CellMatch: Combining two unit cells into a common supercell with minimal strain

Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel materials by mere layer-by-layer combinations. Moreover, a growth of such materials is typically done on a substrate. In both cases structures app...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications Vol. 197; pp. 324 - 334
Main Author: Lazić, Predrag
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2015
Subjects:
ISSN:0010-4655, 1879-2944
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel materials by mere layer-by-layer combinations. Moreover, a growth of such materials is typically done on a substrate. In both cases structures appear that are periodical in the plane but the periodicity is very different from simple 1×1 commensurate unit cells combinations which appears for materials with very similar values of lattice constants. Much more common is the case in which a new periodic cell is of a moiré type—such as 10×10 over 9×9 in case of graphene on Ir(111). Once the shape of the common supercell for 2 different 2D materials, or a material and the surface is found–it is easy to do a computational treatment with appropriate method for electronic structure–such as density functional theory, tight binding or some other. The purpose of the CellMatch code is to generate such common supercell given the two unit cells of selected materials. The CellMatch code searches within given combinatorial space and sorts results by the strain imposed on one of the components, while the other component experiences zero strain. Program title: CellMatch Catalogue identifier: AEYD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEYD_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18603 No. of bytes in distributed program, including test data, etc.: 129294 Distribution format: tar.gz Programming language: Python. Computer: Any architecture with a python interpreter. Operating system: Linux, AIX. RAM: Even for large systems almost negligible usage of memory. Classification: 7.3. Nature of problem: Contracting a common supercell that fits the atoms of two unit cells with minimal strain. This is used as input for any total energy or electronic structure code. Solution method: Straightforward systematic search in the phase space of combinations of unit cell vectors. Unusual features: Output, atomic structure of the supercell, can be used in any total energy program. Running time: Usually very short (seconds) if the search parameters are kept at reasonable values.
AbstractList Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel materials by mere layer-by-layer combinations. Moreover, a growth of such materials is typically done on a substrate. In both cases structures appear that are periodical in the plane but the periodicity is very different from simple 1×1 commensurate unit cells combinations which appears for materials with very similar values of lattice constants. Much more common is the case in which a new periodic cell is of a moiré type—such as 10×10 over 9×9 in case of graphene on Ir(111). Once the shape of the common supercell for 2 different 2D materials, or a material and the surface is found–it is easy to do a computational treatment with appropriate method for electronic structure–such as density functional theory, tight binding or some other. The purpose of the CellMatch code is to generate such common supercell given the two unit cells of selected materials. The CellMatch code searches within given combinatorial space and sorts results by the strain imposed on one of the components, while the other component experiences zero strain. Program title: CellMatch Catalogue identifier: AEYD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEYD_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18603 No. of bytes in distributed program, including test data, etc.: 129294 Distribution format: tar.gz Programming language: Python. Computer: Any architecture with a python interpreter. Operating system: Linux, AIX. RAM: Even for large systems almost negligible usage of memory. Classification: 7.3. Nature of problem: Contracting a common supercell that fits the atoms of two unit cells with minimal strain. This is used as input for any total energy or electronic structure code. Solution method: Straightforward systematic search in the phase space of combinations of unit cell vectors. Unusual features: Output, atomic structure of the supercell, can be used in any total energy program. Running time: Usually very short (seconds) if the search parameters are kept at reasonable values.
Author Lazić, Predrag
Author_xml – sequence: 1
  givenname: Predrag
  surname: Lazić
  fullname: Lazić, Predrag
  email: plazicx@gmail.com
  organization: Department of Physics, University at Buffalo, NY 14260-1500, USA
BookMark eNp9kL1OwzAUhS1UJNrCA7D5BRKuEydOYEIRf1JRF5gt99qhrhK7il0q3p5EZWLodIej7-jcb0FmzjtDyC2DlAEr73Yp7jHNgBUpVCnk1QWZs0rUSVZzPiNzAAYJL4viiixC2AGAEHU-J-vGdN27iri9p43vN9ZZ90Xj0dODs5HimAZqXfRUUfR97x0Nh70ZpoAebdzSfkR61dEQB2XdNblsVRfMzd9dks_np4_mNVmtX96ax1WCnEFMlKkNz1gOnENeAmRYVlpkpuC65cAyjRshhOG6QFVpzTaALZZFC60uTF3V-ZKwUy8OPoTBtHI_jDOGH8lATkbkTo5G5GREQiVHIyMj_jFoo4rWu2l6d5Z8OJFmfOnbmkEGtMah0XYwGKX29gz9C-4offs
CitedBy_id crossref_primary_10_1038_s41699_023_00390_4
crossref_primary_10_1088_2053_1583_ac1902
crossref_primary_10_1088_1361_648X_ad3708
crossref_primary_10_1016_j_commatsci_2024_113228
crossref_primary_10_1021_jacs_2c07482
crossref_primary_10_1002_smll_202303295
crossref_primary_10_1016_j_commatsci_2024_112996
crossref_primary_10_1002_adfm_202521171
crossref_primary_10_1016_j_scriptamat_2023_115902
crossref_primary_10_1038_s42254_025_00818_4
crossref_primary_10_1103_km88_dxsb
crossref_primary_10_1002_adma_202501021
crossref_primary_10_1039_C8CP04113J
crossref_primary_10_1016_j_apsusc_2024_160383
crossref_primary_10_1038_s41578_020_0214_0
crossref_primary_10_1016_j_apsusc_2023_157718
crossref_primary_10_1038_s41598_024_72757_6
crossref_primary_10_1088_1361_648X_aa66f3
crossref_primary_10_1063_5_0226849
crossref_primary_10_1088_1361_648X_ad2a0a
crossref_primary_10_1002_advs_202103368
crossref_primary_10_1021_acs_nanolett_5c00355
crossref_primary_10_1088_1361_6528_aca0a5
crossref_primary_10_1039_D4TC04702H
crossref_primary_10_1021_acs_nanolett_5c01621
crossref_primary_10_1088_1755_1315_702_1_012026
crossref_primary_10_1016_j_apsusc_2024_159994
crossref_primary_10_1016_j_scriptamat_2024_116126
crossref_primary_10_1016_j_actamat_2025_121323
crossref_primary_10_1038_s41467_023_43496_5
crossref_primary_10_1021_acsaem_5c01342
crossref_primary_10_1038_s41699_024_00488_3
crossref_primary_10_1002_advs_202309819
crossref_primary_10_1093_bib_bbad045
crossref_primary_10_1002_smtd_202400579
crossref_primary_10_1016_j_carbon_2016_09_024
crossref_primary_10_3390_cryst13091383
crossref_primary_10_1103_PhysRevApplied_14_054014
crossref_primary_10_1016_j_chemphys_2022_111713
crossref_primary_10_1016_j_commatsci_2021_110516
crossref_primary_10_1016_j_physe_2020_114453
crossref_primary_10_1038_s41467_022_33414_6
crossref_primary_10_1016_j_carbon_2018_10_079
crossref_primary_10_1088_1361_6528_ac475b
crossref_primary_10_1088_1742_6596_750_1_012011
crossref_primary_10_1088_2053_1583_ad59b4
Cites_doi 10.1103/PhysRevLett.92.246401
10.1016/j.carbon.2013.12.073
10.1103/PhysRevLett.103.056401
10.1038/ncomms3772
10.1002/jcc.20495
10.1103/PhysRevB.86.115409
10.1016/j.susc.2013.05.016
10.1126/science.1102896
10.1021/nl303909f
10.1038/nature12385
10.1103/PhysRevB.54.11169
10.1103/PhysRev.136.B864
10.1103/PhysRevB.83.195131
10.1103/PhysRevLett.103.096102
10.1088/0034-4885/78/6/066501
10.1103/PhysRevB.89.041407
10.1021/acsnano.5b01281
10.1038/nnano.2010.279
10.1103/PhysRevLett.107.036101
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2015.08.038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 334
ExternalDocumentID 10_1016_j_cpc_2015_08_038
S0010465515003379
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c410t-ae9e4213044036002c68d72e54df4012dcb777e4d5ca8dd1b0cfc65f0fd5e9893
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362919500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Tue Nov 18 21:56:34 EST 2025
Sat Nov 29 03:58:10 EST 2025
Fri Feb 23 02:30:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords van der Waals materials
Moiré patterns
Density functional theory
Electronic structure
Commensurate structures
Epitaxial growth
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-ae9e4213044036002c68d72e54df4012dcb777e4d5ca8dd1b0cfc65f0fd5e9893
OpenAccessLink http://www.sciencedirect.com/science/article/pii/S0010465515003379
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_cpc_2015_08_038
crossref_citationtrail_10_1016_j_cpc_2015_08_038
elsevier_sciencedirect_doi_10_1016_j_cpc_2015_08_038
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Novoselov, Geim, Morosov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (br000005) 2004; 306
Ashcroft, Mermin (br000060) 1976
Berland, Cooper, Lee, Schröder, Thonhauser, Hyldgaard, Lundqvist (br000090) 2015; 78
Medeiros, Stafström, Björk (br000110) 2014; 89
Geim, Grigorieva (br000020) 2013; 499
Petrović, Šrut Rakić, Runte, Busse, Sadowski, Lazić, Pletikosić, Pan, Milun, Pervan, Atodiresei, Brako, Šokčević, Valla, Michely, Kralj (br000035) 2013; 4
Meng, Wu, Zhang, Li, Du, Wang, Gao (br000045) 2012; 24
Polyakov, Stepanyuk, Saletsky, Stepanyuk (br000130) 2014; 26
Hohenberg, Kohn (br000055) 1964; 136
Román-Pérez, Soler (br000085) 2009; 103
Dion, Rydberg, Schröder, Langreth, Lundqvist (br000070) 2004; 92
Klimeš, Bowler, Michelides (br000075) 2010; 22
Vázquez, Dappe, Ortega, Flores (br000145) 2007; 126
Chen, Santos, Zhu, Kaxiras, Zhang (br000125) 2013; 13
Klimeš, Bowler, Michelides (br000080) 2011; 83
Choon-Ming, Siang-Piao, Rahman (br000025) 2014; 70
Dumenco, Ovchinnikov, Marinov, Lazić, Gibertini, Marzari, Lopez-Sanchez, Krasnozhon, Chen, Gillet, Fontcuberta i Moral, Radenovic, Kis (br000140) 2015; 9
br000115
.
Harl, Kresse (br000095) 2009; 103
Busse, Lazić, Djemour, Coraux, Gerber, Atodiresei, Caciuc, Brako, Blügel, Zegenhagen, Michely (br000120) 2011; 107
Entani, Antipina, Avramov, Ohtomo, Matsumoto, Hirao, Shimoyama, Naramoto, Baba, Sorokin, Sakai (br000040) 2014
br000150
Grimme (br000100) 2006; 27
Popescu, Zunger (br000105) 2012; 85
Sun, Ceder (br000135) 2013; 617
Kresse, Furthmüller (br000050) 1996; 54
Radisavljevic, Radenovic, Brivio, Giacometti, Kis (br000010) 2011; 6
Withers, Del Pozo-Zamudio, Mishchenko, Rooney, Gholinia, Watanabe, Taniguchi, Haigh, Geim, Tartakovskii, Novoselov (br000030)
Ramasubramaniam (br000015) 2012; 86
Kresse (10.1016/j.cpc.2015.08.038_br000050) 1996; 54
Sun (10.1016/j.cpc.2015.08.038_br000135) 2013; 617
Vázquez (10.1016/j.cpc.2015.08.038_br000145) 2007; 126
Choon-Ming (10.1016/j.cpc.2015.08.038_br000025) 2014; 70
Dion (10.1016/j.cpc.2015.08.038_br000070) 2004; 92
Meng (10.1016/j.cpc.2015.08.038_br000045) 2012; 24
Harl (10.1016/j.cpc.2015.08.038_br000095) 2009; 103
Chen (10.1016/j.cpc.2015.08.038_br000125) 2013; 13
Radisavljevic (10.1016/j.cpc.2015.08.038_br000010) 2011; 6
10.1016/j.cpc.2015.08.038_br000065
Petrović (10.1016/j.cpc.2015.08.038_br000035) 2013; 4
Dumenco (10.1016/j.cpc.2015.08.038_br000140) 2015; 9
Klimeš (10.1016/j.cpc.2015.08.038_br000075) 2010; 22
Berland (10.1016/j.cpc.2015.08.038_br000090) 2015; 78
Medeiros (10.1016/j.cpc.2015.08.038_br000110) 2014; 89
Román-Pérez (10.1016/j.cpc.2015.08.038_br000085) 2009; 103
Ramasubramaniam (10.1016/j.cpc.2015.08.038_br000015) 2012; 86
Polyakov (10.1016/j.cpc.2015.08.038_br000130) 2014; 26
Geim (10.1016/j.cpc.2015.08.038_br000020) 2013; 499
Entani (10.1016/j.cpc.2015.08.038_br000040) 2014
Busse (10.1016/j.cpc.2015.08.038_br000120) 2011; 107
Popescu (10.1016/j.cpc.2015.08.038_br000105) 2012; 85
Klimeš (10.1016/j.cpc.2015.08.038_br000080) 2011; 83
Grimme (10.1016/j.cpc.2015.08.038_br000100) 2006; 27
Novoselov (10.1016/j.cpc.2015.08.038_br000005) 2004; 306
Hohenberg (10.1016/j.cpc.2015.08.038_br000055) 1964; 136
Ashcroft (10.1016/j.cpc.2015.08.038_br000060) 1976
Withers (10.1016/j.cpc.2015.08.038_br000030)
References_xml – volume: 70
  start-page: 1
  year: 2014
  ident: br000025
  publication-title: Carbon
– volume: 78
  year: 2015
  ident: br000090
  publication-title: Rep. Progr. Phys.
– volume: 9
  start-page: 4611
  year: 2015
  ident: br000140
  publication-title: ACS Nano
– volume: 4
  start-page: 2772
  year: 2013
  ident: br000035
  publication-title: Nature Commun.
– volume: 103
  year: 2009
  ident: br000085
  publication-title: Phys. Rev. Lett.
– volume: 85
  year: 2012
  ident: br000105
  publication-title: Phys. Rev. B
– volume: 617
  start-page: 53
  year: 2013
  ident: br000135
  publication-title: Surf. Sci.
– volume: 92
  year: 2004
  ident: br000070
  publication-title: Phys. Rev. Lett.
– volume: 24
  year: 2012
  ident: br000045
  publication-title: J. Phys.: Condens. Matter.
– volume: 126
  year: 2007
  ident: br000145
  publication-title: J. Chem. Phys.
– volume: 103
  year: 2009
  ident: br000095
  publication-title: Phys. Rev. Lett.
– volume: 22
  year: 2010
  ident: br000075
  publication-title: J. Phys.: Condens. Matter.
– volume: 54
  start-page: 11169
  year: 1996
  ident: br000050
  publication-title: Phys. Rev. B
– volume: 136
  start-page: B864
  year: 1964
  ident: br000055
  publication-title: Phys. Rev.
– volume: 6
  start-page: 147
  year: 2011
  ident: br000010
  publication-title: Nat. Nanotechnol.
– volume: 86
  year: 2012
  ident: br000015
  publication-title: Phys. Rev. B
– ident: br000150
– year: 1976
  ident: br000060
  article-title: Solid State Physics
– volume: 83
  year: 2011
  ident: br000080
  publication-title: Phys. Rev. B
– volume: 89
  start-page: 041407(R)
  year: 2014
  ident: br000110
  publication-title: Phys. Rev. B
– volume: 26
  year: 2014
  ident: br000130
  publication-title: J. Phys.: Condens. Matter.
– ident: br000030
– volume: 107
  year: 2011
  ident: br000120
  publication-title: Phys. Rev. Lett.
– reference: .
– volume: 27
  start-page: 1787
  year: 2006
  ident: br000100
  publication-title: J. Comput. Chem.
– volume: 499
  start-page: 419
  year: 2013
  ident: br000020
  article-title: Van der Waals heterostructures
  publication-title: Nature
– ident: br000115
– volume: 306
  start-page: 666
  year: 2004
  ident: br000005
  publication-title: Science
– year: 2014
  ident: br000040
  publication-title: Nano Res.
– volume: 13
  start-page: 509
  year: 2013
  ident: br000125
  publication-title: Nano Lett.
– volume: 92
  year: 2004
  ident: 10.1016/j.cpc.2015.08.038_br000070
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 85
  year: 2012
  ident: 10.1016/j.cpc.2015.08.038_br000105
  publication-title: Phys. Rev. B
– volume: 70
  start-page: 1
  year: 2014
  ident: 10.1016/j.cpc.2015.08.038_br000025
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.12.073
– volume: 103
  year: 2009
  ident: 10.1016/j.cpc.2015.08.038_br000095
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.056401
– volume: 24
  year: 2012
  ident: 10.1016/j.cpc.2015.08.038_br000045
  publication-title: J. Phys.: Condens. Matter.
– volume: 4
  start-page: 2772
  year: 2013
  ident: 10.1016/j.cpc.2015.08.038_br000035
  publication-title: Nature Commun.
  doi: 10.1038/ncomms3772
– volume: 22
  year: 2010
  ident: 10.1016/j.cpc.2015.08.038_br000075
  publication-title: J. Phys.: Condens. Matter.
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.cpc.2015.08.038_br000100
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– ident: 10.1016/j.cpc.2015.08.038_br000065
– volume: 86
  year: 2012
  ident: 10.1016/j.cpc.2015.08.038_br000015
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.115409
– volume: 26
  year: 2014
  ident: 10.1016/j.cpc.2015.08.038_br000130
  publication-title: J. Phys.: Condens. Matter.
– year: 1976
  ident: 10.1016/j.cpc.2015.08.038_br000060
– volume: 126
  year: 2007
  ident: 10.1016/j.cpc.2015.08.038_br000145
  publication-title: J. Chem. Phys.
– volume: 617
  start-page: 53
  year: 2013
  ident: 10.1016/j.cpc.2015.08.038_br000135
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.05.016
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.cpc.2015.08.038_br000005
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 13
  start-page: 509
  year: 2013
  ident: 10.1016/j.cpc.2015.08.038_br000125
  publication-title: Nano Lett.
  doi: 10.1021/nl303909f
– volume: 499
  start-page: 419
  year: 2013
  ident: 10.1016/j.cpc.2015.08.038_br000020
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.cpc.2015.08.038_br000050
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 136
  start-page: B864
  year: 1964
  ident: 10.1016/j.cpc.2015.08.038_br000055
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 83
  year: 2011
  ident: 10.1016/j.cpc.2015.08.038_br000080
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– ident: 10.1016/j.cpc.2015.08.038_br000030
– volume: 103
  year: 2009
  ident: 10.1016/j.cpc.2015.08.038_br000085
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.096102
– year: 2014
  ident: 10.1016/j.cpc.2015.08.038_br000040
  publication-title: Nano Res.
– volume: 78
  year: 2015
  ident: 10.1016/j.cpc.2015.08.038_br000090
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/78/6/066501
– volume: 89
  start-page: 041407(R)
  year: 2014
  ident: 10.1016/j.cpc.2015.08.038_br000110
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.041407
– volume: 9
  start-page: 4611
  year: 2015
  ident: 10.1016/j.cpc.2015.08.038_br000140
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01281
– volume: 6
  start-page: 147
  year: 2011
  ident: 10.1016/j.cpc.2015.08.038_br000010
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 107
  year: 2011
  ident: 10.1016/j.cpc.2015.08.038_br000120
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.036101
SSID ssj0007793
Score 2.5058854
Snippet Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 324
SubjectTerms Commensurate structures
Density functional theory
Electronic structure
Epitaxial growth
Moiré patterns
van der Waals materials
Title CellMatch: Combining two unit cells into a common supercell with minimal strain
URI https://dx.doi.org/10.1016/j.cpc.2015.08.038
Volume 197
WOSCitedRecordID wos000362919500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA62teCLaGux9UIe-uQyMpfMJPFtWSoqWgutsG9DJsnQlnW67MUWf70nOZlYtla00JdhGDYz4XzJyZezJ98hZD9rC5VzrpJGpCZhCqaUyK1JVFvZLFfACaz2xSb44aEYj-VRqDY69-UEeNeJqys5vVeo4RmA7Y7O_gfc8aXwAO4BdLgC7HD9J-BHdjL5Ag721G32Ybo3vgTEYHF5MVjC_B24UL1LwgLSqVxGOXRsMF9OrY_hY1zW6Y18x4MkKihz92IGoQhEiIjM_QviAZPIzz-rn2eepnLPUmfWzELQMAQYsnIlWePmyRf0pOC_nfYariPoPAWXSS5RzzF6V0y_Df6xwAPTYaktMI55w4tjQOH8rZ46kcms9CKrKAKzIo597PWFoBvAa9Oi4HKNbOS8lODfNoYfD8af4qrMeRBgDv3u_-H2uX4rH_ozR7nGO06ekMdhw0CHCPRT8sB2W2TzCM2_Tb5GuN_RCDYFsKkDm3qwqQObKopg0wg2dWDTADZFsJ-Rb-8PTkYfklAkI9EsSxeJstKyHJgIY0BGYH3TlTA8tyUzLeydc6MbzrllptRKGJM1qW51VbZpa0orga3ukPXuorPPCeXKZE7PsGmkYUKKBrhypZo2TTXjVlW7JO3NUuugIO-6Nqn7VMHzGixZO0vWrrhpIXbJm9hkivIpf_sx621dB_6HvK6GgXF7s727NXtBHv0e7S_J-mK2tK_IQ_1jcTafvQ7D5xdZvX2D
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CellMatch%3A+Combining+two+unit+cells+into+a+common+supercell+with+minimal+strain&rft.jtitle=Computer+physics+communications&rft.au=Lazi%C4%87%2C+Predrag&rft.date=2015-12-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=197&rft.spage=324&rft.epage=334&rft_id=info:doi/10.1016%2Fj.cpc.2015.08.038&rft.externalDocID=S0010465515003379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon