Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts

Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency of formate production at high current density. Here, we report a general strategy for preparing the Bi2O2CO3 nanosheet (BOC-NS) with abundant...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports physical science Vol. 2; no. 3; p. 100353
Main Authors: Fan, Tingting, Ma, Wenchao, Xie, Mingcan, Liu, Huan, Zhang, Jiguang, Yang, Shuangli, Huang, Pingping, Dong, Yunyun, Chen, Zhou, Yi, Xiaodong
Format: Journal Article
Language:English
Published: Elsevier Inc 24.03.2021
ISSN:2666-3864, 2666-3864
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency of formate production at high current density. Here, we report a general strategy for preparing the Bi2O2CO3 nanosheet (BOC-NS) with abundant oxygen vacancies through in situ electrically driven conversion of the BiPO4 precursor. The converted BOC-NS displays high faradic efficiency of formate (FEHCOO−) (∼100%) over a wide potential region in an H-type cell and achieves a formate partial current density of −930 mA cm−2 with a FEHCOO− of 93% at −1.55 VRHE in a flow cell. Experimental results and density functional theory (DFT) calculations confirm that the BOC-NS surface with abundant oxygen vacancies benefit formate production, which stems from fast reaction kinetics toward the formation of ∗OCHO intermediate on defective Bi2O2CO3 nanosheets. This work provides helpful guidance for designing efficient electrocatalysts via in situ electrochemical transformation. [Display omitted] Defective Bi2O2CO3 nanosheet is prepared through in situ conversion of BiPO4Bi2O2CO3 serves as a stable and active phase for CO2RR to formateBOC-NS displays superior CO2RR performance toward formateDFT study confirms that oxygen vacancy benefits formate production Fan et al. present the production of defective Bi2O2CO3 nanosheet through in situ transformation of BiPO4, which achieves a high formate partial current density of −930 mA cm−2 with a faradic efficiency of 93% in a flow cell. This material contains beneficial oxygen vacancies and shows improvement over existing catalysts that suffer from low faradic efficiency of formate production at high current density.
AbstractList Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency of formate production at high current density. Here, we report a general strategy for preparing the Bi2O2CO3 nanosheet (BOC-NS) with abundant oxygen vacancies through in situ electrically driven conversion of the BiPO4 precursor. The converted BOC-NS displays high faradic efficiency of formate (FEHCOO−) (∼100%) over a wide potential region in an H-type cell and achieves a formate partial current density of −930 mA cm−2 with a FEHCOO− of 93% at −1.55 VRHE in a flow cell. Experimental results and density functional theory (DFT) calculations confirm that the BOC-NS surface with abundant oxygen vacancies benefit formate production, which stems from fast reaction kinetics toward the formation of ∗OCHO intermediate on defective Bi2O2CO3 nanosheets. This work provides helpful guidance for designing efficient electrocatalysts via in situ electrochemical transformation. [Display omitted] Defective Bi2O2CO3 nanosheet is prepared through in situ conversion of BiPO4Bi2O2CO3 serves as a stable and active phase for CO2RR to formateBOC-NS displays superior CO2RR performance toward formateDFT study confirms that oxygen vacancy benefits formate production Fan et al. present the production of defective Bi2O2CO3 nanosheet through in situ transformation of BiPO4, which achieves a high formate partial current density of −930 mA cm−2 with a faradic efficiency of 93% in a flow cell. This material contains beneficial oxygen vacancies and shows improvement over existing catalysts that suffer from low faradic efficiency of formate production at high current density.
ArticleNumber 100353
Author Ma, Wenchao
Yi, Xiaodong
Zhang, Jiguang
Huang, Pingping
Liu, Huan
Dong, Yunyun
Xie, Mingcan
Chen, Zhou
Yang, Shuangli
Fan, Tingting
Author_xml – sequence: 1
  givenname: Tingting
  surname: Fan
  fullname: Fan, Tingting
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 2
  givenname: Wenchao
  surname: Ma
  fullname: Ma, Wenchao
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 3
  givenname: Mingcan
  surname: Xie
  fullname: Xie, Mingcan
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 4
  givenname: Huan
  surname: Liu
  fullname: Liu, Huan
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 5
  givenname: Jiguang
  surname: Zhang
  fullname: Zhang, Jiguang
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 6
  givenname: Shuangli
  surname: Yang
  fullname: Yang, Shuangli
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 7
  givenname: Pingping
  surname: Huang
  fullname: Huang, Pingping
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 8
  givenname: Yunyun
  surname: Dong
  fullname: Dong, Yunyun
  organization: College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P.R. China
– sequence: 9
  givenname: Zhou
  surname: Chen
  fullname: Chen, Zhou
  email: zhouchen@xmu.edu.cn
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
– sequence: 10
  givenname: Xiaodong
  surname: Yi
  fullname: Yi, Xiaodong
  email: xdyi@xmu.edu.cn
  organization: College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
BookMark eNp9kMtqwzAQRUVJoWmbH-hKP-BUkm3ZhW5C6AsC2bRrIY_GsYxjB0kJzd9Xxl2ULrIazZWO4J5bMuuHHgl54GzJGZeP7fIb3GEpmOAxYGmeXpG5kFImaSmz2Z_zDVl43zLGRM55UbI5aVfQWDzZfkcbu2soHJ3DPlCDvbfhTOvBUewQghtAB92dgwXq0Bwh2KGnQ03XW0HDMD7c64A0hpX1-2Nokkp7NHTCfPD35LrWncfF77wjX68vn-v3ZLN9-1ivNglknIUEWCplLkRVmhSNwLhxSHMp8srIoqpyUZSZweyJZ3nJc6iwAp1C7FjE24Kld0RM_4IbvHdYq4Oze-3OijM1ClOtGoWpUZiahEWo_AeBDXrsGJy23WX0eUIxljpZdMqDxR7QWBfFKTPYS_gP4omJ_A
CitedBy_id crossref_primary_10_1016_j_jcou_2021_101822
crossref_primary_10_1002_elsa_202400014
crossref_primary_10_1021_acscatal_5c02052
crossref_primary_10_1002_celc_202500094
crossref_primary_10_1021_acssuschemeng_5c03472
crossref_primary_10_1007_s41918_023_00183_9
crossref_primary_10_3390_molecules29030578
crossref_primary_10_1002_eom2_12346
crossref_primary_10_1002_celc_202300799
crossref_primary_10_1002_anie_202215406
crossref_primary_10_1007_s10311_022_01470_5
crossref_primary_10_1002_anie_202214959
crossref_primary_10_1016_j_jiec_2023_06_055
crossref_primary_10_1016_j_jpowsour_2022_232468
crossref_primary_10_1039_D5QI01259G
crossref_primary_10_1002_ange_202111683
crossref_primary_10_1002_cssc_202202349
crossref_primary_10_1002_adfm_202508619
crossref_primary_10_1039_D4NR05343E
crossref_primary_10_1134_S1023193522080079
crossref_primary_10_1002_aenm_202301597
crossref_primary_10_1002_anie_202104747
crossref_primary_10_1007_s12274_022_5058_z
crossref_primary_10_1038_s41467_023_36263_z
crossref_primary_10_1002_smll_202205323
crossref_primary_10_1016_j_envres_2024_118897
crossref_primary_10_1039_D1QM01557E
crossref_primary_10_1002_anie_202407772
crossref_primary_10_1002_cphc_202200277
crossref_primary_10_1039_D3SE00103B
crossref_primary_10_1002_adfm_202113075
crossref_primary_10_1002_adfm_202301984
crossref_primary_10_1002_sstr_202300323
crossref_primary_10_1002_ange_202214959
crossref_primary_10_1002_ange_202104747
crossref_primary_10_1002_ange_202215406
crossref_primary_10_26599_NR_2025_94907448
crossref_primary_10_1002_adfm_202203794
crossref_primary_10_1039_D1EE02512K
crossref_primary_10_1002_anie_202111683
crossref_primary_10_1002_smll_202402879
crossref_primary_10_1002_cctc_202101873
crossref_primary_10_1016_j_checat_2022_01_021
crossref_primary_10_1002_cctc_202401399
crossref_primary_10_1002_ange_202407772
crossref_primary_10_1039_D5SE00343A
crossref_primary_10_3390_coatings12020233
crossref_primary_10_1002_cssc_202401181
crossref_primary_10_1038_s41467_023_40342_6
crossref_primary_10_3390_catal13060955
Cites_doi 10.1039/C9EE00018F
10.1038/s41467-020-17120-9
10.1021/acscatal.9b04516
10.1557/jmr.2020.16
10.1021/acscatal.9b04043
10.1002/smtd.201800449
10.1016/j.nanoen.2020.104833
10.1021/acscatal.7b00707
10.1021/acsomega.7b00437
10.1021/jacs.9b08259
10.1038/s41560-019-0450-y
10.1002/anie.201808593
10.1016/j.nanoen.2018.09.053
10.1016/j.apcatb.2019.118243
10.1038/s41467-018-03712-z
10.1039/C5NR02345A
10.1039/C9CC05089B
10.1038/s41560-019-0451-x
10.1021/acscatal.7b03242
10.1021/acs.accounts.8b00449
10.1038/s41929-019-0306-7
10.1016/j.apcatb.2017.12.074
10.1021/ja309317u
10.1038/ncomms12697
10.1021/acs.accounts.8b00010
10.1021/acscatal.8b02181
10.1039/C9GC00479C
10.1016/j.joule.2018.11.008
10.1038/s41929-019-0235-5
10.1016/j.chempr.2018.08.019
10.1002/cssc.201903558
10.1002/anie.201912637
10.1038/s41467-019-08805-x
10.1002/anie.201914001
10.1016/j.apcatb.2020.118957
10.1016/j.nanoen.2017.05.065
10.1002/adma.201807166
10.1016/j.cclet.2019.07.028
10.1038/s41929-020-0450-0
10.1016/0360-3199(94)E0003-H
10.1016/j.elecom.2014.06.013
10.1016/j.jssc.2019.120946
10.1002/anie.201900167
10.1021/acs.chemrev.6b00816
10.1016/j.joule.2017.09.014
10.1002/anie.201713003
10.1002/aenm.201902338
10.1002/anie.201711255
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.xcrp.2021.100353
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2666-3864
ExternalDocumentID 10_1016_j_xcrp_2021_100353
S2666386421000382
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ACHIH
ACLIJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AALRI
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-c0366522b8d3ed2e3661c35625bd67bb52784de49145815cbebca3c26677bb703
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658764300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-3864
IngestDate Tue Nov 18 21:06:35 EST 2025
Thu Nov 20 00:37:23 EST 2025
Tue Jul 25 21:00:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-c0366522b8d3ed2e3661c35625bd67bb52784de49145815cbebca3c26677bb703
OpenAccessLink http://dx.doi.org/10.1016/j.xcrp.2021.100353
ParticipantIDs crossref_primary_10_1016_j_xcrp_2021_100353
crossref_citationtrail_10_1016_j_xcrp_2021_100353
elsevier_sciencedirect_doi_10_1016_j_xcrp_2021_100353
PublicationCentury 2000
PublicationDate 2021-03-24
PublicationDateYYYYMMDD 2021-03-24
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-24
  day: 24
PublicationDecade 2020
PublicationTitle Cell reports physical science
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Zu, Zheng, Yang (bib18) 2019; 55
Wu, Huo, Chen, Fu, Luo (bib44) 2020; 271
Gu, Yang, Han, Kuang, Mei, Jiang, Zhong, Li, Zheng (bib46) 2018; 3
Chen, Khosrowabadi Kotyk, Sheehan (bib7) 2018; 4
Zhang, Yin, Shao, Zhu, Huang (bib29) 2019; 58
Tiwari, Samuel, Singh (bib39) 1995; 20
Jiang, He, Zhang, Song (bib23) 2018; 51
Koh, Won, Eom, Kim, Jung, Kim, Hwang, Min (bib13) 2017; 7
Weekes, Salvatore, Reyes, Huang, Berlinguette (bib33) 2018; 51
Ross, De Luna, Li, Dinh, Kim, Yang, Sargent (bib1) 2019; 2
Kibria, Edwards, Gabardo, Dinh, Seifitokaldani, Sinton, Sargent (bib6) 2019; 31
Deng, Wang, Qi, Zhu, Chen, Yang, Zhou, Qi, Liu, Xia (bib38) 2019; 10
Zhang, Wang, Yu, Liu, Chen, Li, Rong, Lin, Ji, Zheng (bib12) 2019; 141
Gu, Héroguel, Luterbacher, Hu (bib43) 2018; 57
Kim, Dong, Gim, Sohn, Park, Yoo, Jang, Lee (bib14) 2017; 39
Lei, Liu, Sun, Xu, Liu, Liang, Yao, Pan, Wei, Xie (bib42) 2016; 7
Birdja, Pérez-Gallent, Figueiredo, Göttle, Calle-Vallejo, Koper (bib2) 2019; 4
Puppin, Khalid, da Silva, Ribeiro, Varela, Lopes (bib19) 2020; 35
Zhang, Xiao, Chen, Yu, Yu, Si, Wang, Wang, Meng, Wang (bib4) 2018; 57
Yu, Zhang, Dong, Li, Zhang, Huang (bib28) 2018; 226
Ma, Xie, Liu, Fan, Ye, Sun, Jiang, Zhang, Cheng, Wang (bib34) 2020; 3
Gao, Arán-Ais, Jeon, Roldan Cuenya (bib3) 2019; 2
Han, Ding, He, Li, Li (bib8) 2019; 10
Geng, Kong, Chen, Su, Liu, Cai, Wang, Zeng (bib31) 2018; 57
Chu, Chen, Guo, Lu, Wu, Wu, He, Han (bib48) 2019; 21
Chen, Gao, Zhang, Duan, Fan, Xiao, Zhang, Dong, Li, Yi, Luo (bib5) 2020; 73
Han, Wang, Yang, Deng, Wu, Li, Li (bib21) 2018; 9
Zhang, Ma, Quan, Huang, Jia, Zhang (bib26) 2014; 46
Chen, Fan, Zhang, Xiao, Gao, Duan, Zhang, Li, Liu, Yi, Luo (bib32) 2020; 261
Zhao, Wang, Li, Chen, Xu, He, Xi, Zhang, Yuan, Qu (bib40) 2019; 3
Lv, Bei, Zhang, Wang, Kong, Wang, Wang (bib17) 2017; 2
Lee, Hong, Yang, Jin, Lee, Ahn, Seo, Sung, Nam (bib16) 2018; 8
Ma, Xie, Zhang, Sun, Kang, Jiang, Zhang, Wu, Wang (bib10) 2019; 10
Zhang, Sun, Guo, Bond, Zhang (bib15) 2019; 12
Fan, Wu, Yang, Song, Zhang, Huang, Chen, Dong, Fang, Yi (bib41) 2020; 13
Fan, Jia, Ji, Kuang, Zhu, Liu, Yu (bib36) 2019; 10
Shi, Ji, Long, Liang, Liu, Yu, Xiao, Zhang (bib24) 2020; 11
Zhang, Du, He, Liu, Tao (bib45) 2019; 279
Álvarez, Bansode, Urakawa, Bavykina, Wezendonk, Makkee, Gascon, Kapteijn (bib9) 2017; 117
Xia, Zhu, Jiang, Pan, Liang, Stavitski, Alshareef, Wang (bib22) 2019; 4
Chen, Li, Kanan (bib37) 2012; 134
Wei, Liu, Wang, Zong, Yao, Wang, Zhu (bib25) 2015; 7
Mao, Wang, Li, Chen, Wang, Li, Zhan (bib30) 2020; 59
Zheng, De Luna, García de Arquer, Zhang, Becknell, Ross, Li, Banis, Li, Liu (bib11) 2017; 1
Zhang, Hu, Ma, Zhu, Zhao, Xue, Chen, Yang, Ma, Liu, Jin (bib20) 2018; 53
Zhang, Co (bib27) 2020; 59
Dunwell, Luc, Yan, Jiao, Xu (bib35) 2018; 8
Gao, Kumar, Shang, Duan, Wang, Wang, Ji, Yan, Luo, Liu, Sun (bib47) 2019; 30
Chen (10.1016/j.xcrp.2021.100353_bib5) 2020; 73
Han (10.1016/j.xcrp.2021.100353_bib8) 2019; 10
Wei (10.1016/j.xcrp.2021.100353_bib25) 2015; 7
Puppin (10.1016/j.xcrp.2021.100353_bib19) 2020; 35
Zhao (10.1016/j.xcrp.2021.100353_bib40) 2019; 3
Zhang (10.1016/j.xcrp.2021.100353_bib12) 2019; 141
Deng (10.1016/j.xcrp.2021.100353_bib38) 2019; 10
Birdja (10.1016/j.xcrp.2021.100353_bib2) 2019; 4
Chen (10.1016/j.xcrp.2021.100353_bib37) 2012; 134
Gao (10.1016/j.xcrp.2021.100353_bib3) 2019; 2
Han (10.1016/j.xcrp.2021.100353_bib21) 2018; 9
Ross (10.1016/j.xcrp.2021.100353_bib1) 2019; 2
Chen (10.1016/j.xcrp.2021.100353_bib32) 2020; 261
Geng (10.1016/j.xcrp.2021.100353_bib31) 2018; 57
Kim (10.1016/j.xcrp.2021.100353_bib14) 2017; 39
Mao (10.1016/j.xcrp.2021.100353_bib30) 2020; 59
Zhang (10.1016/j.xcrp.2021.100353_bib27) 2020; 59
Koh (10.1016/j.xcrp.2021.100353_bib13) 2017; 7
Dunwell (10.1016/j.xcrp.2021.100353_bib35) 2018; 8
Álvarez (10.1016/j.xcrp.2021.100353_bib9) 2017; 117
Lv (10.1016/j.xcrp.2021.100353_bib17) 2017; 2
Liu (10.1016/j.xcrp.2021.100353_bib18) 2019; 55
Xia (10.1016/j.xcrp.2021.100353_bib22) 2019; 4
Wu (10.1016/j.xcrp.2021.100353_bib44) 2020; 271
Tiwari (10.1016/j.xcrp.2021.100353_bib39) 1995; 20
Kibria (10.1016/j.xcrp.2021.100353_bib6) 2019; 31
Zheng (10.1016/j.xcrp.2021.100353_bib11) 2017; 1
Fan (10.1016/j.xcrp.2021.100353_bib36) 2019; 10
Zhang (10.1016/j.xcrp.2021.100353_bib29) 2019; 58
Fan (10.1016/j.xcrp.2021.100353_bib41) 2020; 13
Lei (10.1016/j.xcrp.2021.100353_bib42) 2016; 7
Zhang (10.1016/j.xcrp.2021.100353_bib4) 2018; 57
Gu (10.1016/j.xcrp.2021.100353_bib46) 2018; 3
Shi (10.1016/j.xcrp.2021.100353_bib24) 2020; 11
Jiang (10.1016/j.xcrp.2021.100353_bib23) 2018; 51
Lee (10.1016/j.xcrp.2021.100353_bib16) 2018; 8
Ma (10.1016/j.xcrp.2021.100353_bib34) 2020; 3
Gu (10.1016/j.xcrp.2021.100353_bib43) 2018; 57
Zhang (10.1016/j.xcrp.2021.100353_bib45) 2019; 279
Gao (10.1016/j.xcrp.2021.100353_bib47) 2019; 30
Zhang (10.1016/j.xcrp.2021.100353_bib26) 2014; 46
Yu (10.1016/j.xcrp.2021.100353_bib28) 2018; 226
Ma (10.1016/j.xcrp.2021.100353_bib10) 2019; 10
Zhang (10.1016/j.xcrp.2021.100353_bib15) 2019; 12
Chen (10.1016/j.xcrp.2021.100353_bib7) 2018; 4
Weekes (10.1016/j.xcrp.2021.100353_bib33) 2018; 51
Chu (10.1016/j.xcrp.2021.100353_bib48) 2019; 21
Zhang (10.1016/j.xcrp.2021.100353_bib20) 2018; 53
References_xml – volume: 57
  start-page: 6054
  year: 2018
  end-page: 6059
  ident: bib31
  article-title: Oxygen vacancies in ZnO nanosheets enhance CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 8
  start-page: 8121
  year: 2018
  end-page: 8129
  ident: bib35
  article-title: Understanding surface-mediated electrochemical reactions: CO
  publication-title: ACS Catal.
– volume: 39
  start-page: 44
  year: 2017
  end-page: 52
  ident: bib14
  article-title: Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate
  publication-title: Nano Energy
– volume: 30
  start-page: 2274
  year: 2019
  end-page: 2278
  ident: bib47
  article-title: Promoting electrochemical conversion of CO
  publication-title: Chin. Chem. Lett.
– volume: 117
  start-page: 9804
  year: 2017
  end-page: 9838
  ident: bib9
  article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO
  publication-title: Chem. Rev.
– volume: 53
  start-page: 808
  year: 2018
  end-page: 816
  ident: bib20
  article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO
  publication-title: Nano Energy
– volume: 31
  start-page: e1807166
  year: 2019
  ident: bib6
  article-title: Electrochemical CO
  publication-title: Adv. Mater.
– volume: 20
  start-page: 9
  year: 1995
  end-page: 15
  ident: bib39
  article-title: Active thin NiCo
  publication-title: Int. J. Hydrogen Energy
– volume: 279
  start-page: 120946
  year: 2019
  ident: bib45
  article-title: Low overpotential electrochemical CO
  publication-title: J. Solid State Chem.
– volume: 10
  start-page: 743
  year: 2019
  end-page: 750
  ident: bib38
  article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate
  publication-title: ACS Catal.
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  ident: bib3
  article-title: Rational catalyst and electrolyte design for CO
  publication-title: Nat. Catal.
– volume: 226
  start-page: 441
  year: 2018
  end-page: 450
  ident: bib28
  article-title: Readily achieving concentration-tunable oxygen vacancies in Bi
  publication-title: Appl. Catal. B
– volume: 271
  start-page: 118957
  year: 2020
  ident: bib44
  article-title: Boosting formate production at high current density from CO
  publication-title: Appl. Catal. B
– volume: 141
  start-page: 16569
  year: 2019
  end-page: 16573
  ident: bib12
  article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 931
  year: 2018
  end-page: 937
  ident: bib16
  article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte
  publication-title: ACS Catal.
– volume: 10
  start-page: 892
  year: 2019
  ident: bib10
  article-title: Promoting electrocatalytic CO
  publication-title: Nat. Commun.
– volume: 21
  start-page: 2589
  year: 2019
  end-page: 2593
  ident: bib48
  article-title: Enhancing electroreduction of CO
  publication-title: Green Chem.
– volume: 2
  start-page: 648
  year: 2019
  end-page: 658
  ident: bib1
  article-title: Designing materials for electrochemical carbon dioxide recycling
  publication-title: Nat. Catal.
– volume: 10
  start-page: 1902338
  year: 2019
  ident: bib8
  article-title: Promises of main group metal-based nanostructured materials for electrochemical CO
  publication-title: Adv. Energy Mater.
– volume: 51
  start-page: 910
  year: 2018
  end-page: 918
  ident: bib33
  article-title: Electrolytic CO
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 794
  year: 2017
  end-page: 805
  ident: bib11
  article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO
  publication-title: Joule
– volume: 35
  start-page: 272
  year: 2020
  end-page: 280
  ident: bib19
  article-title: Electrochemical reduction of CO
  publication-title: J. Mater. Res.
– volume: 58
  start-page: 5609
  year: 2019
  end-page: 5613
  ident: bib29
  article-title: Oxygen vacancies in amorphous InOx nanoribbons enhance CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 358
  year: 2019
  end-page: 364
  ident: bib36
  article-title: Curved surface boosts electrochemical CO
  publication-title: ACS Catal.
– volume: 3
  start-page: 584
  year: 2019
  end-page: 594
  ident: bib40
  article-title: Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO
  publication-title: Joule
– volume: 73
  start-page: 104833
  year: 2020
  ident: bib5
  article-title: Tuning local carbon active sites saturability of graphitic carbon nitride to boost CO
  publication-title: Nano Energy
– volume: 11
  start-page: 3415
  year: 2020
  ident: bib24
  article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate
  publication-title: Nat. Commun.
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  ident: bib2
  article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
  publication-title: Nat. Energy
– volume: 7
  start-page: 13943
  year: 2015
  end-page: 13950
  ident: bib25
  article-title: Controlled synthesis of a highly dispersed BiPO
  publication-title: Nanoscale
– volume: 55
  start-page: 12392
  year: 2019
  end-page: 12395
  ident: bib18
  article-title: Bismuth oxyiodide microflower-derived catalysts for efficient CO
  publication-title: Chem. Commun. (Camb.)
– volume: 9
  start-page: 1320
  year: 2018
  ident: bib21
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO
  publication-title: Nat. Commun.
– volume: 59
  start-page: 1674
  year: 2020
  end-page: 1681
  ident: bib27
  article-title: Direct evidence of local pH change and the role of alkali cation during CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 59
  start-page: 3685
  year: 2020
  end-page: 3690
  ident: bib30
  article-title: Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 3
  start-page: 478
  year: 2020
  end-page: 487
  ident: bib34
  article-title: Electrocatalytic reduction of CO
  publication-title: Nat. Catal.
– volume: 2
  start-page: 2561
  year: 2017
  end-page: 2567
  ident: bib17
  article-title: Bi
  publication-title: ACS Omega
– volume: 4
  start-page: 2571
  year: 2018
  end-page: 2586
  ident: bib7
  article-title: Progress toward commercial application of electrochemical carbon dioxide reduction
  publication-title: Chem
– volume: 12
  start-page: 1334
  year: 2019
  end-page: 1340
  ident: bib15
  article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 16339
  year: 2018
  end-page: 16342
  ident: bib4
  article-title: Reaction mechanisms of well-defined metal-N
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 3
  start-page: 1800449
  year: 2018
  ident: bib46
  article-title: Oxygen vacancy tuning toward efficient electrocatalytic CO
  publication-title: Small Methods
– volume: 13
  start-page: 2677
  year: 2020
  end-page: 2683
  ident: bib41
  article-title: Electrochemically driven formation of sponge-like porous silver nanocubes toward efficient CO
  publication-title: ChemSusChem
– volume: 7
  start-page: 12697
  year: 2016
  ident: bib42
  article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction
  publication-title: Nat. Commun.
– volume: 4
  start-page: 776
  year: 2019
  end-page: 785
  ident: bib22
  article-title: Continuous production of pure liquid fuel solutions via electrocatalytic CO
  publication-title: Nat. Energy
– volume: 7
  start-page: 5071
  year: 2017
  end-page: 5077
  ident: bib13
  article-title: Facile CO
  publication-title: ACS Catal.
