYTeOjooQOAVGWhSYc9nH2KJwaEg963NjycO--rEeChLeFH-PBYGkpXBxtopbgQkhr5PmCNcPMdyPJzMysXr-_wYvfS6z_cPUSOhEGlG4kWkcy4hh3OMu9wxJjOjuNJprBKdGioZVUYmUhCiKTc25VzFyhghaKItV8LQE9SqJpU9RdgCDOc2lzyFfjzVihhLlSOaE-cybtuILE1Y6Ka-uJe5GBdLItmo8GYvvNmLYPY2uln1mYbqGhtb3_mVWbX0lbHrD-AvReMvxV_-0kZ8ua5FAzICeIChyg2Tn_3H5Odoxw8ZCJMXqLWYfdhLtK0_F-V8dlW7MDwfv7s_Tkf1Bg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+recognition+using+a+combination+of+high+gain+observer+and+deep+learning+computer+vision+algorithms&rft.jtitle=Intelligent+systems+with+applications&rft.au=Nouriani%2C+A.&rft.au=McGovern%2C+R.&rft.au=Rajamani%2C+R.&rft.date=2023-05-01&rft.issn=2667-3053&rft.eissn=2667-3053&rft.volume=18&rft.spage=200213&rft_id=info:doi/10.1016%2Fj.iswa.2023.200213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_iswa_2023_200213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3053&client=summon