Safeguarding IoT consumer devices: Deep learning with TinyML driven real-time anomaly detection for predictive maintenance
Internet of Things (IoT) security is paramount for enterprises, as it includes several strategies, techniques, actions, and protocols that aim to alleviate the high vulnerability of cutting-edge businesses. IoT consumer devices, from smart home appliances to wearable gadgets, have become ubiquitous...
Saved in:
| Published in: | Ain Shams Engineering Journal Vol. 16; no. 2; p. 103281 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.02.2025
Elsevier |
| Subjects: | |
| ISSN: | 2090-4479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Internet of Things (IoT) security is paramount for enterprises, as it includes several strategies, techniques, actions, and protocols that aim to alleviate the high vulnerability of cutting-edge businesses. IoT consumer devices, from smart home appliances to wearable gadgets, have become ubiquitous daily, facilitating automation and seamless connectivity. However, ensuring their reliability and security presents a tremendous challenge. Anomaly detection methods offer a promising solution, especially those powered by TinyML (Machine Learning (ML) on Tiny Devices). These IoT devices can autonomously identify unusual behaviours or patterns that diverge from regular operation by leveraging the proficiencies of deep learning (DL) techniques enhanced for resource-constraint environments, like neural networks. Incorporating DL, anomaly detection, and TinyML allows real-time monitoring and proactive mitigation of malfunctions or security breaches in IoT devices. This advanced technology ensures improved reliability, privacy, and overall user experience in the dynamic landscape of connected devices, whether identifying irregular health data or detecting unauthorized access attempts on a smart door lock from the wearable fitness tracker. Therefore, this study develops a new Deep Learning technique to secure IoT consumer devices with TinyML Driven Real-time Anomaly Detection for Predictive Maintenance (DLTML-RTADPM). The DLTML-RTADPM technique aims to recognize and categorize the anomalies in IoT consumer devices. At the primary phase, the DLTML-RTADPM model normalizes the input data using Z-score normalization. In the DLTML-RTADPM method, the Fennec Fox Optimization Algorithm (FFA) is used for a high dimensionality reduction process where the optimal feature set is chosen. The DLTML-RTADPM technique implements gradient least mean squares with a bidirectional long short-term memory (GLMS-BiLSTM) approach for anomaly detection. To further improve the detection results of the DLTML-RTADPM technique, the Jaya optimization algorithm (JOA)-based hyperparameter tuning process is utilized. A series of simulations are performed on the benchmark dataset to ensure better detection outcomes of the DLTML-RTADPM model. The investigational validation of the DLTML-RTADPM method portrayed a superior accuracy value of 98.11% over other techniques. |
|---|---|
| AbstractList | Internet of Things (IoT) security is paramount for enterprises, as it includes several strategies, techniques, actions, and protocols that aim to alleviate the high vulnerability of cutting-edge businesses. IoT consumer devices, from smart home appliances to wearable gadgets, have become ubiquitous daily, facilitating automation and seamless connectivity. However, ensuring their reliability and security presents a tremendous challenge. Anomaly detection methods offer a promising solution, especially those powered by TinyML (Machine Learning (ML) on Tiny Devices). These IoT devices can autonomously identify unusual behaviours or patterns that diverge from regular operation by leveraging the proficiencies of deep learning (DL) techniques enhanced for resource-constraint environments, like neural networks. Incorporating DL, anomaly detection, and TinyML allows real-time monitoring and proactive mitigation of malfunctions or security breaches in IoT devices. This advanced technology ensures improved reliability, privacy, and overall user experience in the dynamic landscape of connected devices, whether identifying irregular health data or detecting unauthorized access attempts on a smart door lock from the wearable fitness tracker. Therefore, this study develops a new Deep Learning technique to secure IoT consumer devices with TinyML Driven Real-time Anomaly Detection for Predictive Maintenance (DLTML-RTADPM). The DLTML-RTADPM technique aims to recognize and categorize the anomalies in IoT consumer devices. At the primary phase, the DLTML-RTADPM model normalizes the input data using Z-score normalization. In the DLTML-RTADPM method, the Fennec Fox Optimization Algorithm (FFA) is used for a high dimensionality reduction process where the optimal feature set is chosen. The DLTML-RTADPM technique implements gradient least mean squares with a bidirectional long short-term memory (GLMS-BiLSTM) approach for anomaly detection. To further improve the detection results of the DLTML-RTADPM technique, the Jaya optimization algorithm (JOA)-based hyperparameter tuning process is utilized. A series of simulations are performed on the benchmark dataset to ensure better detection outcomes of the DLTML-RTADPM model. The investigational validation of the DLTML-RTADPM method portrayed a superior accuracy value of 98.11% over other techniques. |
| ArticleNumber | 103281 |
| Author | Katib, Iyad Ragab, Mahmoud Albassam, Emad Sharaf, Sanaa A. |
| Author_xml | – sequence: 1 givenname: Iyad surname: Katib fullname: Katib, Iyad email: iakatib@kau.edu.sa – sequence: 2 givenname: Emad surname: Albassam fullname: Albassam, Emad email: ealbassam@kau.edu.sa – sequence: 3 givenname: Sanaa A. surname: Sharaf fullname: Sharaf, Sanaa A. email: ssharaf@kau.edu.sa – sequence: 4 givenname: Mahmoud surname: Ragab fullname: Ragab, Mahmoud email: mragab@kau.edu.sa |
| BookMark | eNp9kc2O0zAUhbMYJIZhXoCVXyDFdpzERmzQ8FepiAVlbd3YN-VWiV3ZmaLy9DgUNixmZfvK39E957yobkIMWFWvBN8ILrrXxw1kPG4kl20ZNFKLm-pWcsNrpXrzvLrPmQZe7lK3ur2tfn2DEQ-PkDyFA9vGPXMx5McZE_N4Jof5DXuPeGITQgrrn5-0_GB7CpcvO-YTnTGwhDDVC83IIMQZpkthF3QLxcDGmNgpoafyPCObgcKCAYLDl9WzEaaM93_Pu-r7xw_7h8_17uun7cO7Xe2U4EvtGq6hEQZbZVTjOm-cUV3fecV1g8WoGPseeu_bQRdnru34wMd2AOFAOuWbu2p71fURjvaUaIZ0sRHI_hnEdLCQFnITWm_kiE7L1shO9cCNcb5Xvu-0HlEMqmjpq5ZLMeeEo3W0wGp0SUCTFdyuNdijXWuwaw32WkNB5X_ov1WehN5eISwBnQmTzY6whOcplYCLA3oK_w0hgqa4 |
| CitedBy_id | crossref_primary_10_1016_j_iot_2025_101621 crossref_primary_10_1371_journal_pone_0329227 crossref_primary_10_3390_app15105640 crossref_primary_10_1016_j_micpro_2025_105172 crossref_primary_10_1016_j_asej_2025_103620 crossref_primary_10_3390_app15158704 |
| Cites_doi | 10.1109/EAIS51927.2022.9787703 10.1109/EAIS58494.2024.10570025 10.1109/ACCESS.2024.3362346 10.28991/HIJ-2024-05-02-012 10.1109/MetroInd4.0IoT54413.2022.9831517 10.1016/j.jksuci.2020.12.001 10.1109/IESES53571.2023.10253705 10.1109/TCE.2024.3376440 10.1016/j.jocs.2024.102426 10.1016/j.eswa.2022.119016 10.3390/electronics13061053 10.1109/OJSP.2023.3333756 10.1109/ACCESS.2023.3262702 10.3390/agriengineering5040139 10.1007/978-3-031-23633-4_22 10.1016/j.iot.2023.100848 10.28991/ESJ-2024-08-06-08 10.28991/ESJ-2024-08-01-018 10.3390/fi16020042 10.3390/s23125696 10.1007/s10922-023-09782-9 10.54216/IJWAC.060104 10.1109/JSSC.2023.3236566 10.3390/s23042344 10.2118/221928-MS 10.20944/preprints202403.0714.v1 10.1016/j.cgh.2023.08.042 10.3390/batteries10030087 10.3390/app12199572 10.1109/ACCESS.2024.3367357 10.3390/a16040202 10.1016/j.bcra.2024.100188 10.1109/ACCESS.2025.3557405 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.asej.2025.103281 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| ExternalDocumentID | oai_doaj_org_article_d92fec82592647a099cd74d7688fe1b4 10_1016_j_asej_2025_103281 S209044792500022X |
| GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c410t-c308a319e54943c6d9c94676d4083e2021f77a7dd5b8b04c560b0f5ba1ca2c4d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001423810800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2090-4479 |
| IngestDate | Fri Oct 03 12:47:50 EDT 2025 Wed Oct 29 21:33:22 EDT 2025 Tue Nov 18 21:45:30 EST 2025 Sat Nov 22 16:51:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deep learning Internet of things Jaya optimization algorithm Feature selection TinyML Anomaly detection |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-c308a319e54943c6d9c94676d4083e2021f77a7dd5b8b04c560b0f5ba1ca2c4d3 |
| OpenAccessLink | https://doaj.org/article/d92fec82592647a099cd74d7688fe1b4 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d92fec82592647a099cd74d7688fe1b4 crossref_citationtrail_10_1016_j_asej_2025_103281 crossref_primary_10_1016_j_asej_2025_103281 elsevier_sciencedirect_doi_10_1016_j_asej_2025_103281 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Ain Shams Engineering Journal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Saiyed, Al-Anbagi (b0210) 2024; 12 tu Zahra, Bostanci, Soyturk (b0050) 2024 Tareq, Elbagoury, El-Regaily, El-Horbaty (b0205) 2022; 12 Blockchain: Research and Applications; 2024, p.100188. 2022 IEEE International Conference on evolving and adaptive intelligent systems (EAIS) Antonini M, Pincheira M, Vecchio M, Antonelli F. A TinyML approach to non-repudiable anomaly detection in extreme industrial environments. In Singh, Rosak-Szyrocka, Lukàcs (b0095) 2024; 8 Banerjee R, Ghose A. A lightweight deep residual network for classification of abnormal heart rhythms on tiny devices. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases Chaudhary, Srivastava, Khari (b0010) 2023; 6 Abu Dhabi International Petroleum Exhibition and Conference (pp. 1-6). IEEE; 2023, July. Sun, Qin, Yun (b0180) 2024; 10 Antonini, Pincheira, Vecchio, Antonelli (b0065) 2023; 23 2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS) Anidjar, Barak, Ben-Moshe, Hagai, Tuvyahu (b0130) 2023; 11 Zulfiqar, Malik, Moqurrab, Zulfiqar, Yaseen, Srivastava (b0220) 2024; 83 Khatoon, Wang, Ullah, Li, Wang (b0105) 2024; 80 https://research.unsw.edu.au/projects/toniot-datasets. (Vol. 2473, p. 4901); 2023. de la Fuente R, Radrigan L, Morales AS. Enhancing predictive maintenance in mining mobile machinery through a TinyML-enabled hierarchical inference network; 2024, arXiv preprint arXiv:2411.07168. (pp. 317-331). Cham: Springer Nature Switzerland; 2022, September. Mishra, Pati, Majhi (b0195) 2022; 34 Srisang W, Jaroensutasinee K, Jaroensutasinee M, Khongthong C, Piamonte JRP, Sparrow EB. PM2. 5 IoT sensor calibration and implementation issues including machine learning. Emerging Sci J, 8(6) (2024) pp.2267-2277. Kharche A, Badholia S, Upadhyay RK. Implementation of blockchain technology in integrated IoT networks for constructing scalable ITS systems in India. Lee, Kim, Kim (b0150) 2023 Zhang, Suleiman, Alibasa, Farid (b0040) 2024; 32 Chen Z, Gao Y, Liang J. A self-powered sensing system with embedded TinyML for anomaly detection. In (pp. 1-8). IEEE, 2024, May. 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT) Hayajneh, Batayneh, Alzoubi, Alwedyan (b0090) 2023; 5 Chiurato S. Neural network-based classification of electric vehicle acceleration pedal signals: from training to microcontroller deployment 2023 IEEE 3rd International Conference on Industrial Electronics for Sustainable Energy Systems (IESES) Tang, Long (b0190) 2024; 63 Karras, Giannaros, Karras, Theodorakopoulos, Mammassis, Krimpas (b0055) 2024; 16 Akram, Anaissi, Othman, Alabdulatif, Akram (b0070) 2024 Alajlan, Ibrahim (b0100) 2023; 23 Proceedings of the ISCAP Conference ISSN Kontogiannis, Gkamas, Pikridas (b0035) 2023; 16 Medeiros M, Flores T, Silva M, Silva I. A multi-layered methodology for driver behavior analysis using TinyML and edge computing. In Jain, Giraldo, De Roose, Mei, Boons, Verhelst (b0140) 2023; 58 Mafarja, Thaher, Al-Betar, Too, Awadallah, Abu Doush (b0185) 2023 Siddique, Mahmud (b0005) 2024 (Doctoral dissertation, Politecnico di Torino); 2023. (pp. 1-8). IEEE; 2022, May. Hammad, Iskandaryan, Trilles (b0045) 2023; 23 Le, Nguyen (b0125) 2024; 21 (pp. 397-402). IEEE; 2022, June. Antonini M, Pincheira M, Vecchio M, Antonelli F. Tiny-MLOps: A framework for orchestrating ML applications at the far edge of IoT systems. In Yaras, Dener (b0215) 2024; 13 Khan, Obaidat, Mahmood, Batool, Badar, Aamir (b0015) 2024 Barbieri, Brambilla, Stefanutti, Romano, De Carlo, Roveri (b0075) 2023; 4 Razak, Yogarayan, Ullah (b0145) 2024; 5 Ismail S, Moudoud H, Dawoud D, Reza H. Blockchain-based zero trust supply chain security integrated with deep reinforcement learning; 2024. Asutkar, Chalke, Shivgan, Tallur (b0160) 2023; 213 (p. D011S014R003). SPE; 2024, November. Yuan J, Elfrink S, Li Z, Cheng K, Han Q. An IoT based new platform for teaching tiny machine learning. In Tharayil SM, Alrammah MM, Alghamdi MA, Aljohar FE, Otalvora WBC. Enhancing drilling equipment reliability: deep learning for predicting failure time and real-time anomaly detection. In Bagheri, Farshforoush, Bagheri, Shemirani (b0020) 2023 Geem, Hercules, Pelia, Venkateswaran, Griffiths, Noe (b0175) 2024; 22 10.1016/j.asej.2025.103281_b0110 Razak (10.1016/j.asej.2025.103281_b0145) 2024; 5 Sun (10.1016/j.asej.2025.103281_b0180) 2024; 10 10.1016/j.asej.2025.103281_b0155 Anidjar (10.1016/j.asej.2025.103281_b0130) 2023; 11 Antonini (10.1016/j.asej.2025.103281_b0065) 2023; 23 Khatoon (10.1016/j.asej.2025.103281_b0105) 2024; 80 10.1016/j.asej.2025.103281_b0135 10.1016/j.asej.2025.103281_b0115 Chaudhary (10.1016/j.asej.2025.103281_b0010) 2023; 6 Jain (10.1016/j.asej.2025.103281_b0140) 2023; 58 Mishra (10.1016/j.asej.2025.103281_b0195) 2022; 34 Akram (10.1016/j.asej.2025.103281_b0070) 2024 Le (10.1016/j.asej.2025.103281_b0125) 2024; 21 tu Zahra (10.1016/j.asej.2025.103281_b0050) 2024 Hammad (10.1016/j.asej.2025.103281_b0045) 2023; 23 Mafarja (10.1016/j.asej.2025.103281_b0185) 2023 Siddique (10.1016/j.asej.2025.103281_b0005) 2024 Geem (10.1016/j.asej.2025.103281_b0175) 2024; 22 Zulfiqar (10.1016/j.asej.2025.103281_b0220) 2024; 83 10.1016/j.asej.2025.103281_b0170 10.1016/j.asej.2025.103281_b0030 Singh (10.1016/j.asej.2025.103281_b0095) 2024; 8 10.1016/j.asej.2025.103281_b0165 Tareq (10.1016/j.asej.2025.103281_b0205) 2022; 12 Lee (10.1016/j.asej.2025.103281_b0150) 2023 10.1016/j.asej.2025.103281_b0200 10.1016/j.asej.2025.103281_b0025 Karras (10.1016/j.asej.2025.103281_b0055) 2024; 16 Hayajneh (10.1016/j.asej.2025.103281_b0090) 2023; 5 Tang (10.1016/j.asej.2025.103281_b0190) 2024; 63 Bagheri (10.1016/j.asej.2025.103281_b0020) 2023 Barbieri (10.1016/j.asej.2025.103281_b0075) 2023; 4 Saiyed (10.1016/j.asej.2025.103281_b0210) 2024; 12 Asutkar (10.1016/j.asej.2025.103281_b0160) 2023; 213 Yaras (10.1016/j.asej.2025.103281_b0215) 2024; 13 10.1016/j.asej.2025.103281_b0080 Alajlan (10.1016/j.asej.2025.103281_b0100) 2023; 23 10.1016/j.asej.2025.103281_b0060 Kontogiannis (10.1016/j.asej.2025.103281_b0035) 2023; 16 10.1016/j.asej.2025.103281_b0085 Khan (10.1016/j.asej.2025.103281_b0015) 2024 Zhang (10.1016/j.asej.2025.103281_b0040) 2024; 32 10.1016/j.asej.2025.103281_b0120 |
| References_xml | – volume: 23 start-page: 5696 year: 2023 ident: b0100 article-title: DDD TinyML: a TinyML-based driver drowsiness detection model using deep learning publication-title: Sensors – reference: Chen Z, Gao Y, Liang J. A self-powered sensing system with embedded TinyML for anomaly detection. In – volume: 10 start-page: 87 year: 2024 ident: b0180 article-title: A state-of-health estimation method for lithium batteries based on fennec fox optimization algorithm–mixed extreme learning machine publication-title: Batteries – reference: Abu Dhabi International Petroleum Exhibition and Conference – volume: 12 start-page: 9572 year: 2022 ident: b0205 article-title: Analysis of ton-iot, unw-nb15, and edge-iiot datasets using dl in cybersecurity for iot publication-title: Appl Sci – year: 2024 ident: b0050 article-title: LSTM-based jamming detection and forecasting model using transport and application layer parameters in Wi-Fi based IoT systems publication-title: IEEE Access – reference: Tharayil SM, Alrammah MM, Alghamdi MA, Aljohar FE, Otalvora WBC. Enhancing drilling equipment reliability: deep learning for predicting failure time and real-time anomaly detection. In – volume: 12 start-page: 25623 year: 2024 end-page: 25641 ident: b0210 article-title: A genetic algorithm-and t-test-based system for DDoS attack detection in IoT networks publication-title: IEEE Access – volume: 11 start-page: 33336 year: 2023 end-page: 33353 ident: b0130 article-title: A stethoscope for drones: Transformers-based methods for UAVs acoustic anomaly detection publication-title: IEEE Access – reference: Blockchain: Research and Applications; 2024, p.100188. – reference: de la Fuente R, Radrigan L, Morales AS. Enhancing predictive maintenance in mining mobile machinery through a TinyML-enabled hierarchical inference network; 2024, arXiv preprint arXiv:2411.07168. – reference: Banerjee R, Ghose A. A lightweight deep residual network for classification of abnormal heart rhythms on tiny devices. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases – reference: (pp. 1-8). IEEE, 2024, May. – reference: (Vol. 2473, p. 4901); 2023. – volume: 63 start-page: 403 year: 2024 end-page: 406 ident: b0190 article-title: Integration of gradient least mean squares in bidirectional long short-term (LSTM) memory networks for metallurgical bearing ball anomaly diagnosis publication-title: Metalurgija – reference: Medeiros M, Flores T, Silva M, Silva I. A multi-layered methodology for driver behavior analysis using TinyML and edge computing. In – reference: Proceedings of the ISCAP Conference ISSN – volume: 21 start-page: 187 year: 2024 end-page: 195 ident: b0125 article-title: Lightweight unsupervised model for anomaly detection on microcontroller platforms publication-title: J Maritime Res – reference: Antonini M, Pincheira M, Vecchio M, Antonelli F. Tiny-MLOps: A framework for orchestrating ML applications at the far edge of IoT systems. In – year: 2023 ident: b0150 article-title: Enhanced anomaly detection in manufacturing processes through hybrid deep learning techniques publication-title: IEEE Access – start-page: 1 year: 2023 end-page: 43 ident: b0185 article-title: Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning publication-title: Appl Intell – volume: 34 start-page: 4914 year: 2022 end-page: 4930 ident: b0195 article-title: A dynamic load scheduling in IaaS cloud using binary JAYA algorithm publication-title: J King Saud Univ-Comput Inform Sci – volume: 4 start-page: 462 year: 2023 end-page: 478 ident: b0075 article-title: A tiny transformer-based anomaly detection framework for IoT solutions publication-title: IEEE Open Journal of Signal Processing – reference: Antonini M, Pincheira M, Vecchio M, Antonelli F. A TinyML approach to non-repudiable anomaly detection in extreme industrial environments. In – reference: https://research.unsw.edu.au/projects/toniot-datasets. – year: 2024 ident: b0015 article-title: Real-time road damage detection and infrastructure evaluation leveraging unmanned aerial vehicles and tiny machine learning publication-title: IEEE Internet Things J – reference: (pp. 317-331). Cham: Springer Nature Switzerland; 2022, September. – reference: (pp. 1-6). IEEE; 2023, July. – reference: Yuan J, Elfrink S, Li Z, Cheng K, Han Q. An IoT based new platform for teaching tiny machine learning. In – reference: Ismail S, Moudoud H, Dawoud D, Reza H. Blockchain-based zero trust supply chain security integrated with deep reinforcement learning; 2024. – reference: Srisang W, Jaroensutasinee K, Jaroensutasinee M, Khongthong C, Piamonte JRP, Sparrow EB. PM2. 5 IoT sensor calibration and implementation issues including machine learning. Emerging Sci J, 8(6) (2024) pp.2267-2277. – volume: 32 start-page: 20 year: 2024 ident: b0040 article-title: Privacy-aware anomaly detection in IoT environments using fedgroup: a group-based federated learning approach publication-title: J Netw Syst Manag – volume: 5 start-page: 400 year: 2024 end-page: 409 ident: b0145 article-title: Preventing impaired driving using IoT on steering wheels approach publication-title: HighTech and Innovation Journal – reference: 2022 IEEE International Conference on evolving and adaptive intelligent systems (EAIS) – volume: 23 start-page: 2344 year: 2023 ident: b0065 article-title: An adaptable and unsupervised TinyML anomaly detection system for extreme industrial environments publication-title: Sensors – reference: Chiurato S. Neural network-based classification of electric vehicle acceleration pedal signals: from training to microcontroller deployment – reference: 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT) – volume: 23 year: 2023 ident: b0045 article-title: An unsupervised TinyML approach is applied to the detection of urban noise anomalies under the smart cities environment publication-title: Internet Things – volume: 5 start-page: 2266 year: 2023 end-page: 2283 ident: b0090 article-title: TinyML olive fruit variety classification by means of convolutional neural networks on IoT edge devices publication-title: AgriEngineering – reference: (Doctoral dissertation, Politecnico di Torino); 2023. – reference: (pp. 397-402). IEEE; 2022, June. – year: 2023 ident: b0020 article-title: Applications of Artificial Intelligence Technologies in Water Environments: From Basic Techniques to Novel Tiny Machine Learning Systems publication-title: Process Safety and Environmental Protection – reference: Kharche A, Badholia S, Upadhyay RK. Implementation of blockchain technology in integrated IoT networks for constructing scalable ITS systems in India. – volume: 58 start-page: 2360 year: 2023 end-page: 2371 ident: b0140 article-title: Tinyvers: A tiny versatile system-on-chip with state-retentive eMRAM for ML inference at the extreme edge publication-title: IEEE J Solid State Circuits – reference: 2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS) – reference: (pp. 1-8). IEEE; 2022, May. – volume: 16 start-page: 42 year: 2024 ident: b0055 article-title: TinyML algorithms for big data management in large-scale IoT systems publication-title: Future Internet – reference: (p. D011S014R003). SPE; 2024, November. – year: 2024 ident: b0070 article-title: DroneSSL: self-supervised multimodal anomaly detection in internet of drone things publication-title: IEEE Trans Consum Electron – volume: 22 start-page: 368 year: 2024 end-page: 376 ident: b0175 article-title: Progression of pediatric crohn’s disease is associated with anti–tumor necrosis factor timing and body mass index Z-score normalization publication-title: Clinical Gastroenterology and Hepatology – volume: 16 start-page: 202 year: 2023 ident: b0035 article-title: Deep learning stranded neural network model for the detection of sensory triggered events publication-title: Algorithms – volume: 80 year: 2024 ident: b0105 article-title: Optimized binary neural networks for road anomaly detection: a tinyML approach on edge devices publication-title: Computers, Materials & Continua – volume: 8 start-page: 251 year: 2024 end-page: 269 ident: b0095 article-title: Design and analysis of a bandwidth aware adaptive multipath N-channel routing protocol for 5G internet of things (IoT) publication-title: Emerging Sci J – volume: 6 year: 2023 ident: b0010 article-title: Generative edge intelligence for securing IoT-assisted smart grid against cyber-threats publication-title: Int J Wireless & Ad Hoc Commun – year: 2024 ident: b0005 article-title: Physics-enhanced TinyML for real-time detection of ground magnetic anomalies publication-title: IEEE Access – volume: 13 start-page: 1053 year: 2024 ident: b0215 article-title: IoT-based intrusion detection system using new hybrid deep learning algorithm publication-title: Electronics – reference: 2023 IEEE 3rd International Conference on Industrial Electronics for Sustainable Energy Systems (IESES) – volume: 213 year: 2023 ident: b0160 article-title: TinyML-enabled edge implementation of transfer learning framework for domain generalization in machine fault diagnosis publication-title: Expert Syst Appl – volume: 83 year: 2024 ident: b0220 article-title: DeepDetect: An innovative hybrid deep learning framework for anomaly detection in IoT networks publication-title: J Comput Sci – ident: 10.1016/j.asej.2025.103281_b0025 doi: 10.1109/EAIS51927.2022.9787703 – ident: 10.1016/j.asej.2025.103281_b0135 doi: 10.1109/EAIS58494.2024.10570025 – year: 2024 ident: 10.1016/j.asej.2025.103281_b0005 article-title: Physics-enhanced TinyML for real-time detection of ground magnetic anomalies publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3362346 – volume: 21 start-page: 187 issue: 2 year: 2024 ident: 10.1016/j.asej.2025.103281_b0125 article-title: Lightweight unsupervised model for anomaly detection on microcontroller platforms publication-title: J Maritime Res – volume: 5 start-page: 400 issue: 2 year: 2024 ident: 10.1016/j.asej.2025.103281_b0145 article-title: Preventing impaired driving using IoT on steering wheels approach publication-title: HighTech and Innovation Journal doi: 10.28991/HIJ-2024-05-02-012 – ident: 10.1016/j.asej.2025.103281_b0060 doi: 10.1109/MetroInd4.0IoT54413.2022.9831517 – volume: 34 start-page: 4914 issue: 8 year: 2022 ident: 10.1016/j.asej.2025.103281_b0195 article-title: A dynamic load scheduling in IaaS cloud using binary JAYA algorithm publication-title: J King Saud Univ-Comput Inform Sci doi: 10.1016/j.jksuci.2020.12.001 – ident: 10.1016/j.asej.2025.103281_b0170 doi: 10.1109/IESES53571.2023.10253705 – year: 2024 ident: 10.1016/j.asej.2025.103281_b0070 article-title: DroneSSL: self-supervised multimodal anomaly detection in internet of drone things publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2024.3376440 – volume: 63 start-page: 403 issue: 3–4 year: 2024 ident: 10.1016/j.asej.2025.103281_b0190 article-title: Integration of gradient least mean squares in bidirectional long short-term (LSTM) memory networks for metallurgical bearing ball anomaly diagnosis publication-title: Metalurgija – volume: 80 issue: 1 year: 2024 ident: 10.1016/j.asej.2025.103281_b0105 article-title: Optimized binary neural networks for road anomaly