– volume: 51
  start-page: 2968
  year: 2018
  end-page: 2977
  ident: bib23
  article-title: Structural self-reconstruction of catalysts in electrocatalysis
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 63
  year: 2014
  end-page: 66
  ident: bib26
  article-title: Selective electro-reduction of CO
  publication-title: Electrochem. Commun.
– volume: 134
  start-page: 19969
  year: 2012
  end-page: 19972
  ident: bib37
  article-title: Aqueous CO
  publication-title: J. Am. Chem. Soc.
– volume: 261
  start-page: 118243
  year: 2020
  ident: bib32
  article-title: Wavy SnO
  publication-title: Appl. Catal. B
– volume: 57
  start-page: 2943
  year: 2018
  end-page: 2947
  ident: bib43
  article-title: Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 1334
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib15
  article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00018F
– volume: 11
  start-page: 3415
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib24
  article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17120-9
– volume: 10
  start-page: 358
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib36
  article-title: Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04516
– volume: 35
  start-page: 272
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib19
  article-title: Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2020.16
– volume: 10
  start-page: 743
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib38
  article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04043
– volume: 3
  start-page: 1800449
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib46
  article-title: Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4
  publication-title: Small Methods
  doi: 10.1002/smtd.201800449
– volume: 73
  start-page: 104833
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib5
  article-title: Tuning local carbon active sites saturability of graphitic carbon nitride to boost CO2 electroreduction towards CH4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104833
– volume: 7
  start-page: 5071
  year: 2017
  ident: 10.1016/j.xcrp.2021.100353_bib13
  article-title: Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00707
– volume: 2
  start-page: 2561
  year: 2017
  ident: 10.1016/j.xcrp.2021.100353_bib17
  article-title: Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00437
– volume: 141
  start-page: 16569
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib12
  article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08259
– volume: 4
  start-page: 732
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib2
  article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0450-y
– volume: 57
  start-page: 16339
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib4
  article-title: Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201808593
– volume: 53
  start-page: 808
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib20
  article-title: Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.053
– volume: 261
  start-page: 118243
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib32
  article-title: Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118243
– volume: 9
  start-page: 1320
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib21
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03712-z
– volume: 7
  start-page: 13943
  year: 2015
  ident: 10.1016/j.xcrp.2021.100353_bib25
  article-title: Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies
  publication-title: Nanoscale
  doi: 10.1039/C5NR02345A
– volume: 55
  start-page: 12392
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib18
  article-title: Bismuth oxyiodide microflower-derived catalysts for efficient CO2 electroreduction in a wide negative potential region
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C9CC05089B
– volume: 4
  start-page: 776
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib22
  article-title: Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0451-x
– volume: 8
  start-page: 931
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib16
  article-title: Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03242
– volume: 51
  start-page: 2968
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib23
  article-title: Structural self-reconstruction of catalysts in electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00449
– volume: 2
  start-page: 648
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib1
  article-title: Designing materials for electrochemical carbon dioxide recycling
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0306-7
– volume: 226
  start-page: 441
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib28
  article-title: Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.12.074
– volume: 134
  start-page: 19969
  year: 2012
  ident: 10.1016/j.xcrp.2021.100353_bib37
  article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309317u
– volume: 7
  start-page: 12697
  year: 2016
  ident: 10.1016/j.xcrp.2021.100353_bib42
  article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12697
– volume: 51
  start-page: 910
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib33
  article-title: Electrolytic CO2 reduction in a flow cell
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00010
– volume: 8
  start-page: 8121
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib35
  article-title: Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02181
– volume: 21
  start-page: 2589
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib48
  article-title: Enhancing electroreduction of CO2 over Bi2WO6 nanosheets by oxygen vacancies
  publication-title: Green Chem.
  doi: 10.1039/C9GC00479C
– volume: 3
  start-page: 584
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib40
  article-title: Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.008
– volume: 2
  start-page: 198
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib3
  article-title: Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0235-5
– volume: 4
  start-page: 2571
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib7
  article-title: Progress toward commercial application of electrochemical carbon dioxide reduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.08.019
– volume: 13
  start-page: 2677
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib41
  article-title: Electrochemically driven formation of sponge-like porous silver nanocubes toward efficient CO2 electroreduction to CO
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201903558
– volume: 59
  start-page: 1674
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib27
  article-title: Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201912637
– volume: 10
  start-page: 892
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib10
  article-title: Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08805-x
– volume: 59
  start-page: 3685
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib30
  article-title: Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2-x for efficient molecular-oxygen activation
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201914001
– volume: 271
  start-page: 118957
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib44
  article-title: Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118957
– volume: 39
  start-page: 44
  year: 2017
  ident: 10.1016/j.xcrp.2021.100353_bib14
  article-title: Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.065
– volume: 31
  start-page: e1807166
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib6
  article-title: Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807166
– volume: 30
  start-page: 2274
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib47
  article-title: Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.07.028
– volume: 3
  start-page: 478
  year: 2020
  ident: 10.1016/j.xcrp.2021.100353_bib34
  article-title: Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0450-0
– volume: 20
  start-page: 9
  year: 1995
  ident: 10.1016/j.xcrp.2021.100353_bib39
  article-title: Active thin NiCo2O4 film prepared on nickel by spray pyrolysis for oxygen evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(94)E0003-H
– volume: 46
  start-page: 63
  year: 2014
  ident: 10.1016/j.xcrp.2021.100353_bib26
  article-title: Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.06.013
– volume: 279
  start-page: 120946
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib45
  article-title: Low overpotential electrochemical CO2 reduction to formate on Co3O4-CeO2/low graphitic carbon catalyst with oxygen vacancies
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.120946
– volume: 58
  start-page: 5609
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib29
  article-title: Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201900167
– volume: 117
  start-page: 9804
  year: 2017
  ident: 10.1016/j.xcrp.2021.100353_bib9
  article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00816
– volume: 1
  start-page: 794
  year: 2017
  ident: 10.1016/j.xcrp.2021.100353_bib11
  article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.014
– volume: 57
  start-page: 2943
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib43
  article-title: Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201713003
– volume: 10
  start-page: 1902338
  year: 2019
  ident: 10.1016/j.xcrp.2021.100353_bib8
  article-title: Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902338
– volume: 57
  start-page: 6054
  year: 2018
  ident: 10.1016/j.xcrp.2021.100353_bib31
  article-title: Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201711255
SSID ssj0002511780
Score 2.4802315
Snippet Electrocatalytic reduction of CO2 to formate is an attractive avenue for CO2 utilization. Unfortunately, existing catalysts suffer from low faradic efficiency...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100353
Title Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts
URI https://dx.doi.org/10.1016/j.xcrp.2021.100353
Volume 2
WOSCitedRecordID wos000658764300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-3864
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0002511780
  issn: 2666-3864
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-3864
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511780
  issn: 2666-3864
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaiwoELojxES6l84ACKtqrt9T6OFQJxoAWJIuW2Wj9WSVQ2UbOpwoVjfzczttdJo6gCJC6rZGKvI89nz3g8_kzIG6klLJLVadIIJpK0NhyGVN4kQiojwb2Qae00_Tm_uChGo_LrYHDbn4W5ucrbtlityvl_VTXIQNl4dPYv1B1fCgL4DEqHJ6gdnn-k-DM9nlgXJkAq4qEOBEwGM9VDema4-8aFbn56EmfjWWRddsYXjh6p92Yt7iaoyeLHshsnaPLM0FdbeAqoyHKAMcB-A2LeKz_Y1wiScBcyZu33JtNFw12mH5Qc17NeOPIbJ-dQTm_kDU2WzlgugyjEK7hL2OLreGU8SHMnzxPchCwRhSc0P7E7ZGGy5huYFDtNgI9GTE9W2vGRcoaJIMIzEm9Ra3_DJrAFztwWKZjyBzyXJc6O57_WsTpchuXuEr74n8L5K58quN3Ubh9nw2-5fEIehwUHPfNA2ScD2z4l-2FKX9C3gXf83TMyjcihiBwakEMDcigAgm4jh0bk0FlDATm0m9GAHArCO8ihETnPyfePHy7ff0rCVRyJTtlpl2hwdDJw1VVhhDXcwjemBS6elclypSTuXxubliyVBZNaYY6d0NBdOfwKVuUF2WtnrX1JqJV1k5maadvgLnSmZJnaUiGDPavr2hwQ1ndepQNPPV6XclX1CYnTCju8wg6vfIcfkGGsM_csLfeWlr1OqjAOvP9YAYbuqXf4j_VekUfrgXBE9rrrpX1NHuqbbrK4PnZRoGMHuN8sk6Ut
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+high+current+density+for+electrocatalytic+reduction+of+CO2+to+formate+on+bismuth-based+catalysts&rft.jtitle=Cell+reports+physical+science&rft.au=Fan%2C+Tingting&rft.au=Ma%2C+Wenchao&rft.au=Xie%2C+Mingcan&rft.au=Liu%2C+Huan&rft.date=2021-03-24&rft.pub=Elsevier+Inc&rft.issn=2666-3864&rft.eissn=2666-3864&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1016%2Fj.xcrp.2021.100353&rft.externalDocID=S2666386421000382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3864&client=summon