Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts
Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency of formate production at high current density. Here, we report a general strategy for preparing the Bi2O2CO3 nanosheet (BOC-NS) with abundant...
Uloženo v:
| Vydáno v: | Cell reports physical science Ročník 2; číslo 3; s. 100353 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
24.03.2021
|
| ISSN: | 2666-3864, 2666-3864 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency of formate production at high current density. Here, we report a general strategy for preparing the Bi2O2CO3 nanosheet (BOC-NS) with abundant oxygen vacancies through in situ electrically driven conversion of the BiPO4 precursor. The converted BOC-NS displays high faradic efficiency of formate (FEHCOO−) (∼100%) over a wide potential region in an H-type cell and achieves a formate partial current density of −930 mA cm−2 with a FEHCOO− of 93% at −1.55 VRHE in a flow cell. Experimental results and density functional theory (DFT) calculations confirm that the BOC-NS surface with abundant oxygen vacancies benefit formate production, which stems from fast reaction kinetics toward the formation of ∗OCHO intermediate on defective Bi2O2CO3 nanosheets. This work provides helpful guidance for designing efficient electrocatalysts via in situ electrochemical transformation.
[Display omitted]
Defective Bi2O2CO3 nanosheet is prepared through in situ conversion of BiPO4Bi2O2CO3 serves as a stable and active phase for CO2RR to formateBOC-NS displays superior CO2RR performance toward formateDFT study confirms that oxygen vacancy benefits formate production
Fan et al. present the production of defective Bi2O2CO3 nanosheet through in situ transformation of BiPO4, which achieves a high formate partial current density of −930 mA cm−2 with a faradic efficiency of 93% in a flow cell. This material contains beneficial oxygen vacancies and shows improvement over existing catalysts that suffer from low faradic efficiency of formate production at high current density. |
|---|---|
| AbstractList | Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency of formate production at high current density. Here, we report a general strategy for preparing the Bi2O2CO3 nanosheet (BOC-NS) with abundant oxygen vacancies through in situ electrically driven conversion of the BiPO4 precursor. The converted BOC-NS displays high faradic efficiency of formate (FEHCOO−) (∼100%) over a wide potential region in an H-type cell and achieves a formate partial current density of −930 mA cm−2 with a FEHCOO− of 93% at −1.55 VRHE in a flow cell. Experimental results and density functional theory (DFT) calculations confirm that the BOC-NS surface with abundant oxygen vacancies benefit formate production, which stems from fast reaction kinetics toward the formation of ∗OCHO intermediate on defective Bi2O2CO3 nanosheets. This work provides helpful guidance for designing efficient electrocatalysts via in situ electrochemical transformation.
[Display omitted]
Defective Bi2O2CO3 nanosheet is prepared through in situ conversion of BiPO4Bi2O2CO3 serves as a stable and active phase for CO2RR to formateBOC-NS displays superior CO2RR performance toward formateDFT study confirms that oxygen vacancy benefits formate production
Fan et al. present the production of defective Bi2O2CO3 nanosheet through in situ transformation of BiPO4, which achieves a high formate partial current density of −930 mA cm−2 with a faradic efficiency of 93% in a flow cell. This material contains beneficial oxygen vacancies and shows improvement over existing catalysts that suffer from low faradic efficiency of formate production at high current density. |
| ArticleNumber | 100353 |
| Author | Ma, Wenchao Yi, Xiaodong Zhang, Jiguang Huang, Pingping Liu, Huan Dong, Yunyun Xie, Mingcan Chen, Zhou Yang, Shuangli Fan, Tingting |
| Author_xml | – sequence: 1 givenname: Tingting surname: Fan fullname: Fan, Tingting organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 2 givenname: Wenchao surname: Ma fullname: Ma, Wenchao organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 3 givenname: Mingcan surname: Xie fullname: Xie, Mingcan organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 4 givenname: Huan surname: Liu fullname: Liu, Huan organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 5 givenname: Jiguang surname: Zhang fullname: Zhang, Jiguang organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 6 givenname: Shuangli surname: Yang fullname: Yang, Shuangli organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 7 givenname: Pingping surname: Huang fullname: Huang, Pingping organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 8 givenname: Yunyun surname: Dong fullname: Dong, Yunyun organization: College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P.R. China – sequence: 9 givenname: Zhou surname: Chen fullname: Chen, Zhou email: zhouchen@xmu.edu.cn organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China – sequence: 10 givenname: Xiaodong surname: Yi fullname: Yi, Xiaodong email: xdyi@xmu.edu.cn organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China |
| BookMark | eNp9kMtqwzAQRUVJoWmbH-hKP-BUkm3ZhW5C6AsC2bRrIY_GsYxjB0kJzd9Xxl2ULrIazZWO4J5bMuuHHgl54GzJGZeP7fIb3GEpmOAxYGmeXpG5kFImaSmz2Z_zDVl43zLGRM55UbI5aVfQWDzZfkcbu2soHJ3DPlCDvbfhTOvBUewQghtAB92dgwXq0Bwh2KGnQ03XW0HDMD7c64A0hpX1-2Nokkp7NHTCfPD35LrWncfF77wjX68vn-v3ZLN9-1ivNglknIUEWCplLkRVmhSNwLhxSHMp8srIoqpyUZSZweyJZ3nJc6iwAp1C7FjE24Kld0RM_4IbvHdYq4Oze-3OijM1ClOtGoWpUZiahEWo_AeBDXrsGJy23WX0eUIxljpZdMqDxR7QWBfFKTPYS_gP4omJ_A |
| CitedBy_id | crossref_primary_10_1016_j_jcou_2021_101822 crossref_primary_10_1002_elsa_202400014 crossref_primary_10_1021_acscatal_5c02052 crossref_primary_10_1002_celc_202500094 crossref_primary_10_1021_acssuschemeng_5c03472 crossref_primary_10_1007_s41918_023_00183_9 crossref_primary_10_3390_molecules29030578 crossref_primary_10_1002_eom2_12346 crossref_primary_10_1002_celc_202300799 crossref_primary_10_1002_anie_202215406 crossref_primary_10_1007_s10311_022_01470_5 crossref_primary_10_1002_anie_202214959 crossref_primary_10_1016_j_jiec_2023_06_055 crossref_primary_10_1016_j_jpowsour_2022_232468 crossref_primary_10_1039_D5QI01259G crossref_primary_10_1002_ange_202111683 crossref_primary_10_1002_cssc_202202349 crossref_primary_10_1002_adfm_202508619 crossref_primary_10_1039_D4NR05343E crossref_primary_10_1134_S1023193522080079 crossref_primary_10_1002_aenm_202301597 crossref_primary_10_1002_anie_202104747 crossref_primary_10_1007_s12274_022_5058_z crossref_primary_10_1038_s41467_023_36263_z crossref_primary_10_1002_smll_202205323 crossref_primary_10_1016_j_envres_2024_118897 crossref_primary_10_1039_D1QM01557E crossref_primary_10_1002_anie_202407772 crossref_primary_10_1002_cphc_202200277 crossref_primary_10_1039_D3SE00103B crossref_primary_10_1002_adfm_202113075 crossref_primary_10_1002_adfm_202301984 crossref_primary_10_1002_sstr_202300323 crossref_primary_10_1002_ange_202214959 crossref_primary_10_1002_ange_202104747 crossref_primary_10_1002_ange_202215406 crossref_primary_10_26599_NR_2025_94907448 crossref_primary_10_1002_adfm_202203794 crossref_primary_10_1039_D1EE02512K crossref_primary_10_1002_anie_202111683 crossref_primary_10_1002_smll_202402879 crossref_primary_10_1002_cctc_202101873 crossref_primary_10_1016_j_checat_2022_01_021 crossref_primary_10_1002_cctc_202401399 crossref_primary_10_1002_ange_202407772 crossref_primary_10_1039_D5SE00343A crossref_primary_10_3390_coatings12020233 crossref_primary_10_1002_cssc_202401181 crossref_primary_10_1038_s41467_023_40342_6 crossref_primary_10_3390_catal13060955 |
| Cites_doi | 10.1039/C9EE00018F 10.1038/s41467-020-17120-9 10.1021/acscatal.9b04516 10.1557/jmr.2020.16 10.1021/acscatal.9b04043 10.1002/smtd.201800449 10.1016/j.nanoen.2020.104833 10.1021/acscatal.7b00707 10.1021/acsomega.7b00437 10.1021/jacs.9b08259 10.1038/s41560-019-0450-y 10.1002/anie.201808593 10.1016/j.nanoen.2018.09.053 10.1016/j.apcatb.2019.118243 10.1038/s41467-018-03712-z 10.1039/C5NR02345A 10.1039/C9CC05089B 10.1038/s41560-019-0451-x 10.1021/acscatal.7b03242 10.1021/acs.accounts.8b00449 10.1038/s41929-019-0306-7 10.1016/j.apcatb.2017.12.074 10.1021/ja309317u 10.1038/ncomms12697 10.1021/acs.accounts.8b00010 10.1021/acscatal.8b02181 10.1039/C9GC00479C 10.1016/j.joule.2018.11.008 10.1038/s41929-019-0235-5 10.1016/j.chempr.2018.08.019 10.1002/cssc.201903558 10.1002/anie.201912637 10.1038/s41467-019-08805-x 10.1002/anie.201914001 10.1016/j.apcatb.2020.118957 10.1016/j.nanoen.2017.05.065 10.1002/adma.201807166 10.1016/j.cclet.2019.07.028 10.1038/s41929-020-0450-0 10.1016/0360-3199(94)E0003-H 10.1016/j.elecom.2014.06.013 10.1016/j.jssc.2019.120946 10.1002/anie.201900167 10.1021/acs.chemrev.6b00816 10.1016/j.joule.2017.09.014 10.1002/anie.201713003 10.1002/aenm.201902338 10.1002/anie.201711255 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.xcrp.2021.100353 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2666-3864 |
| ExternalDocumentID | 10_1016_j_xcrp_2021_100353 S2666386421000382 |
| GroupedDBID | 6I. AAEDW AAFTH AAXUO ACHIH ACLIJ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL 0R~ AALRI AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c410t-c0366522b8d3ed2e3661c35625bd67bb52784de49145815cbebca3c26677bb703 |
| ISICitedReferencesCount | 102 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658764300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2666-3864 |
| IngestDate | Tue Nov 18 21:06:35 EST 2025 Thu Nov 20 00:37:23 EST 2025 Tue Jul 25 21:00:50 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-c0366522b8d3ed2e3661c35625bd67bb52784de49145815cbebca3c26677bb703 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.xcrp.2021.100353 |
| ParticipantIDs | crossref_primary_10_1016_j_xcrp_2021_100353 crossref_citationtrail_10_1016_j_xcrp_2021_100353 elsevier_sciencedirect_doi_10_1016_j_xcrp_2021_100353 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-24 |
| PublicationDateYYYYMMDD | 2021-03-24 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | Cell reports physical science |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Liu, Zu, Zheng, Yang (bib18) 2019; 55 Wu, Huo, Chen, Fu, Luo (bib44) 2020; 271 Gu, Yang, Han, Kuang, Mei, Jiang, Zhong, Li, Zheng (bib46) 2018; 3 Chen, Khosrowabadi Kotyk, Sheehan (bib7) 2018; 4 Zhang, Yin, Shao, Zhu, Huang (bib29) 2019; 58 Tiwari, Samuel, Singh (bib39) 1995; 20 Jiang, He, Zhang, Song (bib23) 2018; 51 Koh, Won, Eom, Kim, Jung, Kim, Hwang, Min (bib13) 2017; 7 Weekes, Salvatore, Reyes, Huang, Berlinguette (bib33) 2018; 51 Ross, De Luna, Li, Dinh, Kim, Yang, Sargent (bib1) 2019; 2 Kibria, Edwards, Gabardo, Dinh, Seifitokaldani, Sinton, Sargent (bib6) 2019; 31 Deng, Wang, Qi, Zhu, Chen, Yang, Zhou, Qi, Liu, Xia (bib38) 2019; 10 Zhang, Wang, Yu, Liu, Chen, Li, Rong, Lin, Ji, Zheng (bib12) 2019; 141 Gu, Héroguel, Luterbacher, Hu (bib43) 2018; 57 Kim, Dong, Gim, Sohn, Park, Yoo, Jang, Lee (bib14) 2017; 39 Lei, Liu, Sun, Xu, Liu, Liang, Yao, Pan, Wei, Xie (bib42) 2016; 7 Birdja, Pérez-Gallent, Figueiredo, Göttle, Calle-Vallejo, Koper (bib2) 2019; 4 Puppin, Khalid, da Silva, Ribeiro, Varela, Lopes (bib19) 2020; 35 Zhang, Xiao, Chen, Yu, Yu, Si, Wang, Wang, Meng, Wang (bib4) 2018; 57 Yu, Zhang, Dong, Li, Zhang, Huang (bib28) 2018; 226 Ma, Xie, Liu, Fan, Ye, Sun, Jiang, Zhang, Cheng, Wang (bib34) 2020; 3 Gao, Arán-Ais, Jeon, Roldan Cuenya (bib3) 2019; 2 Han, Ding, He, Li, Li (bib8) 2019; 10 Geng, Kong, Chen, Su, Liu, Cai, Wang, Zeng (bib31) 2018; 57 Chu, Chen, Guo, Lu, Wu, Wu, He, Han (bib48) 2019; 21 Chen, Gao, Zhang, Duan, Fan, Xiao, Zhang, Dong, Li, Yi, Luo (bib5) 2020; 73 Han, Wang, Yang, Deng, Wu, Li, Li (bib21) 2018; 9 Zhang, Ma, Quan, Huang, Jia, Zhang (bib26) 2014; 46 Chen, Fan, Zhang, Xiao, Gao, Duan, Zhang, Li, Liu, Yi, Luo (bib32) 2020; 261 Zhao, Wang, Li, Chen, Xu, He, Xi, Zhang, Yuan, Qu (bib40) 2019; 3 Lv, Bei, Zhang, Wang, Kong, Wang, Wang (bib17) 2017; 2 Lee, Hong, Yang, Jin, Lee, Ahn, Seo, Sung, Nam (bib16) 2018; 8 Ma, Xie, Zhang, Sun, Kang, Jiang, Zhang, Wu, Wang (bib10) 2019; 10 Zhang, Sun, Guo, Bond, Zhang (bib15) 2019; 12 Fan, Wu, Yang, Song, Zhang, Huang, Chen, Dong, Fang, Yi (bib41) 2020; 13 Fan, Jia, Ji, Kuang, Zhu, Liu, Yu (bib36) 2019; 10 Shi, Ji, Long, Liang, Liu, Yu, Xiao, Zhang (bib24) 2020; 11 Zhang, Du, He, Liu, Tao (bib45) 2019; 279 Álvarez, Bansode, Urakawa, Bavykina, Wezendonk, Makkee, Gascon, Kapteijn (bib9) 2017; 117 Xia, Zhu, Jiang, Pan, Liang, Stavitski, Alshareef, Wang (bib22) 2019; 4 Chen, Li, Kanan (bib37) 2012; 134 Wei, Liu, Wang, Zong, Yao, Wang, Zhu (bib25) 2015; 7 Mao, Wang, Li, Chen, Wang, Li, Zhan (bib30) 2020; 59 Zheng, De Luna, García de Arquer, Zhang, Becknell, Ross, Li, Banis, Li, Liu (bib11) 2017; 1 Zhang, Hu, Ma, Zhu, Zhao, Xue, Chen, Yang, Ma, Liu, Jin (bib20) 2018; 53 Zhang, Co (bib27) 2020; 59 Dunwell, Luc, Yan, Jiao, Xu (bib35) 2018; 8 Gao, Kumar, Shang, Duan, Wang, Wang, Ji, Yan, Luo, Liu, Sun (bib47) 2019; 30 Chen (10.1016/j.xcrp.2021.100353_bib5) 2020; 73 Han (10.1016/j.xcrp.2021.100353_bib8) 2019; 10 Wei (10.1016/j.xcrp.2021.100353_bib25) 2015; 7 Puppin (10.1016/j.xcrp.2021.100353_bib19) 2020; 35 Zhao (10.1016/j.xcrp.2021.100353_bib40) 2019; 3 Zhang (10.1016/j.xcrp.2021.100353_bib12) 2019; 141 Deng (10.1016/j.xcrp.2021.100353_bib38) 2019; 10 Birdja (10.1016/j.xcrp.2021.100353_bib2) 2019; 4 Chen (10.1016/j.xcrp.2021.100353_bib37) 2012; 134 Gao (10.1016/j.xcrp.2021.100353_bib3) 2019; 2 Han (10.1016/j.xcrp.2021.100353_bib21) 2018; 9 Ross (10.1016/j.xcrp.2021.100353_bib1) 2019; 2 Chen (10.1016/j.xcrp.2021.100353_bib32) 2020; 261 Geng (10.1016/j.xcrp.2021.100353_bib31) 2018; 57 Kim (10.1016/j.xcrp.2021.100353_bib14) 2017; 39 Mao (10.1016/j.xcrp.2021.100353_bib30) 2020; 59 Zhang (10.1016/j.xcrp.2021.100353_bib27) 2020; 59 Koh (10.1016/j.xcrp.2021.100353_bib13) 2017; 7 Dunwell (10.1016/j.xcrp.2021.100353_bib35) 2018; 8 Álvarez (10.1016/j.xcrp.2021.100353_bib9) 2017; 117 Lv (10.1016/j.xcrp.2021.100353_bib17) 2017; 2 Liu (10.1016/j.xcrp.2021.100353_bib18) 2019; 55 Xia (10.1016/j.xcrp.2021.100353_bib22) 2019; 4 Wu (10.1016/j.xcrp.2021.100353_bib44) 2020; 271 Tiwari (10.1016/j.xcrp.2021.100353_bib39) 1995; 20 Kibria (10.1016/j.xcrp.2021.100353_bib6) 2019; 31 Zheng (10.1016/j.xcrp.2021.100353_bib11) 2017; 1 Fan (10.1016/j.xcrp.2021.100353_bib36) 2019; 10 Zhang (10.1016/j.xcrp.2021.100353_bib29) 2019; 58 Fan (10.1016/j.xcrp.2021.100353_bib41) 2020; 13 Lei (10.1016/j.xcrp.2021.100353_bib42) 2016; 7 Zhang (10.1016/j.xcrp.2021.100353_bib4) 2018; 57 Gu (10.1016/j.xcrp.2021.100353_bib46) 2018; 3 Shi (10.1016/j.xcrp.2021.100353_bib24) 2020; 11 Jiang (10.1016/j.xcrp.2021.100353_bib23) 2018; 51 Lee (10.1016/j.xcrp.2021.100353_bib16) 2018; 8 Ma (10.1016/j.xcrp.2021.100353_bib34) 2020; 3 Gu (10.1016/j.xcrp.2021.100353_bib43) 2018; 57 Zhang (10.1016/j.xcrp.2021.100353_bib45) 2019; 279 Gao (10.1016/j.xcrp.2021.100353_bib47) 2019; 30 Zhang (10.1016/j.xcrp.2021.100353_bib26) 2014; 46 Yu (10.1016/j.xcrp.2021.100353_bib28) 2018; 226 Ma (10.1016/j.xcrp.2021.100353_bib10) 2019; 10 Zhang (10.1016/j.xcrp.2021.100353_bib15) 2019; 12 Chen (10.1016/j.xcrp.2021.100353_bib7) 2018; 4 Weekes (10.1016/j.xcrp.2021.100353_bib33) 2018; 51 Chu (10.1016/j.xcrp.2021.100353_bib48) 2019; 21 Zhang (10.1016/j.xcrp.2021.100353_bib20) 2018; 53 |
| References_xml | – volume: 57 start-page: 6054 year: 2018 end-page: 6059 ident: bib31 article-title: Oxygen vacancies in ZnO nanosheets enhance CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 8 start-page: 8121 year: 2018 end-page: 8129 ident: bib35 article-title: Understanding surface-mediated electrochemical reactions: CO publication-title: ACS Catal. – volume: 39 start-page: 44 year: 2017 end-page: 52 ident: bib14 article-title: Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate publication-title: Nano Energy – volume: 30 start-page: 2274 year: 2019 end-page: 2278 ident: bib47 article-title: Promoting electrochemical conversion of CO publication-title: Chin. Chem. Lett. – volume: 117 start-page: 9804 year: 2017 end-page: 9838 ident: bib9 article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO publication-title: Chem. Rev. – volume: 53 start-page: 808 year: 2018 end-page: 816 ident: bib20 article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO publication-title: Nano Energy – volume: 31 start-page: e1807166 year: 2019 ident: bib6 article-title: Electrochemical CO publication-title: Adv. Mater. – volume: 20 start-page: 9 year: 1995 end-page: 15 ident: bib39 article-title: Active thin NiCo publication-title: Int. J. Hydrogen Energy – volume: 279 start-page: 120946 year: 2019 ident: bib45 article-title: Low overpotential electrochemical CO publication-title: J. Solid State Chem. – volume: 10 start-page: 743 year: 2019 end-page: 750 ident: bib38 article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate publication-title: ACS Catal. – volume: 2 start-page: 198 year: 2019 end-page: 210 ident: bib3 article-title: Rational catalyst and electrolyte design for CO publication-title: Nat. Catal. – volume: 226 start-page: 441 year: 2018 end-page: 450 ident: bib28 article-title: Readily achieving concentration-tunable oxygen vacancies in Bi publication-title: Appl. Catal. B – volume: 271 start-page: 118957 year: 2020 ident: bib44 article-title: Boosting formate production at high current density from CO publication-title: Appl. Catal. B – volume: 141 start-page: 16569 year: 2019 end-page: 16573 ident: bib12 article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 931 year: 2018 end-page: 937 ident: bib16 article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte publication-title: ACS Catal. – volume: 10 start-page: 892 year: 2019 ident: bib10 article-title: Promoting electrocatalytic CO publication-title: Nat. Commun. – volume: 21 start-page: 2589 year: 2019 end-page: 2593 ident: bib48 article-title: Enhancing electroreduction of CO publication-title: Green Chem. – volume: 2 start-page: 648 year: 2019 end-page: 658 ident: bib1 article-title: Designing materials for electrochemical carbon dioxide recycling publication-title: Nat. Catal. – volume: 10 start-page: 1902338 year: 2019 ident: bib8 article-title: Promises of main group metal-based nanostructured materials for electrochemical CO publication-title: Adv. Energy Mater. – volume: 51 start-page: 910 year: 2018 end-page: 918 ident: bib33 article-title: Electrolytic CO publication-title: Acc. Chem. Res. – volume: 1 start-page: 794 year: 2017 end-page: 805 ident: bib11 article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO publication-title: Joule – volume: 35 start-page: 272 year: 2020 end-page: 280 ident: bib19 article-title: Electrochemical reduction of CO publication-title: J. Mater. Res. – volume: 58 start-page: 5609 year: 2019 end-page: 5613 ident: bib29 article-title: Oxygen vacancies in amorphous InOx nanoribbons enhance CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 358 year: 2019 end-page: 364 ident: bib36 article-title: Curved surface boosts electrochemical CO publication-title: ACS Catal. – volume: 3 start-page: 584 year: 2019 end-page: 594 ident: bib40 article-title: Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO publication-title: Joule – volume: 73 start-page: 104833 year: 2020 ident: bib5 article-title: Tuning local carbon active sites saturability of graphitic carbon nitride to boost CO publication-title: Nano Energy – volume: 11 start-page: 3415 year: 2020 ident: bib24 article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate publication-title: Nat. Commun. – volume: 4 start-page: 732 year: 2019 end-page: 745 ident: bib2 article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels publication-title: Nat. Energy – volume: 7 start-page: 13943 year: 2015 end-page: 13950 ident: bib25 article-title: Controlled synthesis of a highly dispersed BiPO publication-title: Nanoscale – volume: 55 start-page: 12392 year: 2019 end-page: 12395 ident: bib18 article-title: Bismuth oxyiodide microflower-derived catalysts for efficient CO publication-title: Chem. Commun. (Camb.) – volume: 9 start-page: 1320 year: 2018 ident: bib21 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO publication-title: Nat. Commun. – volume: 59 start-page: 1674 year: 2020 end-page: 1681 ident: bib27 article-title: Direct evidence of local pH change and the role of alkali cation during CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 59 start-page: 3685 year: 2020 end-page: 3690 ident: bib30 article-title: Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 478 year: 2020 end-page: 487 ident: bib34 article-title: Electrocatalytic reduction of CO publication-title: Nat. Catal. – volume: 2 start-page: 2561 year: 2017 end-page: 2567 ident: bib17 article-title: Bi publication-title: ACS Omega – volume: 4 start-page: 2571 year: 2018 end-page: 2586 ident: bib7 article-title: Progress toward commercial application of electrochemical carbon dioxide reduction publication-title: Chem – volume: 12 start-page: 1334 year: 2019 end-page: 1340 ident: bib15 article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO publication-title: Energy Environ. Sci. – volume: 57 start-page: 16339 year: 2018 end-page: 16342 ident: bib4 article-title: Reaction mechanisms of well-defined metal-N publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 1800449 year: 2018 ident: bib46 article-title: Oxygen vacancy tuning toward efficient electrocatalytic CO publication-title: Small Methods – volume: 13 start-page: 2677 year: 2020 end-page: 2683 ident: bib41 article-title: Electrochemically driven formation of sponge-like porous silver nanocubes toward efficient CO publication-title: ChemSusChem – volume: 7 start-page: 12697 year: 2016 ident: bib42 article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction publication-title: Nat. Commun. – volume: 4 start-page: 776 year: 2019 end-page: 785 ident: bib22 article-title: Continuous production of pure liquid fuel solutions via electrocatalytic CO publication-title: Nat. Energy – volume: 7 start-page: 5071 year: 2017 end-page: 5077 ident: bib13 article-title: Facile CO publication-title: ACS Catal. – volume: 51 start-page: 2968 year: 2018 end-page: 2977 ident: bib23 article-title: Structural self-reconstruction of catalysts in electrocatalysis publication-title: Acc. Chem. Res. – volume: 46 start-page: 63 year: 2014 end-page: 66 ident: bib26 article-title: Selective electro-reduction of CO publication-title: Electrochem. Commun. – volume: 134 start-page: 19969 year: 2012 end-page: 19972 ident: bib37 article-title: Aqueous CO publication-title: J. Am. Chem. Soc. – volume: 261 start-page: 118243 year: 2020 ident: bib32 article-title: Wavy SnO publication-title: Appl. Catal. B – volume: 57 start-page: 2943 year: 2018 end-page: 2947 ident: bib43 article-title: Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 12 start-page: 1334 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib15 article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00018F – volume: 11 start-page: 3415 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib24 article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate publication-title: Nat. Commun. doi: 10.1038/s41467-020-17120-9 – volume: 10 start-page: 358 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib36 article-title: Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window publication-title: ACS Catal. doi: 10.1021/acscatal.9b04516 – volume: 35 start-page: 272 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib19 article-title: Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes publication-title: J. Mater. Res. doi: 10.1557/jmr.2020.16 – volume: 10 start-page: 743 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib38 article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate publication-title: ACS Catal. doi: 10.1021/acscatal.9b04043 – volume: 3 start-page: 1800449 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib46 article-title: Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4 publication-title: Small Methods doi: 10.1002/smtd.201800449 – volume: 73 start-page: 104833 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib5 article-title: Tuning local carbon active sites saturability of graphitic carbon nitride to boost CO2 electroreduction towards CH4 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104833 – volume: 7 start-page: 5071 year: 2017 ident: 10.1016/j.xcrp.2021.100353_bib13 article-title: Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst publication-title: ACS Catal. doi: 10.1021/acscatal.7b00707 – volume: 2 start-page: 2561 year: 2017 ident: 10.1016/j.xcrp.2021.100353_bib17 article-title: Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential publication-title: ACS Omega doi: 10.1021/acsomega.7b00437 – volume: 141 start-page: 16569 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib12 article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08259 – volume: 4 start-page: 732 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib2 article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels publication-title: Nat. Energy doi: 10.1038/s41560-019-0450-y – volume: 57 start-page: 16339 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib4 article-title: Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201808593 – volume: 53 start-page: 808 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib20 article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.053 – volume: 261 start-page: 118243 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib32 article-title: Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118243 – volume: 9 start-page: 1320 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib21 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate publication-title: Nat. Commun. doi: 10.1038/s41467-018-03712-z – volume: 7 start-page: 13943 year: 2015 ident: 10.1016/j.xcrp.2021.100353_bib25 article-title: Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies publication-title: Nanoscale doi: 10.1039/C5NR02345A – volume: 55 start-page: 12392 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib18 article-title: Bismuth oxyiodide microflower-derived catalysts for efficient CO2 electroreduction in a wide negative potential region publication-title: Chem. Commun. (Camb.) doi: 10.1039/C9CC05089B – volume: 4 start-page: 776 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib22 article-title: Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices publication-title: Nat. Energy doi: 10.1038/s41560-019-0451-x – volume: 8 start-page: 931 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib16 article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte publication-title: ACS Catal. doi: 10.1021/acscatal.7b03242 – volume: 51 start-page: 2968 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib23 article-title: Structural self-reconstruction of catalysts in electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00449 – volume: 2 start-page: 648 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib1 article-title: Designing materials for electrochemical carbon dioxide recycling publication-title: Nat. Catal. doi: 10.1038/s41929-019-0306-7 – volume: 226 start-page: 441 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib28 article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.12.074 – volume: 134 start-page: 19969 year: 2012 ident: 10.1016/j.xcrp.2021.100353_bib37 article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309317u – volume: 7 start-page: 12697 year: 2016 ident: 10.1016/j.xcrp.2021.100353_bib42 article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction publication-title: Nat. Commun. doi: 10.1038/ncomms12697 – volume: 51 start-page: 910 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib33 article-title: Electrolytic CO2 reduction in a flow cell publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00010 – volume: 8 start-page: 8121 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib35 article-title: Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond publication-title: ACS Catal. doi: 10.1021/acscatal.8b02181 – volume: 21 start-page: 2589 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib48 article-title: Enhancing electroreduction of CO2 over Bi2WO6 nanosheets by oxygen vacancies publication-title: Green Chem. doi: 10.1039/C9GC00479C – volume: 3 start-page: 584 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib40 article-title: Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction publication-title: Joule doi: 10.1016/j.joule.2018.11.008 – volume: 2 start-page: 198 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib3 article-title: Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products publication-title: Nat. Catal. doi: 10.1038/s41929-019-0235-5 – volume: 4 start-page: 2571 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib7 article-title: Progress toward commercial application of electrochemical carbon dioxide reduction publication-title: Chem doi: 10.1016/j.chempr.2018.08.019 – volume: 13 start-page: 2677 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib41 article-title: Electrochemically driven formation of sponge-like porous silver nanocubes toward efficient CO2 electroreduction to CO publication-title: ChemSusChem doi: 10.1002/cssc.201903558 – volume: 59 start-page: 1674 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib27 article-title: Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201912637 – volume: 10 start-page: 892 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib10 article-title: Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces publication-title: Nat. Commun. doi: 10.1038/s41467-019-08805-x – volume: 59 start-page: 3685 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib30 article-title: Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2-x for efficient molecular-oxygen activation publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201914001 – volume: 271 start-page: 118957 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib44 article-title: Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118957 – volume: 39 start-page: 44 year: 2017 ident: 10.1016/j.xcrp.2021.100353_bib14 article-title: Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.065 – volume: 31 start-page: e1807166 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib6 article-title: Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design publication-title: Adv. Mater. doi: 10.1002/adma.201807166 – volume: 30 start-page: 2274 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib47 article-title: Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.07.028 – volume: 3 start-page: 478 year: 2020 ident: 10.1016/j.xcrp.2021.100353_bib34 article-title: Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper publication-title: Nat. Catal. doi: 10.1038/s41929-020-0450-0 – volume: 20 start-page: 9 year: 1995 ident: 10.1016/j.xcrp.2021.100353_bib39 article-title: Active thin NiCo2O4 film prepared on nickel by spray pyrolysis for oxygen evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(94)E0003-H – volume: 46 start-page: 63 year: 2014 ident: 10.1016/j.xcrp.2021.100353_bib26 article-title: Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.06.013 – volume: 279 start-page: 120946 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib45 article-title: Low overpotential electrochemical CO2 reduction to formate on Co3O4-CeO2/low graphitic carbon catalyst with oxygen vacancies publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.120946 – volume: 58 start-page: 5609 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib29 article-title: Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201900167 – volume: 117 start-page: 9804 year: 2017 ident: 10.1016/j.xcrp.2021.100353_bib9 article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00816 – volume: 1 start-page: 794 year: 2017 ident: 10.1016/j.xcrp.2021.100353_bib11 article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate publication-title: Joule doi: 10.1016/j.joule.2017.09.014 – volume: 57 start-page: 2943 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib43 article-title: Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201713003 – volume: 10 start-page: 1902338 year: 2019 ident: 10.1016/j.xcrp.2021.100353_bib8 article-title: Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902338 – volume: 57 start-page: 6054 year: 2018 ident: 10.1016/j.xcrp.2021.100353_bib31 article-title: Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201711255 |
| SSID | ssj0002511780 |
| Score | 2.4802315 |
| Snippet | Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100353 |
| Title | Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts |
| URI | https://dx.doi.org/10.1016/j.xcrp.2021.100353 |
| Volume | 2 |
| WOSCitedRecordID | wos000658764300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-3864 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0002511780 issn: 2666-3864 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-3864 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511780 issn: 2666-3864 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbctEOXoukDTdIGHDq0MGSIeljUGBQtuiTpkALeBImkYBupbMRy4C75MfmluSNPtGO4QTJ0EWyapG3dp7vj8fgdY59hCSBzLctAlXkYJFmlgjIUZSDisgZrbDJThrbYRHZ2Jkej_Fevd9udhbm-zJpGrlb5_L-KGtpA2Hh09gni9pNCA7wGocMVxA7XRwn-RI0nxoYJkIq4r4iASWOmOqVnUu0bG7r560ictWORtdkZ5xF6pM6bNbibUE0Wf5btOECTp_tu2MJRQHmWA4wBdhsQ8074ZF89SKgWMmbtdybTRsNtph_0HJezrnHkNk5OoZ_ayBuaLK2xXFITxSsim7Dljkk7tQYewTCIpeMuH5gdbaSXow34xRs6VuDuZ7xT_btIxHSwUpaLNBKDdef7XNtbNtBnJnZJb9MC5yhwjsLN8Yw9j7I0R815erOO4-ESLbMF-vyfoLNZLo1w-6fs9n82fJqL1-wVLUb4iQPRPuuZ5g3bJ3W_4F-Ik_zrWzb1qOKIKk6o4oQqDmDh26jiHlV8VnNAFW9nnFDFofEeqrhH1Tv2-8f3i28_AyrTEahEhG2gwAkaghtfSR0bHRl4J1SMC-tKD7OqSnFvW5skF0kqRaoqzL-LFdyuDD4Fi_Oe7TWzxnxgvBZlIsPEpLWOk8hoqWUOK_raSNActR4eMNHdvEIRhz2WUrks_i23A9b3Y-aOweXB3mknk4KeEedbFoCxB8YdPulbjtjL9aPxke21V0vzib1Q1-1kcXVs40LHFmZ38Vaq0g |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+high+current+density+for+electrocatalytic+reduction+of+CO2+to+formate+on+bismuth-based+catalysts&rft.jtitle=Cell+reports+physical+science&rft.au=Fan%2C+Tingting&rft.au=Ma%2C+Wenchao&rft.au=Xie%2C+Mingcan&rft.au=Liu%2C+Huan&rft.date=2021-03-24&rft.issn=2666-3864&rft.eissn=2666-3864&rft.volume=2&rft.issue=3&rft.spage=100353&rft_id=info:doi/10.1016%2Fj.xcrp.2021.100353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_xcrp_2021_100353 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3864&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3864&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3864&client=summon |