detection: a tinyML approach on edge devices publication-title: Computers, Materials & Continua – volume: 83 year: 2024 ident: 10.1016/j.asej.2025.103281_b0220 article-title: DeepDetect: An innovative hybrid deep learning framework for anomaly detection in IoT networks publication-title: J Comput Sci doi: 10.1016/j.jocs.2024.102426 – ident: 10.1016/j.asej.2025.103281_b0120 – volume: 213 year: 2023 ident: 10.1016/j.asej.2025.103281_b0160 article-title: TinyML-enabled edge implementation of transfer learning framework for domain generalization in machine fault diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119016 – volume: 13 start-page: 1053 issue: 6 year: 2024 ident: 10.1016/j.asej.2025.103281_b0215 article-title: IoT-based intrusion detection system using new hybrid deep learning algorithm publication-title: Electronics doi: 10.3390/electronics13061053 – volume: 4 start-page: 462 year: 2023 ident: 10.1016/j.asej.2025.103281_b0075 article-title: A tiny transformer-based anomaly detection framework for IoT solutions publication-title: IEEE Open Journal of Signal Processing doi: 10.1109/OJSP.2023.3333756 – volume: 11 start-page: 33336 year: 2023 ident: 10.1016/j.asej.2025.103281_b0130 article-title: A stethoscope for drones: Transformers-based methods for UAVs acoustic anomaly detection publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3262702 – year: 2024 ident: 10.1016/j.asej.2025.103281_b0015 article-title: Real-time road damage detection and infrastructure evaluation leveraging unmanned aerial vehicles and tiny machine learning publication-title: IEEE Internet Things J – volume: 5 start-page: 2266 issue: 4 year: 2023 ident: 10.1016/j.asej.2025.103281_b0090 article-title: TinyML olive fruit variety classification by means of convolutional neural networks on IoT edge devices publication-title: AgriEngineering doi: 10.3390/agriengineering5040139 – ident: 10.1016/j.asej.2025.103281_b0080 doi: 10.1007/978-3-031-23633-4_22 – volume: 23 year: 2023 ident: 10.1016/j.asej.2025.103281_b0045 article-title: An unsupervised TinyML approach is applied to the detection of urban noise anomalies under the smart cities environment publication-title: Internet Things doi: 10.1016/j.iot.2023.100848 – ident: 10.1016/j.asej.2025.103281_b0155 doi: 10.28991/ESJ-2024-08-06-08 – ident: 10.1016/j.asej.2025.103281_b0200 – ident: 10.1016/j.asej.2025.103281_b0110 – volume: 8 start-page: 251 issue: 1 year: 2024 ident: 10.1016/j.asej.2025.103281_b0095 article-title: Design and analysis of a bandwidth aware adaptive multipath N-channel routing protocol for 5G internet of things (IoT) publication-title: Emerging Sci J doi: 10.28991/ESJ-2024-08-01-018 – year: 2023 ident: 10.1016/j.asej.2025.103281_b0150 article-title: Enhanced anomaly detection in manufacturing processes through hybrid deep learning techniques publication-title: IEEE Access – volume: 16 start-page: 42 issue: 2 year: 2024 ident: 10.1016/j.asej.2025.103281_b0055 article-title: TinyML algorithms for big data management in large-scale IoT systems publication-title: Future Internet doi: 10.3390/fi16020042 – volume: 23 start-page: 5696 issue: 12 year: 2023 ident: 10.1016/j.asej.2025.103281_b0100 article-title: DDD TinyML: a TinyML-based driver drowsiness detection model using deep learning publication-title: Sensors doi: 10.3390/s23125696 – volume: 32 start-page: 20 issue: 1 year: 2024 ident: 10.1016/j.asej.2025.103281_b0040 article-title: Privacy-aware anomaly detection in IoT environments using fedgroup: a group-based federated learning approach publication-title: J Netw Syst Manag doi: 10.1007/s10922-023-09782-9 – volume: 6 issue: 1 year: 2023 ident: 10.1016/j.asej.2025.103281_b0010 article-title: Generative edge intelligence for securing IoT-assisted smart grid against cyber-threats publication-title: Int J Wireless & Ad Hoc Commun doi: 10.54216/IJWAC.060104 – year: 2024 ident: 10.1016/j.asej.2025.103281_b0050 article-title: LSTM-based jamming detection and forecasting model using transport and application layer parameters in Wi-Fi based IoT systems publication-title: IEEE Access – volume: 58 start-page: 2360 issue: 8 year: 2023 ident: 10.1016/j.asej.2025.103281_b0140 article-title: Tinyvers: A tiny versatile system-on-chip with state-retentive eMRAM for ML inference at the extreme edge publication-title: IEEE J Solid State Circuits doi: 10.1109/JSSC.2023.3236566 – start-page: 1 year: 2023 ident: 10.1016/j.asej.2025.103281_b0185 article-title: Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning publication-title: Appl Intell – volume: 23 start-page: 2344 issue: 4 year: 2023 ident: 10.1016/j.asej.2025.103281_b0065 article-title: An adaptable and unsupervised TinyML anomaly detection system for extreme industrial environments publication-title: Sensors doi: 10.3390/s23042344 – ident: 10.1016/j.asej.2025.103281_b0115 doi: 10.2118/221928-MS – ident: 10.1016/j.asej.2025.103281_b0085 doi: 10.20944/preprints202403.0714.v1 – year: 2023 ident: 10.1016/j.asej.2025.103281_b0020 article-title: Applications of Artificial Intelligence Technologies in Water Environments: From Basic Techniques to Novel Tiny Machine Learning Systems – volume: 22 start-page: 368 issue: 2 year: 2024 ident: 10.1016/j.asej.2025.103281_b0175 article-title: Progression of pediatric crohn’s disease is associated with anti–tumor necrosis factor timing and body mass index Z-score normalization publication-title: Clinical Gastroenterology and Hepatology doi: 10.1016/j.cgh.2023.08.042 – volume: 10 start-page: 87 issue: 3 year: 2024 ident: 10.1016/j.asej.2025.103281_b0180 article-title: A state-of-health estimation method for lithium batteries based on fennec fox optimization algorithm–mixed extreme learning machine publication-title: Batteries doi: 10.3390/batteries10030087 – volume: 12 start-page: 9572 issue: 19 year: 2022 ident: 10.1016/j.asej.2025.103281_b0205 article-title: Analysis of ton-iot, unw-nb15, and edge-iiot datasets using dl in cybersecurity for iot publication-title: Appl Sci doi: 10.3390/app12199572 – volume: 12 start-page: 25623 year: 2024 ident: 10.1016/j.asej.2025.103281_b0210 article-title: A genetic algorithm-and t-test-based system for DDoS attack detection in IoT networks publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3367357 – volume: 16 start-page: 202 issue: 4 year: 2023 ident: 10.1016/j.asej.2025.103281_b0035 article-title: Deep learning stranded neural network model for the detection of sensory triggered events publication-title: Algorithms doi: 10.3390/a16040202 – ident: 10.1016/j.asej.2025.103281_b0030 doi: 10.1016/j.bcra.2024.100188 – ident: 10.1016/j.asej.2025.103281_b0165 doi: 10.1109/ACCESS.2025.3557405 |
| SSID | ssib044728585 |
| Score | 2.3886676 |
| Snippet | Internet of Things (IoT) security is paramount for enterprises, as it includes several strategies, techniques, actions, and protocols that aim to alleviate the... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 103281 |
| SubjectTerms | Anomaly detection Deep learning Feature selection Internet of things Jaya optimization algorithm TinyML |
| Title | Safeguarding IoT consumer devices: Deep learning with TinyML driven real-time anomaly detection for predictive maintenance |
| URI | https://dx.doi.org/10.1016/j.asej.2025.103281 https://doaj.org/article/d92fec82592647a099cd74d7688fe1b4 |
| Volume | 16 |
| WOSCitedRecordID | wos001423810800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2090-4479 databaseCode: M~E dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib044728585 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6oELKiqIbWnlQ2_I4CTOOu6NtqAiAUJiQdwiezxeLdrNrpYFCQ797R07WbRc6IVLpET-SMZjz5t4_Iax70o7EwD7QoNFoUqUwtjSCeOsk6AMQCKrvjnTFxfV7a25XEn1FWPCWnrgVnCH3uQBgfwYQ6ZbWwI04LXyhJKrgJlLTKBSmxVnijRJKZ3HDa-YWU4aKejedCdm2uAushB35Bzm5UEilMteWaVE3r9inFYMzslHttkhRX7UvuEWW8PmE3u-sgGHaVibIT-dDjh0Zyi5xzTpf_DfiDPeZYMY8vijlQ9GzdP5GffzuLZxwoljEZPKc9tMJ3b8RHUXKSSr4YRh-Wwed2_iOsgnNvJJRFIO3GbXJ8eDX39Elz5BgMrkQkAhK0szDMkFVAX0vQFDy2LfK4JdSB-fBa2t9r50FYkMCPs4GUpnM7A5KF_ssPVm2uAu48qETAO5FgEK5aWrSol9kznMMRTGQY9lS_HV0HGLxxQX43oZRHZXR5HXUeR1K_Ie23-pM2uZNd4s_TOOykvJyIqdHpCu1J2u1P_TlR4rl2NadwCjBQ7U1OiNzj-_R-df2EZsso343mPri_kDfmUf4HExup9_S-pL1_O_x_8AIP31zw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safeguarding+IoT+consumer+devices%3A+Deep+learning+with+TinyML+driven+real-time+anomaly+detection+for+predictive+maintenance&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Katib%2C+Iyad&rft.au=Albassam%2C+Emad&rft.au=Sharaf%2C+Sanaa+A.&rft.au=Ragab%2C+Mahmoud&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=2090-4479&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1016%2Fj.asej.2025.103281&rft.externalDocID=S209044792500022X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon |