An asymmetric encoder–decoder model for Zn-ion battery lifetime prediction

As the battery cycles between charging and discharging, the working conditions or improper operations such as overcharge and over discharge will aggravate the negative reaction inside the battery, generate irreversible chemical substances, and reduce the number of active substances involved in the e...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports Vol. 8; pp. 33 - 50
Main Authors: Lu, Siyu, Yin, Zhengtong, Liao, Shengjun, Yang, Bo, Liu, Shan, Liu, Mingzhe, Yin, Lirong, Zheng, Wenfeng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2022
Elsevier
Subjects:
ISSN:2352-4847, 2352-4847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As the battery cycles between charging and discharging, the working conditions or improper operations such as overcharge and over discharge will aggravate the negative reaction inside the battery, generate irreversible chemical substances, and reduce the number of active substances involved in the electrochemical reaction, resulting in a decrease in battery capacity. Batteries that lose 20% of their capacity can be considered to have failed. A failed battery shows that the battery capacity and power decay faster, and the electrical characteristics, stability, and safety of the battery will drop significantly. As a means of improving the machine learning model’s accuracy and generalization for RUL prediction of zinc-ion batteries, this paper mainly discusses about the design of the encoder–decoder model structure and the application of optimization methods. Then, the method of neural network hyperparameter optimization is studied. Finally, the validity of the research work done in this paper is verified by a series of comparative experiments.
AbstractList As the battery cycles between charging and discharging, the working conditions or improper operations such as overcharge and over discharge will aggravate the negative reaction inside the battery, generate irreversible chemical substances, and reduce the number of active substances involved in the electrochemical reaction, resulting in a decrease in battery capacity. Batteries that lose 20% of their capacity can be considered to have failed. A failed battery shows that the battery capacity and power decay faster, and the electrical characteristics, stability, and safety of the battery will drop significantly. As a means of improving the machine learning model’s accuracy and generalization for RUL prediction of zinc-ion batteries, this paper mainly discusses about the design of the encoder–decoder model structure and the application of optimization methods. Then, the method of neural network hyperparameter optimization is studied. Finally, the validity of the research work done in this paper is verified by a series of comparative experiments.
Author Yin, Zhengtong
Liao, Shengjun
Yin, Lirong
Yang, Bo
Liu, Mingzhe
Liu, Shan
Zheng, Wenfeng
Lu, Siyu
Author_xml – sequence: 1
  givenname: Siyu
  surname: Lu
  fullname: Lu, Siyu
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 2
  givenname: Zhengtong
  surname: Yin
  fullname: Yin, Zhengtong
  organization: College of Resource and Environment Engineering, Guizhou University, Guiyang, Guizhou 550025, China
– sequence: 3
  givenname: Shengjun
  surname: Liao
  fullname: Liao, Shengjun
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 4
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 5
  givenname: Shan
  surname: Liu
  fullname: Liu, Shan
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 6
  givenname: Mingzhe
  surname: Liu
  fullname: Liu, Mingzhe
  email: liumz@cdut.edu.cn
  organization: School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China
– sequence: 7
  givenname: Lirong
  surname: Yin
  fullname: Yin, Lirong
  organization: Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA
– sequence: 8
  givenname: Wenfeng
  orcidid: 0000-0002-8486-1654
  surname: Zheng
  fullname: Zheng, Wenfeng
  email: winfirms@uestc.edu.cn
  organization: School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China
BookMark eNp9kMtKAzEUhoMoWGtfwFVeYMYkk7kE3JTipVBwoxs3IZczJcNcSiYI3fkOvqFPYqZVEBfdnHPI4fvJ-a7QeT_0gNANJSkltLhtUtjufcoIYykRKaP0DM1YlrOEV7w8_zNfosU4NoQQKhjhRTZDm2WP1bjvOgjeGQy9GSz4r49PC4cJd7G2uB48fusTN_RYqxDA73HragiuA7zzYJ0JcXeNLmrVjrD46XP0-nD_snpKNs-P69VykxhOSUh0UZYMbJEJq4uccsgh40apmtjcgCiBgaKCK22sybICmGHaaC1yS4ppn83R-phrB9XInXed8ns5KCcPD4PfSuWDMy1Iy0l0xKoaNHAjREVzAFWxmF9TW01Z1THL-GEcPdTSuKCma4JXrpWUyEmybOQkWU6SJREySo4o-4f-fuUkdHeEIAp6d-DlaFzUHh16MCFe4E7h3xwrmmc
CitedBy_id crossref_primary_10_1016_j_synthmet_2022_117263
crossref_primary_10_1109_ACCESS_2025_3535520
crossref_primary_10_1016_j_jtice_2023_104685
crossref_primary_10_1016_j_mssp_2024_109089
crossref_primary_10_1016_j_est_2023_107760
crossref_primary_10_1016_j_est_2023_107244
crossref_primary_10_1016_j_est_2023_107489
crossref_primary_10_1016_j_est_2023_107402
crossref_primary_10_1016_j_mtchem_2023_101660
crossref_primary_10_3390_sym15010210
crossref_primary_10_1016_j_egyr_2023_03_095
crossref_primary_10_1016_j_est_2024_110827
crossref_primary_10_1016_j_ijhydene_2023_03_274
crossref_primary_10_1016_j_ijhydene_2022_11_279
crossref_primary_10_1016_j_matchemphys_2023_127447
crossref_primary_10_1016_j_scp_2023_101115
crossref_primary_10_1016_j_inoche_2023_110785
crossref_primary_10_1016_j_apenergy_2023_121224
crossref_primary_10_1016_j_ijepes_2023_109478
crossref_primary_10_1016_j_matchemphys_2025_130611
crossref_primary_10_1016_j_enganabound_2022_11_004
crossref_primary_10_1016_j_heliyon_2023_e19387
crossref_primary_10_1016_j_est_2022_106530
crossref_primary_10_1016_j_ijepes_2023_109228
crossref_primary_10_1007_s10854_023_09952_0
crossref_primary_10_3390_en16186505
crossref_primary_10_1016_j_inoche_2022_110371
crossref_primary_10_1016_j_fuel_2023_128457
crossref_primary_10_3390_su152416722
crossref_primary_10_1016_j_enganabound_2023_01_038
crossref_primary_10_1016_j_susmat_2024_e01045
crossref_primary_10_1080_15376494_2023_2286499
crossref_primary_10_3390_math11071751
crossref_primary_10_1016_j_est_2023_107789
crossref_primary_10_1016_j_seta_2023_103287
crossref_primary_10_3390_en18030746
crossref_primary_10_3390_coatings13010147
crossref_primary_10_1016_j_psep_2023_03_056
crossref_primary_10_3390_nano14030271
crossref_primary_10_1016_j_ijhydene_2023_02_016
crossref_primary_10_1002_ese3_1441
crossref_primary_10_1007_s12034_024_03247_8
crossref_primary_10_1080_15376494_2023_2270525
crossref_primary_10_1016_j_est_2023_107490
crossref_primary_10_1016_j_physb_2023_415027
crossref_primary_10_1016_j_suscom_2023_100899
crossref_primary_10_1080_08927022_2023_2165125
crossref_primary_10_1016_j_inoche_2022_110385
crossref_primary_10_1016_j_physb_2023_414977
crossref_primary_10_1080_08927022_2022_2161586
crossref_primary_10_1016_j_est_2023_107257
crossref_primary_10_1016_j_jpcs_2024_112301
crossref_primary_10_1016_j_est_2022_106548
crossref_primary_10_1016_j_est_2023_106844
crossref_primary_10_3390_en16227637
crossref_primary_10_1016_j_mssp_2023_107383
crossref_primary_10_1016_j_jmgm_2023_108423
crossref_primary_10_1016_j_seta_2022_102913
crossref_primary_10_1016_j_jpcs_2023_111548
crossref_primary_10_1016_j_cis_2023_102865
crossref_primary_10_1016_j_ijhydene_2023_01_340
crossref_primary_10_1016_j_enganabound_2022_12_029
crossref_primary_10_1007_s12010_022_04305_9
crossref_primary_10_1016_j_epsr_2023_109389
crossref_primary_10_1016_j_ijhydene_2023_01_106
crossref_primary_10_1016_j_seta_2023_103461
crossref_primary_10_1016_j_rser_2023_113440
crossref_primary_10_1007_s12633_023_02452_0
crossref_primary_10_1016_j_ijhydene_2023_03_356
crossref_primary_10_1016_j_applthermaleng_2022_119878
crossref_primary_10_1016_j_mssp_2024_109059
crossref_primary_10_1016_j_enganabound_2023_04_017
crossref_primary_10_1016_j_ijhydene_2022_12_264
crossref_primary_10_3390_e25010134
crossref_primary_10_1016_j_jcou_2023_102395
crossref_primary_10_1016_j_est_2023_108485
crossref_primary_10_1016_j_psep_2023_06_052
crossref_primary_10_1109_ACCESS_2023_3263264
crossref_primary_10_1016_j_heliyon_2023_e17634
crossref_primary_10_1016_j_apsusc_2023_156757
crossref_primary_10_1049_gtd2_12875
crossref_primary_10_1016_j_applthermaleng_2023_120853
crossref_primary_10_1016_j_est_2022_106450
crossref_primary_10_1016_j_electacta_2023_142654
crossref_primary_10_1016_j_est_2022_106570
crossref_primary_10_1049_rpg2_12902
crossref_primary_10_3390_en16020642
crossref_primary_10_1016_j_inoche_2022_110296
crossref_primary_10_1016_j_est_2023_108276
crossref_primary_10_1016_j_est_2023_108039
crossref_primary_10_1016_j_ijhydene_2022_12_018
crossref_primary_10_1016_j_est_2023_109888
crossref_primary_10_1016_j_arabjc_2023_104709
crossref_primary_10_3390_en16031494
crossref_primary_10_1016_j_synthmet_2022_117234
crossref_primary_10_1038_s41598_023_35659_7
crossref_primary_10_1016_j_inoche_2023_110480
crossref_primary_10_3390_electronics12214521
crossref_primary_10_3390_sym15040844
crossref_primary_10_1016_j_mtcomm_2023_106887
crossref_primary_10_1016_j_ijhydene_2023_01_254
crossref_primary_10_1016_j_ijhydene_2023_01_132
crossref_primary_10_1016_j_enganabound_2023_01_006
crossref_primary_10_1016_j_comptc_2022_113982
crossref_primary_10_1007_s00894_023_05555_y
crossref_primary_10_1016_j_inoche_2023_110767
Cites_doi 10.1007/s00521-020-05150-9
10.1109/TIE.2017.2782224
10.1109/JLT.2014.2299070
10.1016/j.physd.2019.132306
10.1109/ICASSP.2017.7952603
10.1134/S1064226916040112
10.1177/016344378300500205
10.21437/Interspeech.2012-65
10.1109/TCYB.2018.2863108
10.1016/S0893-6080(05)80030-9
10.1007/978-3-030-02922-7_31
10.1109/TIM.2008.2005965
10.1109/YAC.2016.7804912
10.1109/JAS.2017.7510727
10.1109/ICCV.2019.00658
10.1109/MWSCAS.2017.8053243
10.4319/lo.2010.55.3.1047
10.1145/1755952.1755987
10.1016/j.ress.2014.04.023
10.1016/j.microrel.2017.06.045
10.1093/comjnl/3.3.175
10.1162/neco_a_01199
10.1109/TIP.2018.2886767
10.1109/TEC.2006.874229
10.1016/S0006-3495(79)85319-9
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2022.09.211
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 50
ExternalDocumentID oai_doaj_org_article_d4010128febe4c99815eea82194f1d87
10_1016_j_egyr_2022_09_211
S2352484722019357
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
NCXOZ
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-b6772ed639db6514e5e34caaf0d5ce97e2ea194abcdc336e2c2bcbb95d06ce973
IEDL.DBID DOA
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887145000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Fri Oct 03 12:34:49 EDT 2025
Thu Nov 13 04:36:07 EST 2025
Tue Nov 18 21:00:27 EST 2025
Tue May 16 21:55:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Asymmetric encoder–decoder model
Zinc-ion battery
Battery life prediction
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b6772ed639db6514e5e34caaf0d5ce97e2ea194abcdc336e2c2bcbb95d06ce973
ORCID 0000-0002-8486-1654
OpenAccessLink https://doaj.org/article/d4010128febe4c99815eea82194f1d87
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_d4010128febe4c99815eea82194f1d87
crossref_citationtrail_10_1016_j_egyr_2022_09_211
crossref_primary_10_1016_j_egyr_2022_09_211
elsevier_sciencedirect_doi_10_1016_j_egyr_2022_09_211
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wang, Wang, Liu, Wei (b10) 2017; 5
R. Dey, F.M. Salem, Gate-variants of gated recurrent unit (GRU) neural networks, in: Proceedings of the 2017 IEEE 60th international midwest symposium on circuits and systems, MWSCAS, 2017, pp. 1597–1600, 2017.
Bornholdt, Graudenz (b7) 1992; 5
Holtgrieve, Schindler, Branch, A’mar (b20) 2010; 55
Liu, Li, Fang, Qi, Shen, Zhou, Zhang (b14) 2021; 125
Chorowski, Bahdanau, Serdyuk, Cho, Bengio (b13) 2015
J. Huang, Z. Li, N. Li, S. Liu, G. Li, Attpool: Towards hierarchical feature representation in graph convolutional networks via attention mechanism, in: Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6480–6489, 2019.
Yu, Si, Hu, Zhang (b24) 2019; 31
Rosenbrock (b30) 1960; 3
Beck, Katafygiotis (b22) 1998; 124
Wren-Lewis (b9) 1983; 5
Luong, Pham (b23) 2015
Alex Townsend, Constrained optimization in Chebfun.
Hu, Li, Peng (b3) 2017; 198
Stroud, Agard (b8) 1979; 25
Savchenko, Savchenko (b11) 2016; 61
X. Wu, Y. Cai, Q. Li, J. Xu, H.-f. Leung, Combining contextual information by self-attention mechanism in convolutional neural networks for text classification, in: Proceedings of the international conference on web information systems engineering, 2018, pp. 453–467, 2018.
Han, Li, Zhang, Ahmad (b12) 2018; 50
Li, Zeng, Shan, Chen (b15) 2018; 28
Sherstinsky (b26) 2020; 404
P. Zuliani, A. Platzer, E.M. Clarke, Bayesian statistical model checking with application to simulink/stateflow verification, in: Proceedings of the 13th ACM international conference on hybrid systems: computation and control, 2010, pp. 243–252, 2010.
Wei, Dong, Chen (b5) 2018; 65
Matsumoto, Kodama, Shimizu, Nomura, Omichi, Wada, Kitayama (b6) 2014; 32
Song, Liu, Yang (b4) 2017; 75
M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling, in: Proceedings of the thirteenth annual conference of the international speech communication association, 2012, 2012.
R. Fu, Z. Zhang, L. Li, Using LSTM and GRU neural network methods for traffic flow prediction, in: Proceedings of the 2016 31st youth academic annual conference of Chinese Association of Automation, YAC, 2016, pp. 324–328, 2016.
B. Athiwaratkun, J.W. Stokes, Malware classification with LSTM and GRU language models and a character-level CNN, in: Proceedings of the 2017 IEEE international conference on acoustics, speech and signal processing, ICASSP, 2017, pp. 2482–2486, 2017.
Min, Rincon-Mora Gabriel (b1) 2006; 21
Saha, Goebel, Poll (b2) 2009; 58
Park, Grandhi (b21) 2014; 129
2014.
Ju, Luo, Wang, Luo (b16) 2021; 33
Han (10.1016/j.egyr.2022.09.211_b12) 2018; 50
Wei (10.1016/j.egyr.2022.09.211_b5) 2018; 65
Wren-Lewis (10.1016/j.egyr.2022.09.211_b9) 1983; 5
Wang (10.1016/j.egyr.2022.09.211_b10) 2017; 5
Chorowski (10.1016/j.egyr.2022.09.211_b13) 2015
Stroud (10.1016/j.egyr.2022.09.211_b8) 1979; 25
10.1016/j.egyr.2022.09.211_b17
10.1016/j.egyr.2022.09.211_b18
Li (10.1016/j.egyr.2022.09.211_b15) 2018; 28
10.1016/j.egyr.2022.09.211_b19
Yu (10.1016/j.egyr.2022.09.211_b24) 2019; 31
10.1016/j.egyr.2022.09.211_b31
Luong (10.1016/j.egyr.2022.09.211_b23) 2015
Ju (10.1016/j.egyr.2022.09.211_b16) 2021; 33
Sherstinsky (10.1016/j.egyr.2022.09.211_b26) 2020; 404
Matsumoto (10.1016/j.egyr.2022.09.211_b6) 2014; 32
Min (10.1016/j.egyr.2022.09.211_b1) 2006; 21
10.1016/j.egyr.2022.09.211_b25
10.1016/j.egyr.2022.09.211_b27
Hu (10.1016/j.egyr.2022.09.211_b3) 2017; 198
10.1016/j.egyr.2022.09.211_b28
10.1016/j.egyr.2022.09.211_b29
Song (10.1016/j.egyr.2022.09.211_b4) 2017; 75
Bornholdt (10.1016/j.egyr.2022.09.211_b7) 1992; 5
Liu (10.1016/j.egyr.2022.09.211_b14) 2021; 125
Park (10.1016/j.egyr.2022.09.211_b21) 2014; 129
Holtgrieve (10.1016/j.egyr.2022.09.211_b20) 2010; 55
Rosenbrock (10.1016/j.egyr.2022.09.211_b30) 1960; 3
Beck (10.1016/j.egyr.2022.09.211_b22) 1998; 124
Savchenko (10.1016/j.egyr.2022.09.211_b11) 2016; 61
Saha (10.1016/j.egyr.2022.09.211_b2) 2009; 58
References_xml – volume: 21
  start-page: 504
  year: 2006
  end-page: 511
  ident: b1
  article-title: Accurate electrical battery model capable of predicting runtime and I–V performance
  publication-title: IEEE Trans Energy Convers
– reference: Alex Townsend, Constrained optimization in Chebfun.
– reference: J. Huang, Z. Li, N. Li, S. Liu, G. Li, Attpool: Towards hierarchical feature representation in graph convolutional networks via attention mechanism, in: Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6480–6489, 2019.
– volume: 61
  start-page: 430
  year: 2016
  end-page: 435
  ident: b11
  article-title: Information-theoretic analysis of efficiency of the phonetic encoding–decoding method in automatic speech recognition
  publication-title: J. Commun. Technol. Electron.
– volume: 50
  start-page: 36
  year: 2018
  end-page: 47
  ident: b12
  article-title: Impulsive consensus of multiagent systems with limited bandwidth based on encoding–decoding
  publication-title: IEEE Trans Cybern
– reference: B. Athiwaratkun, J.W. Stokes, Malware classification with LSTM and GRU language models and a character-level CNN, in: Proceedings of the 2017 IEEE international conference on acoustics, speech and signal processing, ICASSP, 2017, pp. 2482–2486, 2017.
– reference: . 2014.
– volume: 129
  start-page: 46
  year: 2014
  end-page: 56
  ident: b21
  article-title: A Bayesian statistical method for quantifying model form uncertainty and two model combination methods
  publication-title: Reliab Eng Syst Saf
– volume: 404
  year: 2020
  ident: b26
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Physica D
– year: 2015
  ident: b23
  article-title: Effective approaches to attention-based neural machine translation
  publication-title: Comput. Ence
– volume: 25
  start-page: 495
  year: 1979
  end-page: 512
  ident: b8
  article-title: Structure determination of asymmetric membrane profiles using an iterative Fourier method
  publication-title: Biophys J
– reference: M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling, in: Proceedings of the thirteenth annual conference of the international speech communication association, 2012, 2012.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b24
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput
– reference: X. Wu, Y. Cai, Q. Li, J. Xu, H.-f. Leung, Combining contextual information by self-attention mechanism in convolutional neural networks for text classification, in: Proceedings of the international conference on web information systems engineering, 2018, pp. 453–467, 2018.
– volume: 58
  start-page: 291
  year: 2009
  end-page: 296
  ident: b2
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: IEEE Trans Instrum Meas
– volume: 75
  start-page: 142
  year: 2017
  end-page: 153
  ident: b4
  article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
  publication-title: Microelectron. Reliab.
– year: 2015
  ident: b13
  article-title: Attention-based models for speech recognition
  publication-title: Adv Neural Inf Process Syst
– volume: 65
  start-page: 5634
  year: 2018
  end-page: 5643
  ident: b5
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans Ind Electron
– reference: R. Fu, Z. Zhang, L. Li, Using LSTM and GRU neural network methods for traffic flow prediction, in: Proceedings of the 2016 31st youth academic annual conference of Chinese Association of Automation, YAC, 2016, pp. 324–328, 2016.
– volume: 28
  start-page: 2439
  year: 2018
  end-page: 2450
  ident: b15
  article-title: Occlusion aware facial expression recognition using CNN with attention mechanism
  publication-title: IEEE Trans Image Process
– volume: 32
  start-page: 1132
  year: 2014
  end-page: 1143
  ident: b6
  article-title: 40G-OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders
  publication-title: J Lightwave Technol
– volume: 5
  start-page: 179
  year: 1983
  end-page: 197
  ident: b9
  article-title: The encoding/decoding model: criticisms and redevelopments for research on decoding
  publication-title: Media Culture Soc.
– volume: 3
  start-page: 175
  year: 1960
  end-page: 184
  ident: b30
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: Comput J
– volume: 5
  start-page: 327
  year: 1992
  end-page: 334
  ident: b7
  article-title: General asymmetric neural networks and structure design by genetic algorithms
  publication-title: Neural Netw
– volume: 5
  start-page: 3
  year: 2017
  end-page: 18
  ident: b10
  article-title: Encoder–decoder-based control and filtering of networked systems: insights, developments and opportunities
  publication-title: IEEE/CAA J Autom Sin
– volume: 125
  year: 2021
  ident: b14
  article-title: Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network
  publication-title: Autom Constr
– volume: 124
  start-page: 455
  year: 1998
  end-page: 461
  ident: b22
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: J Eng Mech
– reference: R. Dey, F.M. Salem, Gate-variants of gated recurrent unit (GRU) neural networks, in: Proceedings of the 2017 IEEE 60th international midwest symposium on circuits and systems, MWSCAS, 2017, pp. 1597–1600, 2017.
– volume: 55
  start-page: 1047
  year: 2010
  end-page: 1063
  ident: b20
  article-title: Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics
  publication-title: Limnol Oceanogr
– volume: 198
  start-page: 359
  year: 2017
  end-page: 367
  ident: b3
  article-title: A comparative study of equivalent circuit models for Li-ion batteries
  publication-title: J Power Sources
– volume: 33
  start-page: 2769
  year: 2021
  end-page: 2781
  ident: b16
  article-title: Adaptive feature fusion with attention mechanism for multi-scale target detection
  publication-title: Neural Comput Appl
– reference: P. Zuliani, A. Platzer, E.M. Clarke, Bayesian statistical model checking with application to simulink/stateflow verification, in: Proceedings of the 13th ACM international conference on hybrid systems: computation and control, 2010, pp. 243–252, 2010.
– volume: 124
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.egyr.2022.09.211_b22
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: J Eng Mech
– volume: 33
  start-page: 2769
  issue: 7
  year: 2021
  ident: 10.1016/j.egyr.2022.09.211_b16
  article-title: Adaptive feature fusion with attention mechanism for multi-scale target detection
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05150-9
– volume: 65
  start-page: 5634
  issue: 7
  year: 2018
  ident: 10.1016/j.egyr.2022.09.211_b5
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2782224
– volume: 32
  start-page: 1132
  year: 2014
  ident: 10.1016/j.egyr.2022.09.211_b6
  article-title: 40G-OCDMA-PON system with an asymmetric structure using a single multi-port and sampled SSFBG encoder/decoders
  publication-title: J Lightwave Technol
  doi: 10.1109/JLT.2014.2299070
– volume: 404
  year: 2020
  ident: 10.1016/j.egyr.2022.09.211_b26
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.132306
– ident: 10.1016/j.egyr.2022.09.211_b29
  doi: 10.1109/ICASSP.2017.7952603
– volume: 61
  start-page: 430
  year: 2016
  ident: 10.1016/j.egyr.2022.09.211_b11
  article-title: Information-theoretic analysis of efficiency of the phonetic encoding–decoding method in automatic speech recognition
  publication-title: J. Commun. Technol. Electron.
  doi: 10.1134/S1064226916040112
– volume: 5
  start-page: 179
  issue: 2
  year: 1983
  ident: 10.1016/j.egyr.2022.09.211_b9
  article-title: The encoding/decoding model: criticisms and redevelopments for research on decoding
  publication-title: Media Culture Soc.
  doi: 10.1177/016344378300500205
– year: 2015
  ident: 10.1016/j.egyr.2022.09.211_b13
  article-title: Attention-based models for speech recognition
  publication-title: Adv Neural Inf Process Syst
– ident: 10.1016/j.egyr.2022.09.211_b25
  doi: 10.21437/Interspeech.2012-65
– volume: 50
  start-page: 36
  issue: 1
  year: 2018
  ident: 10.1016/j.egyr.2022.09.211_b12
  article-title: Impulsive consensus of multiagent systems with limited bandwidth based on encoding–decoding
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2863108
– volume: 5
  start-page: 327
  year: 1992
  ident: 10.1016/j.egyr.2022.09.211_b7
  article-title: General asymmetric neural networks and structure design by genetic algorithms
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80030-9
– ident: 10.1016/j.egyr.2022.09.211_b18
  doi: 10.1007/978-3-030-02922-7_31
– volume: 58
  start-page: 291
  issue: 2
  year: 2009
  ident: 10.1016/j.egyr.2022.09.211_b2
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2008.2005965
– ident: 10.1016/j.egyr.2022.09.211_b27
  doi: 10.1109/YAC.2016.7804912
– volume: 198
  start-page: 359
  issue: Jan.15
  year: 2017
  ident: 10.1016/j.egyr.2022.09.211_b3
  article-title: A comparative study of equivalent circuit models for Li-ion batteries
  publication-title: J Power Sources
– volume: 5
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.egyr.2022.09.211_b10
  article-title: Encoder–decoder-based control and filtering of networked systems: insights, developments and opportunities
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2017.7510727
– ident: 10.1016/j.egyr.2022.09.211_b17
  doi: 10.1109/ICCV.2019.00658
– ident: 10.1016/j.egyr.2022.09.211_b28
  doi: 10.1109/MWSCAS.2017.8053243
– volume: 55
  start-page: 1047
  issue: 3
  year: 2010
  ident: 10.1016/j.egyr.2022.09.211_b20
  article-title: Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2010.55.3.1047
– ident: 10.1016/j.egyr.2022.09.211_b19
  doi: 10.1145/1755952.1755987
– ident: 10.1016/j.egyr.2022.09.211_b31
– volume: 129
  start-page: 46
  year: 2014
  ident: 10.1016/j.egyr.2022.09.211_b21
  article-title: A Bayesian statistical method for quantifying model form uncertainty and two model combination methods
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.04.023
– volume: 75
  start-page: 142
  issue: aug
  year: 2017
  ident: 10.1016/j.egyr.2022.09.211_b4
  article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.06.045
– volume: 3
  start-page: 175
  issue: 3
  year: 1960
  ident: 10.1016/j.egyr.2022.09.211_b30
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: Comput J
  doi: 10.1093/comjnl/3.3.175
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.egyr.2022.09.211_b24
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01199
– volume: 28
  start-page: 2439
  year: 2018
  ident: 10.1016/j.egyr.2022.09.211_b15
  article-title: Occlusion aware facial expression recognition using CNN with attention mechanism
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2886767
– volume: 125
  issue: 3
  year: 2021
  ident: 10.1016/j.egyr.2022.09.211_b14
  article-title: Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network
  publication-title: Autom Constr
– volume: 21
  start-page: 504
  issue: 2
  year: 2006
  ident: 10.1016/j.egyr.2022.09.211_b1
  article-title: Accurate electrical battery model capable of predicting runtime and I–V performance
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2006.874229
– volume: 25
  start-page: 495
  year: 1979
  ident: 10.1016/j.egyr.2022.09.211_b8
  article-title: Structure determination of asymmetric membrane profiles using an iterative Fourier method
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(79)85319-9
– year: 2015
  ident: 10.1016/j.egyr.2022.09.211_b23
  article-title: Effective approaches to attention-based neural machine translation
  publication-title: Comput. Ence
SSID ssj0001920463
Score 2.5575323
Snippet As the battery cycles between charging and discharging, the working conditions or improper operations such as overcharge and over discharge will aggravate the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Asymmetric encoder–decoder model
Battery life prediction
Zinc-ion battery
Title An asymmetric encoder–decoder model for Zn-ion battery lifetime prediction
URI https://dx.doi.org/10.1016/j.egyr.2022.09.211
https://doaj.org/article/d4010128febe4c99815eea82194f1d87
Volume 8
WOSCitedRecordID wos000887145000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxcCCQIAoL3lgQxGN47zGgloxQMUAUsVi-XGDWrUBtQWpC-If-EO-hHudtCpLWViiKHFs69wkPpavz2HsnFZmkkjKIExxiiIhloGWSORMCjqCREBopDebSHu9rN_P71esvignrJIHroC7dJJU0ERWYGvS4uQgjAF0hh-aLEKX-X3kyHpWJlPDireQFJZ3lotFIPEfXO-YqZK74HlOYqBCkMipCMNfo5IX718ZnFYGnO4O266ZIm9XPdxlG1Dusdt2yfV0Ph6TEZblpELpYPL9-eXAn3HvbMORifKnMkDMufECmnM-GhRARvL8dUJrMxSPffbY7Txc3wS1IUJgZdiaBSZBLgwOSYUzCTIdiCGSVuui5WILeQoCNOKijXU2ihIQVhhrTB67VkL3owPWKF9KOGRcapEaC1GhMy1Tk5jcRtqYIsk0ZMi6mixcAKJsrRZOphUjtUgLGyoCURGIqpUrBLHJLpbPvFZaGWtLXxHOy5Kkc-0vYPRVHX31V_SbLF5ESdWUoaICWNVgTeNH_9H4MduiKqvklhPWmE3e4JRt2vfZYDo58y8kHu8-Oj_Nc-Zx
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+asymmetric+encoder%E2%80%93decoder+model+for+Zn-ion+battery+lifetime+prediction&rft.jtitle=Energy+reports&rft.au=Siyu+Lu&rft.au=Zhengtong+Yin&rft.au=Shengjun+Liao&rft.au=Bo+Yang&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=33&rft.epage=50&rft_id=info:doi/10.1016%2Fj.egyr.2022.09.211&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d4010128febe4c99815eea82194f1d87
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon