CellMatch: Combining two unit cells into a common supercell with minimal strain
Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel materials by mere layer-by-layer combinations. Moreover, a growth of such materials is typically done on a substrate. In both cases structures app...
Saved in:
| Published in: | Computer physics communications Vol. 197; pp. 324 - 334 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2015
|
| Subjects: | |
| ISSN: | 0010-4655, 1879-2944 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel materials by mere layer-by-layer combinations. Moreover, a growth of such materials is typically done on a substrate. In both cases structures appear that are periodical in the plane but the periodicity is very different from simple 1×1 commensurate unit cells combinations which appears for materials with very similar values of lattice constants. Much more common is the case in which a new periodic cell is of a moiré type—such as 10×10 over 9×9 in case of graphene on Ir(111). Once the shape of the common supercell for 2 different 2D materials, or a material and the surface is found–it is easy to do a computational treatment with appropriate method for electronic structure–such as density functional theory, tight binding or some other. The purpose of the CellMatch code is to generate such common supercell given the two unit cells of selected materials. The CellMatch code searches within given combinatorial space and sorts results by the strain imposed on one of the components, while the other component experiences zero strain.
Program title: CellMatch
Catalogue identifier: AEYD_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEYD_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 18603
No. of bytes in distributed program, including test data, etc.: 129294
Distribution format: tar.gz
Programming language: Python.
Computer: Any architecture with a python interpreter.
Operating system: Linux, AIX.
RAM: Even for large systems almost negligible usage of memory.
Classification: 7.3.
Nature of problem: Contracting a common supercell that fits the atoms of two unit cells with minimal strain. This is used as input for any total energy or electronic structure code.
Solution method: Straightforward systematic search in the phase space of combinations of unit cell vectors.
Unusual features: Output, atomic structure of the supercell, can be used in any total energy program.
Running time: Usually very short (seconds) if the search parameters are kept at reasonable values. |
|---|---|
| AbstractList | Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel materials by mere layer-by-layer combinations. Moreover, a growth of such materials is typically done on a substrate. In both cases structures appear that are periodical in the plane but the periodicity is very different from simple 1×1 commensurate unit cells combinations which appears for materials with very similar values of lattice constants. Much more common is the case in which a new periodic cell is of a moiré type—such as 10×10 over 9×9 in case of graphene on Ir(111). Once the shape of the common supercell for 2 different 2D materials, or a material and the surface is found–it is easy to do a computational treatment with appropriate method for electronic structure–such as density functional theory, tight binding or some other. The purpose of the CellMatch code is to generate such common supercell given the two unit cells of selected materials. The CellMatch code searches within given combinatorial space and sorts results by the strain imposed on one of the components, while the other component experiences zero strain.
Program title: CellMatch
Catalogue identifier: AEYD_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEYD_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 18603
No. of bytes in distributed program, including test data, etc.: 129294
Distribution format: tar.gz
Programming language: Python.
Computer: Any architecture with a python interpreter.
Operating system: Linux, AIX.
RAM: Even for large systems almost negligible usage of memory.
Classification: 7.3.
Nature of problem: Contracting a common supercell that fits the atoms of two unit cells with minimal strain. This is used as input for any total energy or electronic structure code.
Solution method: Straightforward systematic search in the phase space of combinations of unit cell vectors.
Unusual features: Output, atomic structure of the supercell, can be used in any total energy program.
Running time: Usually very short (seconds) if the search parameters are kept at reasonable values. |
| Author | Lazić, Predrag |
| Author_xml | – sequence: 1 givenname: Predrag surname: Lazić fullname: Lazić, Predrag email: plazicx@gmail.com organization: Department of Physics, University at Buffalo, NY 14260-1500, USA |
| BookMark | eNp9kL1OwzAUhS1UJNrCA7D5BRKuEydOYEIRf1JRF5gt99qhrhK7il0q3p5EZWLodIej7-jcb0FmzjtDyC2DlAEr73Yp7jHNgBUpVCnk1QWZs0rUSVZzPiNzAAYJL4viiixC2AGAEHU-J-vGdN27iri9p43vN9ZZ90Xj0dODs5HimAZqXfRUUfR97x0Nh70ZpoAebdzSfkR61dEQB2XdNblsVRfMzd9dks_np4_mNVmtX96ax1WCnEFMlKkNz1gOnENeAmRYVlpkpuC65cAyjRshhOG6QFVpzTaALZZFC60uTF3V-ZKwUy8OPoTBtHI_jDOGH8lATkbkTo5G5GREQiVHIyMj_jFoo4rWu2l6d5Z8OJFmfOnbmkEGtMah0XYwGKX29gz9C-4offs |
| CitedBy_id | crossref_primary_10_1038_s41699_023_00390_4 crossref_primary_10_1088_2053_1583_ac1902 crossref_primary_10_1088_1361_648X_ad3708 crossref_primary_10_1016_j_commatsci_2024_113228 crossref_primary_10_1021_jacs_2c07482 crossref_primary_10_1002_smll_202303295 crossref_primary_10_1016_j_commatsci_2024_112996 crossref_primary_10_1002_adfm_202521171 crossref_primary_10_1016_j_scriptamat_2023_115902 crossref_primary_10_1038_s42254_025_00818_4 crossref_primary_10_1103_km88_dxsb crossref_primary_10_1002_adma_202501021 crossref_primary_10_1039_C8CP04113J crossref_primary_10_1016_j_apsusc_2024_160383 crossref_primary_10_1038_s41578_020_0214_0 crossref_primary_10_1016_j_apsusc_2023_157718 crossref_primary_10_1038_s41598_024_72757_6 crossref_primary_10_1088_1361_648X_aa66f3 crossref_primary_10_1063_5_0226849 crossref_primary_10_1088_1361_648X_ad2a0a crossref_primary_10_1002_advs_202103368 crossref_primary_10_1021_acs_nanolett_5c00355 crossref_primary_10_1088_1361_6528_aca0a5 crossref_primary_10_1039_D4TC04702H crossref_primary_10_1021_acs_nanolett_5c01621 crossref_primary_10_1088_1755_1315_702_1_012026 crossref_primary_10_1016_j_apsusc_2024_159994 crossref_primary_10_1016_j_scriptamat_2024_116126 crossref_primary_10_1016_j_actamat_2025_121323 crossref_primary_10_1038_s41467_023_43496_5 crossref_primary_10_1021_acsaem_5c01342 crossref_primary_10_1038_s41699_024_00488_3 crossref_primary_10_1002_advs_202309819 crossref_primary_10_1093_bib_bbad045 crossref_primary_10_1002_smtd_202400579 crossref_primary_10_1016_j_carbon_2016_09_024 crossref_primary_10_3390_cryst13091383 crossref_primary_10_1103_PhysRevApplied_14_054014 crossref_primary_10_1016_j_chemphys_2022_111713 crossref_primary_10_1016_j_commatsci_2021_110516 crossref_primary_10_1016_j_physe_2020_114453 crossref_primary_10_1038_s41467_022_33414_6 crossref_primary_10_1016_j_carbon_2018_10_079 crossref_primary_10_1088_1361_6528_ac475b crossref_primary_10_1088_1742_6596_750_1_012011 crossref_primary_10_1088_2053_1583_ad59b4 |
| Cites_doi | 10.1103/PhysRevLett.92.246401 10.1016/j.carbon.2013.12.073 10.1103/PhysRevLett.103.056401 10.1038/ncomms3772 10.1002/jcc.20495 10.1103/PhysRevB.86.115409 10.1016/j.susc.2013.05.016 10.1126/science.1102896 10.1021/nl303909f 10.1038/nature12385 10.1103/PhysRevB.54.11169 10.1103/PhysRev.136.B864 10.1103/PhysRevB.83.195131 10.1103/PhysRevLett.103.096102 10.1088/0034-4885/78/6/066501 10.1103/PhysRevB.89.041407 10.1021/acsnano.5b01281 10.1038/nnano.2010.279 10.1103/PhysRevLett.107.036101 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cpc.2015.08.038 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 334 |
| ExternalDocumentID | 10_1016_j_cpc_2015_08_038 S0010465515003379 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c410t-ae9e4213044036002c68d72e54df4012dcb777e4d5ca8dd1b0cfc65f0fd5e9893 |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362919500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 |
| IngestDate | Tue Nov 18 21:56:34 EST 2025 Sat Nov 29 03:58:10 EST 2025 Fri Feb 23 02:30:57 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | van der Waals materials Moiré patterns Density functional theory Electronic structure Commensurate structures Epitaxial growth |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-ae9e4213044036002c68d72e54df4012dcb777e4d5ca8dd1b0cfc65f0fd5e9893 |
| OpenAccessLink | http://www.sciencedirect.com/science/article/pii/S0010465515003379 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_cpc_2015_08_038 crossref_citationtrail_10_1016_j_cpc_2015_08_038 elsevier_sciencedirect_doi_10_1016_j_cpc_2015_08_038 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-12-01 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Novoselov, Geim, Morosov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (br000005) 2004; 306 Ashcroft, Mermin (br000060) 1976 Berland, Cooper, Lee, Schröder, Thonhauser, Hyldgaard, Lundqvist (br000090) 2015; 78 Medeiros, Stafström, Björk (br000110) 2014; 89 Geim, Grigorieva (br000020) 2013; 499 Petrović, Šrut Rakić, Runte, Busse, Sadowski, Lazić, Pletikosić, Pan, Milun, Pervan, Atodiresei, Brako, Šokčević, Valla, Michely, Kralj (br000035) 2013; 4 Meng, Wu, Zhang, Li, Du, Wang, Gao (br000045) 2012; 24 Polyakov, Stepanyuk, Saletsky, Stepanyuk (br000130) 2014; 26 Hohenberg, Kohn (br000055) 1964; 136 Román-Pérez, Soler (br000085) 2009; 103 Dion, Rydberg, Schröder, Langreth, Lundqvist (br000070) 2004; 92 Klimeš, Bowler, Michelides (br000075) 2010; 22 Vázquez, Dappe, Ortega, Flores (br000145) 2007; 126 Chen, Santos, Zhu, Kaxiras, Zhang (br000125) 2013; 13 Klimeš, Bowler, Michelides (br000080) 2011; 83 Choon-Ming, Siang-Piao, Rahman (br000025) 2014; 70 Dumenco, Ovchinnikov, Marinov, Lazić, Gibertini, Marzari, Lopez-Sanchez, Krasnozhon, Chen, Gillet, Fontcuberta i Moral, Radenovic, Kis (br000140) 2015; 9 br000115 . Harl, Kresse (br000095) 2009; 103 Busse, Lazić, Djemour, Coraux, Gerber, Atodiresei, Caciuc, Brako, Blügel, Zegenhagen, Michely (br000120) 2011; 107 Entani, Antipina, Avramov, Ohtomo, Matsumoto, Hirao, Shimoyama, Naramoto, Baba, Sorokin, Sakai (br000040) 2014 br000150 Grimme (br000100) 2006; 27 Popescu, Zunger (br000105) 2012; 85 Sun, Ceder (br000135) 2013; 617 Kresse, Furthmüller (br000050) 1996; 54 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (br000010) 2011; 6 Withers, Del Pozo-Zamudio, Mishchenko, Rooney, Gholinia, Watanabe, Taniguchi, Haigh, Geim, Tartakovskii, Novoselov (br000030) Ramasubramaniam (br000015) 2012; 86 Kresse (10.1016/j.cpc.2015.08.038_br000050) 1996; 54 Sun (10.1016/j.cpc.2015.08.038_br000135) 2013; 617 Vázquez (10.1016/j.cpc.2015.08.038_br000145) 2007; 126 Choon-Ming (10.1016/j.cpc.2015.08.038_br000025) 2014; 70 Dion (10.1016/j.cpc.2015.08.038_br000070) 2004; 92 Meng (10.1016/j.cpc.2015.08.038_br000045) 2012; 24 Harl (10.1016/j.cpc.2015.08.038_br000095) 2009; 103 Chen (10.1016/j.cpc.2015.08.038_br000125) 2013; 13 Radisavljevic (10.1016/j.cpc.2015.08.038_br000010) 2011; 6 10.1016/j.cpc.2015.08.038_br000065 Petrović (10.1016/j.cpc.2015.08.038_br000035) 2013; 4 Dumenco (10.1016/j.cpc.2015.08.038_br000140) 2015; 9 Klimeš (10.1016/j.cpc.2015.08.038_br000075) 2010; 22 Berland (10.1016/j.cpc.2015.08.038_br000090) 2015; 78 Medeiros (10.1016/j.cpc.2015.08.038_br000110) 2014; 89 Román-Pérez (10.1016/j.cpc.2015.08.038_br000085) 2009; 103 Ramasubramaniam (10.1016/j.cpc.2015.08.038_br000015) 2012; 86 Polyakov (10.1016/j.cpc.2015.08.038_br000130) 2014; 26 Geim (10.1016/j.cpc.2015.08.038_br000020) 2013; 499 Entani (10.1016/j.cpc.2015.08.038_br000040) 2014 Busse (10.1016/j.cpc.2015.08.038_br000120) 2011; 107 Popescu (10.1016/j.cpc.2015.08.038_br000105) 2012; 85 Klimeš (10.1016/j.cpc.2015.08.038_br000080) 2011; 83 Grimme (10.1016/j.cpc.2015.08.038_br000100) 2006; 27 Novoselov (10.1016/j.cpc.2015.08.038_br000005) 2004; 306 Hohenberg (10.1016/j.cpc.2015.08.038_br000055) 1964; 136 Ashcroft (10.1016/j.cpc.2015.08.038_br000060) 1976 Withers (10.1016/j.cpc.2015.08.038_br000030) |
| References_xml | – volume: 70 start-page: 1 year: 2014 ident: br000025 publication-title: Carbon – volume: 78 year: 2015 ident: br000090 publication-title: Rep. Progr. Phys. – volume: 9 start-page: 4611 year: 2015 ident: br000140 publication-title: ACS Nano – volume: 4 start-page: 2772 year: 2013 ident: br000035 publication-title: Nature Commun. – volume: 103 year: 2009 ident: br000085 publication-title: Phys. Rev. Lett. – volume: 85 year: 2012 ident: br000105 publication-title: Phys. Rev. B – volume: 617 start-page: 53 year: 2013 ident: br000135 publication-title: Surf. Sci. – volume: 92 year: 2004 ident: br000070 publication-title: Phys. Rev. Lett. – volume: 24 year: 2012 ident: br000045 publication-title: J. Phys.: Condens. Matter. – volume: 126 year: 2007 ident: br000145 publication-title: J. Chem. Phys. – volume: 103 year: 2009 ident: br000095 publication-title: Phys. Rev. Lett. – volume: 22 year: 2010 ident: br000075 publication-title: J. Phys.: Condens. Matter. – volume: 54 start-page: 11169 year: 1996 ident: br000050 publication-title: Phys. Rev. B – volume: 136 start-page: B864 year: 1964 ident: br000055 publication-title: Phys. Rev. – volume: 6 start-page: 147 year: 2011 ident: br000010 publication-title: Nat. Nanotechnol. – volume: 86 year: 2012 ident: br000015 publication-title: Phys. Rev. B – ident: br000150 – year: 1976 ident: br000060 article-title: Solid State Physics – volume: 83 year: 2011 ident: br000080 publication-title: Phys. Rev. B – volume: 89 start-page: 041407(R) year: 2014 ident: br000110 publication-title: Phys. Rev. B – volume: 26 year: 2014 ident: br000130 publication-title: J. Phys.: Condens. Matter. – ident: br000030 – volume: 107 year: 2011 ident: br000120 publication-title: Phys. Rev. Lett. – reference: . – volume: 27 start-page: 1787 year: 2006 ident: br000100 publication-title: J. Comput. Chem. – volume: 499 start-page: 419 year: 2013 ident: br000020 article-title: Van der Waals heterostructures publication-title: Nature – ident: br000115 – volume: 306 start-page: 666 year: 2004 ident: br000005 publication-title: Science – year: 2014 ident: br000040 publication-title: Nano Res. – volume: 13 start-page: 509 year: 2013 ident: br000125 publication-title: Nano Lett. – volume: 92 year: 2004 ident: 10.1016/j.cpc.2015.08.038_br000070 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 85 year: 2012 ident: 10.1016/j.cpc.2015.08.038_br000105 publication-title: Phys. Rev. B – volume: 70 start-page: 1 year: 2014 ident: 10.1016/j.cpc.2015.08.038_br000025 publication-title: Carbon doi: 10.1016/j.carbon.2013.12.073 – volume: 103 year: 2009 ident: 10.1016/j.cpc.2015.08.038_br000095 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.056401 – volume: 24 year: 2012 ident: 10.1016/j.cpc.2015.08.038_br000045 publication-title: J. Phys.: Condens. Matter. – volume: 4 start-page: 2772 year: 2013 ident: 10.1016/j.cpc.2015.08.038_br000035 publication-title: Nature Commun. doi: 10.1038/ncomms3772 – volume: 22 year: 2010 ident: 10.1016/j.cpc.2015.08.038_br000075 publication-title: J. Phys.: Condens. Matter. – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.cpc.2015.08.038_br000100 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – ident: 10.1016/j.cpc.2015.08.038_br000065 – volume: 86 year: 2012 ident: 10.1016/j.cpc.2015.08.038_br000015 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115409 – volume: 26 year: 2014 ident: 10.1016/j.cpc.2015.08.038_br000130 publication-title: J. Phys.: Condens. Matter. – year: 1976 ident: 10.1016/j.cpc.2015.08.038_br000060 – volume: 126 year: 2007 ident: 10.1016/j.cpc.2015.08.038_br000145 publication-title: J. Chem. Phys. – volume: 617 start-page: 53 year: 2013 ident: 10.1016/j.cpc.2015.08.038_br000135 publication-title: Surf. Sci. doi: 10.1016/j.susc.2013.05.016 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.cpc.2015.08.038_br000005 publication-title: Science doi: 10.1126/science.1102896 – volume: 13 start-page: 509 year: 2013 ident: 10.1016/j.cpc.2015.08.038_br000125 publication-title: Nano Lett. doi: 10.1021/nl303909f – volume: 499 start-page: 419 year: 2013 ident: 10.1016/j.cpc.2015.08.038_br000020 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.cpc.2015.08.038_br000050 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 136 start-page: B864 year: 1964 ident: 10.1016/j.cpc.2015.08.038_br000055 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 83 year: 2011 ident: 10.1016/j.cpc.2015.08.038_br000080 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – ident: 10.1016/j.cpc.2015.08.038_br000030 – volume: 103 year: 2009 ident: 10.1016/j.cpc.2015.08.038_br000085 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.096102 – year: 2014 ident: 10.1016/j.cpc.2015.08.038_br000040 publication-title: Nano Res. – volume: 78 year: 2015 ident: 10.1016/j.cpc.2015.08.038_br000090 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/78/6/066501 – volume: 89 start-page: 041407(R) year: 2014 ident: 10.1016/j.cpc.2015.08.038_br000110 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.041407 – volume: 9 start-page: 4611 year: 2015 ident: 10.1016/j.cpc.2015.08.038_br000140 publication-title: ACS Nano doi: 10.1021/acsnano.5b01281 – volume: 6 start-page: 147 year: 2011 ident: 10.1016/j.cpc.2015.08.038_br000010 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 107 year: 2011 ident: 10.1016/j.cpc.2015.08.038_br000120 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.036101 |
| SSID | ssj0007793 |
| Score | 2.5058854 |
| Snippet | Recent emergence of 2D materials (the so-called van der Waals materials), of which graphene is the most famous one, opens new routes in creation of novel... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 324 |
| SubjectTerms | Commensurate structures Density functional theory Electronic structure Epitaxial growth Moiré patterns van der Waals materials |
| Title | CellMatch: Combining two unit cells into a common supercell with minimal strain |
| URI | https://dx.doi.org/10.1016/j.cpc.2015.08.038 |
| Volume | 197 |
| WOSCitedRecordID | wos000362919500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA62teCLaGux9UIe-uQyMpfMJPFtWSoqWgutsG9DJsnQlnW67MUWf70nOZlYtla00JdhGDYz4XzJyZezJ98hZD9rC5VzrpJGpCZhCqaUyK1JVFvZLFfACaz2xSb44aEYj-VRqDY69-UEeNeJqys5vVeo4RmA7Y7O_gfc8aXwAO4BdLgC7HD9J-BHdjL5Ag721G32Ybo3vgTEYHF5MVjC_B24UL1LwgLSqVxGOXRsMF9OrY_hY1zW6Y18x4MkKihz92IGoQhEiIjM_QviAZPIzz-rn2eepnLPUmfWzELQMAQYsnIlWePmyRf0pOC_nfYariPoPAWXSS5RzzF6V0y_Df6xwAPTYaktMI55w4tjQOH8rZ46kcms9CKrKAKzIo597PWFoBvAa9Oi4HKNbOS8lODfNoYfD8af4qrMeRBgDv3u_-H2uX4rH_ozR7nGO06ekMdhw0CHCPRT8sB2W2TzCM2_Tb5GuN_RCDYFsKkDm3qwqQObKopg0wg2dWDTADZFsJ-Rb-8PTkYfklAkI9EsSxeJstKyHJgIY0BGYH3TlTA8tyUzLeydc6MbzrllptRKGJM1qW51VbZpa0orga3ukPXuorPPCeXKZE7PsGmkYUKKBrhypZo2TTXjVlW7JO3NUuugIO-6Nqn7VMHzGixZO0vWrrhpIXbJm9hkivIpf_sx621dB_6HvK6GgXF7s727NXtBHv0e7S_J-mK2tK_IQ_1jcTafvQ7D5xdZvX2D |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CellMatch%3A+Combining+two+unit+cells+into+a+common+supercell+with+minimal+strain&rft.jtitle=Computer+physics+communications&rft.au=Lazi%C4%87%2C+Predrag&rft.date=2015-12-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=197&rft.spage=324&rft.epage=334&rft_id=info:doi/10.1016%2Fj.cpc.2015.08.038&rft.externalDocID=S0010465515003379 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |