Optimal placement and sizing of FACTS devices for optimal power flow using metaheuristic optimizers

This paper proposes the implementation of various metaheuristic algorithms in solving the optimal power flow (OPF) with the presence of Flexible AC Transmission System (FACTS) devices in the power system. OPF is one of the well-known problems in power system operations and with the inclusion of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in control and optimization Jg. 8; S. 100145
Hauptverfasser: Sulaiman, Mohd Herwan, Mustaffa, Zuriani
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier 01.09.2022
Schlagworte:
ISSN:2666-7207, 2666-7207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes the implementation of various metaheuristic algorithms in solving the optimal power flow (OPF) with the presence of Flexible AC Transmission System (FACTS) devices in the power system. OPF is one of the well-known problems in power system operations and with the inclusion of the FACTS devices allocation problems into OPF will make the solution more complex. Thus, seven metaheuristic algorithms: Barnacles Mating Optimizer (BMO), Marine Predators Algorithm (MPA), Moth–Flame Optimization (MFO), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching–Learning-Based Optimization (TLBO) and Heap-Based Optimizer (HBO) are used to solve two objective functions: power loss and cost minimizations. These algorithms are selected from the different metaheuristics classification groups, where the implementation of these algorithms into the said problems will be tested on the modified IEEE 14-bus system. From the simulation results, it is suggested that TLBO and HBO perform better compared to the rest of algorithms.
AbstractList This paper proposes the implementation of various metaheuristic algorithms in solving the optimal power flow (OPF) with the presence of Flexible AC Transmission System (FACTS) devices in the power system. OPF is one of the well-known problems in power system operations and with the inclusion of the FACTS devices allocation problems into OPF will make the solution more complex. Thus, seven metaheuristic algorithms: Barnacles Mating Optimizer (BMO), Marine Predators Algorithm (MPA), Moth–Flame Optimization (MFO), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching–Learning-Based Optimization (TLBO) and Heap-Based Optimizer (HBO) are used to solve two objective functions: power loss and cost minimizations. These algorithms are selected from the different metaheuristics classification groups, where the implementation of these algorithms into the said problems will be tested on the modified IEEE 14-bus system. From the simulation results, it is suggested that TLBO and HBO perform better compared to the rest of algorithms.
ArticleNumber 100145
Author Sulaiman, Mohd Herwan
Mustaffa, Zuriani
Author_xml – sequence: 1
  givenname: Mohd Herwan
  orcidid: 0000-0003-2590-3807
  surname: Sulaiman
  fullname: Sulaiman, Mohd Herwan
– sequence: 2
  givenname: Zuriani
  surname: Mustaffa
  fullname: Mustaffa, Zuriani
BookMark eNp9kEFLAzEQhYNUsNb-AU_5A61JdpPsHkuxWih4sJ5Dkk5qlu2mJFuL_fXuWhXx4GGYYXjf4_Gu0aAJDSB0S8mUEiruqmn0NkwZYax7EJrzCzRkQoiJZEQOft1XaJxSRQhhBaXdDJF92rd-p2u8r7WFHTQt1s0GJ3_yzRYHhxez-foZb-DNW0jYhYjDNxGOELGrwxEfUq_eQatf4RB9ar09y_wJYrpBl07XCcZfe4ReFvfr-eNk9fSwnM9WE5tT0k6MdVYKAJPpojSSO6KFyYDIkjHKbVZKyxzhjkrKieW5NCzrFIUo6QacMdkILc--m6ArtY9dyviugvbq8xHiVunYRatBScktY9xKAJ4La0rIgQuX04xzw0veebGzl40hpQjux48S1beuKtW3rvrW1bn1Dir-QNa3uvWhaaP29X_oBzXyjBI
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122460
crossref_primary_10_3390_en16186730
crossref_primary_10_3390_su16219599
crossref_primary_10_1049_gtd2_13076
crossref_primary_10_3390_computation11070145
crossref_primary_10_1109_ACCESS_2023_3315747
crossref_primary_10_1109_ACCESS_2025_3556168
crossref_primary_10_1007_s40998_025_00805_6
crossref_primary_10_1080_15325008_2023_2237011
crossref_primary_10_3390_a16090420
crossref_primary_10_1002_ese3_1628
crossref_primary_10_3390_en17020516
crossref_primary_10_3390_electronics12010043
crossref_primary_10_3390_su15010366
crossref_primary_10_1002_eng2_70167
crossref_primary_10_3390_en16010161
crossref_primary_10_1080_15325008_2022_2155731
Cites_doi 10.1016/j.epsr.2014.03.032
10.1016/j.cad.2010.12.015
10.1016/j.ijepes.2005.10.003
10.1016/j.ins.2011.08.006
10.1186/s13640-019-0418-7
10.1007/s00521-019-04132-w
10.1016/j.asoc.2019.04.012
10.1007/s00366-019-00780-7
10.1007/s42452-020-2073-0
10.1016/j.eswa.2020.113702
10.1016/j.ins.2012.11.009
10.1080/01430750.2018.1484801
10.1016/j.ijepes.2015.12.001
10.1016/j.ijepes.2009.09.013
10.1016/j.eswa.2020.113377
10.1016/j.knosys.2015.07.006
10.1109/TPWRS.2010.2051168
10.1016/j.scient.2012.04.021
10.1007/s10462-020-09906-6
10.1016/j.ins.2012.05.009
10.1016/j.engappai.2019.103330
10.1007/s00521-020-05453-x
10.1016/j.ins.2009.03.004
10.1007/s10462-020-09829-2
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.rico.2022.100145
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-7207
ExternalDocumentID oai_doaj_org_article_775c225c7ee546cb9e4e56f41355b595
10_1016_j_rico_2022_100145
GroupedDBID 0R~
AAEDW
AALRI
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
CITATION
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c410t-bcfc76eeb3a89b75f0a6b3e0792215c397c2f05f17150c547b23a6b8691defbb3
IEDL.DBID DOA
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208975700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-7207
IngestDate Fri Oct 03 12:48:27 EDT 2025
Thu Nov 20 00:20:57 EST 2025
Tue Nov 18 20:43:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-bcfc76eeb3a89b75f0a6b3e0792215c397c2f05f17150c547b23a6b8691defbb3
ORCID 0000-0003-2590-3807
OpenAccessLink https://doaj.org/article/775c225c7ee546cb9e4e56f41355b595
ParticipantIDs doaj_primary_oai_doaj_org_article_775c225c7ee546cb9e4e56f41355b595
crossref_primary_10_1016_j_rico_2022_100145
crossref_citationtrail_10_1016_j_rico_2022_100145
PublicationCentury 2000
PublicationDate 2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-00
PublicationDecade 2020
PublicationTitle Results in control and optimization
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
References Halim (10.1016/j.rico.2022.100145_b15) 2021; 54
Aghaei (10.1016/j.rico.2022.100145_b9) 2012; 19
Bansal (10.1016/j.rico.2022.100145_b17) 2020; 53
Ambriz-Pérez (10.1016/j.rico.2022.100145_b10) 2006; 28
Kullay Reddy (10.1016/j.rico.2022.100145_b3) 2019
Vanchinathan (10.1016/j.rico.2022.100145_b18) 2021; 4
Ashok Kumar (10.1016/j.rico.2022.100145_b2) 2020; 41
Faramarzi (10.1016/j.rico.2022.100145_b23) 2020; 152
Bouchekara (10.1016/j.rico.2022.100145_b32) 2014; 114
Sulaiman (10.1016/j.rico.2022.100145_b20) 2020; 87
Oloyede (10.1016/j.rico.2022.100145_b12) 2019; 2019
Mahdad (10.1016/j.rico.2022.100145_b7) 2010; 32
Sita (10.1016/j.rico.2022.100145_b8) 2019
Sulaiman (10.1016/j.rico.2022.100145_b21) 2018
Biswas (10.1016/j.rico.2022.100145_b1) 2021; 33
Waghmare (10.1016/j.rico.2022.100145_b30) 2013; 229
Sulaiman (10.1016/j.rico.2022.100145_b22) 2018
Rao (10.1016/j.rico.2022.100145_b28) 2012; 183
Mirjalili (10.1016/j.rico.2022.100145_b24) 2015; 89
Nayeri (10.1016/j.rico.2022.100145_b14) 2021
Rashedi (10.1016/j.rico.2022.100145_b26) 2009; 179
Askari (10.1016/j.rico.2022.100145_b33) 2020; 161
Naderi (10.1016/j.rico.2022.100145_b4) 2019; 80
Prasad (10.1016/j.rico.2022.100145_b6) 2016; 19
Črepinšek (10.1016/j.rico.2022.100145_b29) 2012; 212
Zimmerman (10.1016/j.rico.2022.100145_b19) 2011; 26
Ezugwu (10.1016/j.rico.2022.100145_b16) 2020; 32
Mukherjee (10.1016/j.rico.2022.100145_b5) 2016; 78
Katebi (10.1016/j.rico.2022.100145_b11) 2020; 36
Labs (10.1016/j.rico.2022.100145_b31) 2020
Eberhart (10.1016/j.rico.2022.100145_b25) 1995
Ezugwu (10.1016/j.rico.2022.100145_b13) 2020; 2
Rao (10.1016/j.rico.2022.100145_b27) 2011; 43
References_xml – volume: 114
  start-page: 49
  year: 2014
  ident: 10.1016/j.rico.2022.100145_b32
  article-title: Optimal power flow using teaching-learning-based optimization technique
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2014.03.032
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.rico.2022.100145_b27
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– volume: 28
  start-page: 77
  issue: 2
  year: 2006
  ident: 10.1016/j.rico.2022.100145_b10
  article-title: TCSC-firing angle model for optimal power flow solutions using Newton’s method
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2005.10.003
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.rico.2022.100145_b28
  article-title: Teaching–learning-based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2011.08.006
– volume: 2019
  start-page: 27
  issue: 1
  year: 2019
  ident: 10.1016/j.rico.2022.100145_b12
  article-title: A new evaluation function for face image enhancement in unconstrained environments using metaheuristic algorithms
  publication-title: EURASIP J Image Video Process
  doi: 10.1186/s13640-019-0418-7
– start-page: 39
  year: 1995
  ident: 10.1016/j.rico.2022.100145_b25
  article-title: A new optimizer using particle swarm theory
– volume: 32
  start-page: 6207
  issue: 10
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b16
  article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04132-w
– volume: 80
  start-page: 243
  year: 2019
  ident: 10.1016/j.rico.2022.100145_b4
  article-title: An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.04.012
– volume: 36
  start-page: 1539
  issue: 4
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b11
  article-title: Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00780-7
– volume: 2
  start-page: 273
  issue: 2
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b13
  article-title: Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2073-0
– start-page: 265
  year: 2018
  ident: 10.1016/j.rico.2022.100145_b21
  article-title: Barnacles mating optimizer: A bio-inspired algorithm for solving optimization problems
– volume: 161
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b33
  article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113702
– volume: 229
  start-page: 159
  year: 2013
  ident: 10.1016/j.rico.2022.100145_b30
  article-title: Comments on a note on teaching–learning-based optimization algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2012.11.009
– volume: 41
  start-page: 631
  issue: 6
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b2
  article-title: Power quality improvement of grid-connected wind energy system using facts devices
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2018.1484801
– year: 2021
  ident: 10.1016/j.rico.2022.100145_b14
  article-title: A robust fuzzy stochastic model for the responsive-resilient inventory-location problem: comparison of metaheuristic algorithms
  publication-title: Ann Oper Res
– volume: 78
  start-page: 700
  year: 2016
  ident: 10.1016/j.rico.2022.100145_b5
  article-title: Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.12.001
– start-page: 99
  year: 2018
  ident: 10.1016/j.rico.2022.100145_b22
  article-title: Barnacles mating optimizer: An evolutionary algorithm for solving optimization
– volume: 32
  start-page: 507
  issue: 5
  year: 2010
  ident: 10.1016/j.rico.2022.100145_b7
  article-title: Optimal power flow for large-scale power system with shunt FACTS using efficient parallel GA
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2009.09.013
– volume: 152
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b23
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113377
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.rico.2022.100145_b24
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 26
  start-page: 12
  issue: 1
  year: 2011
  ident: 10.1016/j.rico.2022.100145_b19
  article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2051168
– volume: 19
  start-page: 1683
  issue: 6
  year: 2012
  ident: 10.1016/j.rico.2022.100145_b9
  article-title: Placement and operation strategy of FACTS devices using optimal continuous power flow
  publication-title: Sci Iran
  doi: 10.1016/j.scient.2012.04.021
– volume: 54
  start-page: 2323
  issue: 3
  year: 2021
  ident: 10.1016/j.rico.2022.100145_b15
  article-title: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09906-6
– volume: 4
  year: 2021
  ident: 10.1016/j.rico.2022.100145_b18
  article-title: Adaptive fractional order PID controller tuning for brushless DC motor using artificial bee colony algorithm
  publication-title: Results Control Optim
– volume: 212
  start-page: 79
  year: 2012
  ident: 10.1016/j.rico.2022.100145_b29
  article-title: A note on teaching–learning-based optimization algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2012.05.009
– start-page: 1
  year: 2019
  ident: 10.1016/j.rico.2022.100145_b8
  article-title: Optimal location and sizing of UPFC for optimal power flow in a deregulated power system using a hybrid algorithm
  publication-title: Int J Ambient Energy
– volume: 87
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b20
  article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103330
– volume: 33
  start-page: 6753
  issue: 12
  year: 2021
  ident: 10.1016/j.rico.2022.100145_b1
  article-title: Optimal placement and sizing of FACTS devices for optimal power flow in a wind power integrated electrical network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05453-x
– year: 2020
  ident: 10.1016/j.rico.2022.100145_b31
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.rico.2022.100145_b26
  article-title: GSA: A gravitational search algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2009.03.004
– start-page: 1
  year: 2019
  ident: 10.1016/j.rico.2022.100145_b3
  article-title: Towards an enhancement of power quality in the distribution system with the integration of BESS and FACTS device
  publication-title: Int J Ambient Energy
– volume: 19
  start-page: 79
  issue: 1
  year: 2016
  ident: 10.1016/j.rico.2022.100145_b6
  article-title: A novel symbiotic organisms search algorithm for optimal power flow of power system with FACTS devices
  publication-title: Eng Sci Technol Int J
– volume: 53
  start-page: 5589
  issue: 8
  year: 2020
  ident: 10.1016/j.rico.2022.100145_b17
  article-title: Performance comparison of five metaheuristic nature-inspired algorithms to find near-OGRs for WDM systems
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09829-2
SSID ssj0002811281
Score 2.3986783
Snippet This paper proposes the implementation of various metaheuristic algorithms in solving the optimal power flow (OPF) with the presence of Flexible AC...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 100145
SubjectTerms Cost minimization
FACTS devices
Loss minimization
Metaheuristic algorithms
Optimal power flow
Title Optimal placement and sizing of FACTS devices for optimal power flow using metaheuristic optimizers
URI https://doaj.org/article/775c225c7ee546cb9e4e56f41355b595
Volume 8
WOSCitedRecordID wos001208975700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-7207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811281
  issn: 2666-7207
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-7207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811281
  issn: 2666-7207
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8sCGIvLwIx5L1YqFgkSRukWxY0OrtkFtClIHfjtnO60ywYIUZUjOlnW5-D7bd98hdCMMTVjBVUBpEQaEUBEIcFNBpHhSyIhLQ32xCd7vp8OheG6U-rIxYZ4e2CvujnOqwOYU15oSpqTQRFNmYO6lVFLh2EtDLhqLqbHbMorsEZGtLAf4POAgUmfM-OAumGNs5l8cOw4im8vU8EoN8n7nZXr7aK-Gh7jth3WAtvTsEO02SAOPkHqCv3wKQi6cym7u4XxW4MVoBa9xaXCv3Rm84EK7OQADKMXluoUtiYbNpPzCNt79DU91lb_rpWdr9mKjFQDCY_Ta6w46D0FdKiFQJAqrQCqjONOwMs5TITk1Yc5kokExMfh0BaBDxSakJuIAABUlXMYJSKRMRIU2UiYnqDUrZ_oU4YgZ6AmAJIEL-kmlYIoJQpMikYQXZyhaqypTNY-4LWcxydYBY-PMqjez6s28es_Q7abNh2fR-FX63n6BjaRlwHYPwC6y2i6yv-zi_D86uUA7dlw-puwStar5Ul-hbfVZjRbza2dycH_87v4ALyPZqg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+placement+and+sizing+of+FACTS+devices+for+optimal+power+flow+using+metaheuristic+optimizers&rft.jtitle=Results+in+control+and+optimization&rft.au=Sulaiman%2C+Mohd+Herwan&rft.au=Mustaffa%2C+Zuriani&rft.date=2022-09-01&rft.issn=2666-7207&rft.eissn=2666-7207&rft.volume=8&rft.spage=100145&rft_id=info:doi/10.1016%2Fj.rico.2022.100145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rico_2022_100145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7207&client=summon