Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration
pH plays an important role in heavy metal removal during micellar-enhanced ultrafiltration (MEUF). In the present work, the influence of pH on heavy metal speciation and removal from wastewater by MEUF was investigated using an anionic surfactant (sodium dodecyl sulfate, SDS) and a hydrophilic membr...
Uložené v:
| Vydané v: | Chemosphere (Oxford) Ročník 173; s. 199 - 206 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
01.04.2017
|
| Predmet: | |
| ISSN: | 0045-6535, 1879-1298 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | pH plays an important role in heavy metal removal during micellar-enhanced ultrafiltration (MEUF). In the present work, the influence of pH on heavy metal speciation and removal from wastewater by MEUF was investigated using an anionic surfactant (sodium dodecyl sulfate, SDS) and a hydrophilic membrane (polyether sulfone). Experiments were performed with pH values in the range of 1–12. Metal ion removal efficiency (R) was used to assess the effects of the MEUF process. Results showed that better removal rate of copper and cadmium was achieved at high pH values (pH > 3) with SDS feed concentration of 8 mM, while the optimal pH range was 3–10 for zinc and lead. The corresponding efficiencies for heavy metal removal decreased with the increasing feed concentration of metal ions under the pH conditions of 1–12. Furthermore, the heavy metal ion removal rate (50 mg/L) followed the order of Pb2+ > Cd2+ > Zn2+ > Cu2+. These results showed that pH is a key parameter in metal ion speciation and removal during MEUF.
•Heavy metal speciation under different pH was simulated using Visual MINTEQ.•The effect of pH on heavy metal removal during MEUF was investigated.•A correlation for heavy metal ions speciation and removal efficiency was developed. |
|---|---|
| AbstractList | pH plays an important role in heavy metal removal during micellar-enhanced ultrafiltration (MEUF). In the present work, the influence of pH on heavy metal speciation and removal from wastewater by MEUF was investigated using an anionic surfactant (sodium dodecyl sulfate, SDS) and a hydrophilic membrane (polyether sulfone). Experiments were performed with pH values in the range of 1-12. Metal ion removal efficiency (R) was used to assess the effects of the MEUF process. Results showed that better removal rate of copper and cadmium was achieved at high pH values (pH > 3) with SDS feed concentration of 8 mM, while the optimal pH range was 3-10 for zinc and lead. The corresponding efficiencies for heavy metal removal decreased with the increasing feed concentration of metal ions under the pH conditions of 1-12. Furthermore, the heavy metal ion removal rate (50 mg/L) followed the order of Pb2+ > Cd2+ > Zn2+ > Cu2+. These results showed that pH is a key parameter in metal ion speciation and removal during MEUF. pH plays an important role in heavy metal removal during micellar-enhanced ultrafiltration (MEUF). In the present work, the influence of pH on heavy metal speciation and removal from wastewater by MEUF was investigated using an anionic surfactant (sodium dodecyl sulfate, SDS) and a hydrophilic membrane (polyether sulfone). Experiments were performed with pH values in the range of 1-12. Metal ion removal efficiency (R) was used to assess the effects of the MEUF process. Results showed that better removal rate of copper and cadmium was achieved at high pH values (pH > 3) with SDS feed concentration of 8 mM, while the optimal pH range was 3-10 for zinc and lead. The corresponding efficiencies for heavy metal removal decreased with the increasing feed concentration of metal ions under the pH conditions of 1-12. Furthermore, the heavy metal ion removal rate (50 mg/L) followed the order of Pb > Cd > Zn > Cu . These results showed that pH is a key parameter in metal ion speciation and removal during MEUF. pH plays an important role in heavy metal removal during micellar-enhanced ultrafiltration (MEUF). In the present work, the influence of pH on heavy metal speciation and removal from wastewater by MEUF was investigated using an anionic surfactant (sodium dodecyl sulfate, SDS) and a hydrophilic membrane (polyether sulfone). Experiments were performed with pH values in the range of 1–12. Metal ion removal efficiency (R) was used to assess the effects of the MEUF process. Results showed that better removal rate of copper and cadmium was achieved at high pH values (pH > 3) with SDS feed concentration of 8 mM, while the optimal pH range was 3–10 for zinc and lead. The corresponding efficiencies for heavy metal removal decreased with the increasing feed concentration of metal ions under the pH conditions of 1–12. Furthermore, the heavy metal ion removal rate (50 mg/L) followed the order of Pb2+ > Cd2+ > Zn2+ > Cu2+. These results showed that pH is a key parameter in metal ion speciation and removal during MEUF. •Heavy metal speciation under different pH was simulated using Visual MINTEQ.•The effect of pH on heavy metal removal during MEUF was investigated.•A correlation for heavy metal ions speciation and removal efficiency was developed. |
| Author | Zeng, Guangming Gu, Yanling Liu, Wenchu Li, Xue Shi, Yahui Yuan, Fang Huang, Jinhui Shi, Lixiu |
| Author_xml | – sequence: 1 givenname: Jinhui surname: Huang fullname: Huang, Jinhui email: huangjinhui_59@163.com organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 2 givenname: Fang surname: Yuan fullname: Yuan, Fang organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 3 givenname: Guangming surname: Zeng fullname: Zeng, Guangming email: zgming@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 4 givenname: Xue surname: Li fullname: Li, Xue organization: Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China – sequence: 5 givenname: Yanling surname: Gu fullname: Gu, Yanling organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 6 givenname: Lixiu surname: Shi fullname: Shi, Lixiu organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 7 givenname: Wenchu surname: Liu fullname: Liu, Wenchu organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China – sequence: 8 givenname: Yahui surname: Shi fullname: Shi, Yahui organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28110009$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9v3CAQxVGVqNkk_QoVvfVilz9rY05VtWqbSJF6Sc6IxUOXlQ0u4I3y7YOzaRX1klxAjH7zhnnvHJ344AGhT5TUlND2y742OxhDmnYQoWalVFNWUy7eoRXthKwok90JWhGybqq24c0ZOk9pT0ghG_kenbGO0vKSKzReezvM4A3gYPF0hYPHO9CHBzxC1gNOExinsytl7Xscy9hDKdsYRnyvU4Z7nSHiOTn_G4_OwDDoWIHf6SLZ43nIUVu3nIvGJTq1ekjw4fm-QHc_vt9urqqbXz-vN99uKrOmJFdac0F6AaYvi4AUW9posEITK0TLmBSNtUAE0VoICmtjZNdvtWy4sWtDWM8v0Oej7hTDnxlSVqNLT3_zEOakWFmecy6YeBWlXUubTra8LejHZ3TejtCrKbpRxwf1180CyCNgYkgpgv2HUKKW5NRevUhOLckpylRJrvR-_a_XuPxkWvHODW9S2BwVoDh7cBBVMm5JtncRTFZ9cG9QeQRTRr8E |
| CitedBy_id | crossref_primary_10_3390_ijerph16071155 crossref_primary_10_1016_j_jece_2020_104705 crossref_primary_10_1051_e3sconf_20172200087 crossref_primary_10_1080_15320383_2024_2341061 crossref_primary_10_1002_lom3_10355 crossref_primary_10_1016_j_jwpe_2023_104551 crossref_primary_10_1080_07388551_2023_2170862 crossref_primary_10_1016_j_inoche_2023_111401 crossref_primary_10_1016_j_pnsc_2024_04_009 crossref_primary_10_1016_j_ijbiomac_2024_132809 crossref_primary_10_17221_212_2018_SWR crossref_primary_10_1016_j_desal_2025_119261 crossref_primary_10_3390_ma15155233 crossref_primary_10_1016_j_chemosphere_2017_05_155 crossref_primary_10_1016_j_jece_2019_103295 crossref_primary_10_1016_j_seppur_2025_134304 crossref_primary_10_3390_chemosensors13070259 crossref_primary_10_1007_s42729_024_01629_9 crossref_primary_10_1016_j_ijbiomac_2023_123910 crossref_primary_10_1088_1742_6596_2920_1_012034 crossref_primary_10_3390_membranes14110240 crossref_primary_10_1016_j_rser_2024_115093 crossref_primary_10_1039_D1EW00712B crossref_primary_10_1016_j_jece_2020_103972 crossref_primary_10_1016_j_seppur_2018_04_053 crossref_primary_10_1007_s10924_020_01690_2 crossref_primary_10_1016_j_envpol_2020_115432 crossref_primary_10_1038_s41598_025_09307_1 crossref_primary_10_1007_s42832_021_0078_2 crossref_primary_10_1016_j_molliq_2025_127417 crossref_primary_10_1016_j_cej_2018_06_068 crossref_primary_10_3390_app15179807 crossref_primary_10_1002_jctb_5507 crossref_primary_10_1016_j_envpol_2023_122926 crossref_primary_10_2174_1573412916999200729172653 crossref_primary_10_1016_j_jhazmat_2022_128993 crossref_primary_10_1016_j_chemosphere_2021_131046 crossref_primary_10_1016_j_jenvman_2020_111469 crossref_primary_10_1016_j_jece_2022_108615 crossref_primary_10_1007_s10653_021_00966_3 crossref_primary_10_1016_j_jwpe_2024_106565 crossref_primary_10_3390_w17081171 crossref_primary_10_1016_j_jhazmat_2022_128643 crossref_primary_10_1016_j_jwpe_2024_106208 crossref_primary_10_1007_s13157_017_0917_1 crossref_primary_10_1039_D2SC04920A crossref_primary_10_1007_s10854_022_09634_3 crossref_primary_10_5004_dwt_2019_24242 crossref_primary_10_1016_j_gsd_2021_100660 crossref_primary_10_1007_s13762_020_02872_0 crossref_primary_10_1016_j_molliq_2025_128064 crossref_primary_10_1111_sum_12679 crossref_primary_10_1016_j_watres_2024_121384 crossref_primary_10_1016_j_jhazmat_2020_124084 crossref_primary_10_1016_j_cej_2018_03_054 crossref_primary_10_1007_s11270_021_05378_8 crossref_primary_10_1007_s13762_024_06223_1 crossref_primary_10_1080_02757540_2020_1817404 crossref_primary_10_1016_j_cherd_2022_09_020 crossref_primary_10_1016_j_chemosphere_2020_128889 crossref_primary_10_1016_j_chemosphere_2024_142833 crossref_primary_10_1016_j_dwt_2024_100446 crossref_primary_10_1016_j_scitotenv_2021_147017 crossref_primary_10_1016_j_jhazmat_2021_125748 crossref_primary_10_1080_26395940_2023_2296973 crossref_primary_10_3390_min14030268 crossref_primary_10_1016_j_jwpe_2022_103023 crossref_primary_10_1016_j_jenvman_2019_110020 crossref_primary_10_1002_jctb_7708 crossref_primary_10_1016_j_jece_2020_104194 crossref_primary_10_1016_j_microc_2025_114148 crossref_primary_10_1016_j_scitotenv_2022_161046 crossref_primary_10_1016_j_enzmictec_2018_06_006 crossref_primary_10_1016_j_indcrop_2023_116761 crossref_primary_10_5194_bg_19_629_2022 crossref_primary_10_1016_j_ijbiomac_2020_01_066 crossref_primary_10_1007_s13233_019_7086_4 crossref_primary_10_1007_s11356_020_10193_5 crossref_primary_10_1007_s13762_024_06042_4 crossref_primary_10_1016_j_ecoenv_2018_05_082 crossref_primary_10_1016_j_scitotenv_2022_153242 crossref_primary_10_3390_ma17215281 crossref_primary_10_1007_s11270_022_05683_w crossref_primary_10_1016_j_chemosphere_2023_140914 crossref_primary_10_1016_j_jwpe_2020_101401 crossref_primary_10_3390_ijerph15010024 crossref_primary_10_1016_j_jece_2025_117033 crossref_primary_10_1080_03601234_2024_2388426 crossref_primary_10_1002_wer_11132 crossref_primary_10_5004_dwt_2019_24174 crossref_primary_10_1016_j_jwpe_2025_107763 crossref_primary_10_1016_j_biortech_2020_123448 crossref_primary_10_1016_j_seppur_2025_134733 crossref_primary_10_3390_pr9050752 crossref_primary_10_1016_j_jhazmat_2023_130763 crossref_primary_10_1016_j_jelechem_2023_117573 crossref_primary_10_1007_s00344_019_09980_3 crossref_primary_10_1007_s42832_022_0162_2 crossref_primary_10_1016_j_molliq_2020_113960 crossref_primary_10_1007_s13738_021_02458_8 crossref_primary_10_1016_j_scitotenv_2021_151784 crossref_primary_10_3390_su152115446 crossref_primary_10_1007_s11270_018_4072_y crossref_primary_10_1016_j_chemosphere_2019_124859 crossref_primary_10_1016_j_jhazmat_2019_121777 crossref_primary_10_5004_dwt_2020_24896 crossref_primary_10_1016_j_jece_2023_110986 crossref_primary_10_3389_fpls_2022_972789 crossref_primary_10_1016_j_matpr_2019_07_462 crossref_primary_10_1080_00103624_2025_2452160 crossref_primary_10_1016_j_cej_2019_02_114 crossref_primary_10_1016_j_scitotenv_2018_04_236 crossref_primary_10_3390_min14111075 crossref_primary_10_1016_j_chemosphere_2023_139063 crossref_primary_10_1016_j_jece_2024_113024 crossref_primary_10_1007_s10008_023_05697_2 crossref_primary_10_1016_j_molliq_2019_111197 crossref_primary_10_1016_j_ceramint_2021_02_243 crossref_primary_10_1016_j_seppur_2019_04_068 crossref_primary_10_18596_jotcsa_1269213 crossref_primary_10_1016_j_jece_2024_113381 crossref_primary_10_1089_ees_2017_0211 crossref_primary_10_3390_min14111142 crossref_primary_10_1016_j_cej_2017_11_087 crossref_primary_10_1080_26395940_2022_2128427 crossref_primary_10_5004_dwt_2023_29487 crossref_primary_10_3389_fmicb_2019_01867 crossref_primary_10_1016_j_chemosphere_2018_09_046 crossref_primary_10_3390_w12051269 crossref_primary_10_3390_polym12112526 crossref_primary_10_1007_s40201_018_00332_z crossref_primary_10_1016_j_jhazmat_2019_120980 crossref_primary_10_1088_1755_1315_1507_1_012036 crossref_primary_10_1016_j_jece_2017_12_018 crossref_primary_10_5004_dwt_2023_29120 crossref_primary_10_1007_s10971_019_04920_9 crossref_primary_10_1016_j_jes_2017_07_014 crossref_primary_10_1016_j_matpr_2021_02_683 crossref_primary_10_1016_j_envres_2022_114532 crossref_primary_10_3390_molecules26092497 crossref_primary_10_1016_j_cej_2022_136570 crossref_primary_10_1016_j_eti_2021_101450 crossref_primary_10_1016_j_jwpe_2021_102552 crossref_primary_10_1016_j_chemosphere_2017_12_061 crossref_primary_10_1016_j_jclepro_2018_10_247 crossref_primary_10_1016_j_reactfunctpolym_2019_104466 crossref_primary_10_5004_dwt_2018_22460 crossref_primary_10_1016_j_ecoleng_2021_106194 crossref_primary_10_2989_16085914_2024_2406899 crossref_primary_10_1002_ep_14150 crossref_primary_10_3390_agronomy9070391 crossref_primary_10_1016_j_envpol_2022_118871 crossref_primary_10_1016_j_esi_2025_02_001 crossref_primary_10_1134_S1070427217120217 crossref_primary_10_1016_j_biteb_2022_101161 crossref_primary_10_1039_D4RA00409D crossref_primary_10_1007_s11356_022_23775_2 crossref_primary_10_1002_lom3_10501 crossref_primary_10_4028_www_scientific_net_MSF_948_14 crossref_primary_10_1016_j_jece_2024_113032 crossref_primary_10_1007_s10904_023_02868_6 crossref_primary_10_3390_physchem5020020 crossref_primary_10_1016_j_carbpol_2017_10_012 crossref_primary_10_1016_j_ecoenv_2018_09_007 crossref_primary_10_1016_j_envpol_2023_122638 crossref_primary_10_1007_s10529_018_2563_y crossref_primary_10_1039_C8RA08638A crossref_primary_10_3390_min13020179 crossref_primary_10_1016_j_jenvman_2021_112626 crossref_primary_10_1016_j_jiec_2019_03_029 crossref_primary_10_1016_j_chemosphere_2024_142552 crossref_primary_10_1016_j_hazadv_2025_100877 crossref_primary_10_1016_j_seppur_2023_124947 crossref_primary_10_1016_j_watres_2022_118962 crossref_primary_10_1016_j_jclepro_2019_03_229 crossref_primary_10_1016_j_jwpe_2022_102574 crossref_primary_10_1016_j_seppur_2018_06_028 crossref_primary_10_3390_w13223241 crossref_primary_10_3390_su10010092 crossref_primary_10_1016_j_jece_2020_104232 crossref_primary_10_1007_s11356_022_20942_3 crossref_primary_10_1016_j_jenvman_2024_122670 crossref_primary_10_1016_j_biortech_2018_09_094 crossref_primary_10_1016_j_desal_2025_118771 crossref_primary_10_1080_07366299_2020_1766742 crossref_primary_10_1016_j_jhazmat_2020_123299 crossref_primary_10_1016_j_surfcoat_2021_127524 crossref_primary_10_1007_s11356_019_06345_x crossref_primary_10_1016_j_jclepro_2025_145303 crossref_primary_10_1016_j_seppur_2018_06_039 crossref_primary_10_3390_membranes13020123 crossref_primary_10_1016_j_jwpe_2024_105217 crossref_primary_10_3390_molecules27082430 crossref_primary_10_1088_1757_899X_620_1_012015 crossref_primary_10_1016_j_chemosphere_2022_133971 crossref_primary_10_1016_j_jenvman_2019_109788 crossref_primary_10_1016_j_cej_2019_123420 crossref_primary_10_1016_j_jwpe_2018_11_010 crossref_primary_10_1002_apj_2941 crossref_primary_10_1016_j_jwpe_2019_101048 crossref_primary_10_1016_j_scitotenv_2021_151258 crossref_primary_10_3390_membranes9070085 crossref_primary_10_15251_DJNB_2025_201_253 crossref_primary_10_1016_j_chemosphere_2018_05_103 crossref_primary_10_3390_molecules27238238 crossref_primary_10_5004_dwt_2018_22138 crossref_primary_10_1016_j_eti_2019_100596 crossref_primary_10_1016_j_eti_2023_103483 crossref_primary_10_1016_j_chemosphere_2023_139323 crossref_primary_10_1016_j_foodchem_2025_144483 crossref_primary_10_1016_j_cej_2025_159581 crossref_primary_10_1016_j_watres_2024_121101 crossref_primary_10_3390_membranes14080180 crossref_primary_10_1016_j_jiec_2018_05_034 crossref_primary_10_1007_s41742_025_00741_7 crossref_primary_10_1088_1402_4896_adb468 crossref_primary_10_1016_j_jenvman_2021_113995 crossref_primary_10_1016_j_desal_2022_115815 crossref_primary_10_1007_s11356_020_11526_0 crossref_primary_10_1016_j_jenvman_2024_121350 crossref_primary_10_3390_membranes10090220 |
| Cites_doi | 10.1016/j.memsci.2008.04.065 10.1016/j.jhazmat.2010.10.046 10.1016/j.jhazmat.2008.09.072 10.1007/s11167-005-0607-2 10.1016/j.jhazmat.2010.08.031 10.1016/j.jhazmat.2010.07.022 10.1016/j.watres.2011.05.044 10.1016/j.seppur.2011.06.040 10.1016/j.seppur.2004.09.010 10.9713/kcer.2014.52.6.775 10.1093/chemse/bjl010 10.1016/j.seppur.2011.12.025 10.1016/j.desal.2013.11.038 10.1016/j.seppur.2014.01.020 10.1016/j.scitotenv.2013.09.044 10.1016/j.colsurfa.2006.08.017 10.1016/j.desal.2005.09.013 10.1016/j.scitotenv.2012.02.023 10.1016/S1383-5866(97)00044-0 10.1038/499154c 10.1016/j.memsci.2015.01.010 10.1016/j.memsci.2012.07.017 10.1016/S1369-703X(03)00118-9 10.1016/S0376-7388(03)00183-2 10.1016/j.scitotenv.2008.06.039 10.1016/j.memsci.2014.01.001 10.1016/S0011-9164(04)00169-9 10.1007/s11814-007-5035-y 10.1016/S0378-7753(01)00819-9 10.1016/j.memsci.2013.10.036 10.1016/j.jhazmat.2008.01.013 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U8 7X8 C1K JXQ 7S9 L.6 |
| DOI | 10.1016/j.chemosphere.2016.12.137 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management Toxline AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | TOXLINE AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Ecology |
| EISSN | 1879-1298 |
| EndPage | 206 |
| ExternalDocumentID | 28110009 10_1016_j_chemosphere_2016_12_137 S004565351631880X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7U8 7X8 C1K JXQ 7S9 L.6 |
| ID | FETCH-LOGICAL-c410t-aa370d7ecd129e97b15aef7a0f77622975ffe070aa771e4cc98dba953cf4c02d3 |
| ISICitedReferencesCount | 246 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395213700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-6535 |
| IngestDate | Sun Sep 28 10:25:23 EDT 2025 Sun Sep 28 04:19:13 EDT 2025 Wed Feb 19 02:43:38 EST 2025 Sat Nov 29 01:50:46 EST 2025 Tue Nov 18 22:38:39 EST 2025 Fri Feb 23 02:24:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heavy metal speciation pH Removal efficiency Micellar-enhanced ultrafiltration |
| Language | English |
| License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-aa370d7ecd129e97b15aef7a0f77622975ffe070aa771e4cc98dba953cf4c02d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28110009 |
| PQID | 1861589636 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2000333727 proquest_miscellaneous_1861589636 pubmed_primary_28110009 crossref_primary_10_1016_j_chemosphere_2016_12_137 crossref_citationtrail_10_1016_j_chemosphere_2016_12_137 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_12_137 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chemosphere (Oxford) |
| PublicationTitleAlternate | Chemosphere |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Karate, Marathe (bib16) 2008; 157 Juang, Xu, Chen (bib14) 2003; 218 Hutchins, Teasdale, Yip Lee, Simpson (bib13) 2008; 405 Ma, Tobin (bib21) 2004; 18 Xiarchos, Jaworska, Zakrzewska-Trznadel (bib33) 2008; 321 Xu, Zeng, Huang, Feng, Hu, Zhao, Lai, Wei, Huang, Xie, Liu (bib35) 2012; 424 Schwarze, Schmidt, Nguyen, Drews, Kraume, Schomäcker (bib27) 2012; 421–422 Gong, Wang, Zeng, Yang, Niu, Niu, Zhou, Liang (bib8) 2009; 164 Moussa, Abu Qdais (bib22) 2004; 164 Bade, Lee (bib1) 2007; 24 Huang, Zeng, Zhou, Li, Shi, He (bib10) 2010; 183 Landaburu-Aguirre, Pongrácz, Sarpola, Keiski (bib19) 2012; 88 Schwarze, Groß, Moritz, Buchner, Kapitzki, Chiappisi, Gradzielski (bib28) 2015; 478 Huang, Liu, Zeng, Li, Peng, Li, Jiang, Zhao, Huang (bib12) 2014; 335 Smith, Motekaitis (bib30) 2003 Van der Bruggen, Escobar (bib32) 2011 El-Abbassi, Khayet, Hafidi (bib5) 2011; 45 Liu, Li (bib20) 2005; 43 Mungray, Kulkarni, Mungray (bib23) 2011; 10 Landaburu-Aguirre, Pongrácz, Keiski (bib18) 2011; 81 Kim, Baek, Lee, Iqbal, Yang (bib17) 2006; 191 Zeng, Li, Huang, Zhang, Zhou, Niu, Shi, He, Li (bib36) 2011; 185 Xu, Zeng, Huang, Wu, Fang, Huang, Li, Xi, Liu (bib34) 2007; 294 Rahmanian, Pakizeh, Maskooki (bib26) 2010; 184 Chen, Zeng, Zeng (bib2) 2013; 340 Provazi, Dall’Antonia, Córdoba de Torresi (bib24) 2001; 102 Shkol’nikov (bib29) 2005; 78 Gao, Sun, Zhu, Chung (bib7) 2014; 452 Fu, Wang (bib6) 2011; 92 Tang, Zeng, Gong, Liang, Xu, Zhang, Huang (bib31) 2014; 468–469 Chen, Zeng, Zeng (bib3) 2013; 499 Zhu, Sun, Gao, Fu, Chung (bib37) 2014; 456 Cuppett, Duncan, Dietrich (bib4) 2006; 31 Rafique, Lee (bib25) 2014; 52 Huang, Peng, Zeng, Li, Zhao, Liu, Li, Chai (bib11) 2014; 125 Gustafsson (bib9) 2010 Kandipati Sreenivasarao (bib15) 1997; 12 Kandipati Sreenivasarao (10.1016/j.chemosphere.2016.12.137_bib15) 1997; 12 Rafique (10.1016/j.chemosphere.2016.12.137_bib25) 2014; 52 Ma (10.1016/j.chemosphere.2016.12.137_bib21) 2004; 18 Moussa (10.1016/j.chemosphere.2016.12.137_bib22) 2004; 164 Landaburu-Aguirre (10.1016/j.chemosphere.2016.12.137_bib19) 2012; 88 Xu (10.1016/j.chemosphere.2016.12.137_bib34) 2007; 294 Van der Bruggen (10.1016/j.chemosphere.2016.12.137_bib32) 2011 Smith (10.1016/j.chemosphere.2016.12.137_bib30) 2003 Huang (10.1016/j.chemosphere.2016.12.137_bib11) 2014; 125 Kim (10.1016/j.chemosphere.2016.12.137_bib17) 2006; 191 Gao (10.1016/j.chemosphere.2016.12.137_bib7) 2014; 452 Bade (10.1016/j.chemosphere.2016.12.137_bib1) 2007; 24 Zhu (10.1016/j.chemosphere.2016.12.137_bib37) 2014; 456 Schwarze (10.1016/j.chemosphere.2016.12.137_bib28) 2015; 478 Chen (10.1016/j.chemosphere.2016.12.137_bib2) 2013; 340 Hutchins (10.1016/j.chemosphere.2016.12.137_bib13) 2008; 405 Cuppett (10.1016/j.chemosphere.2016.12.137_bib4) 2006; 31 Huang (10.1016/j.chemosphere.2016.12.137_bib12) 2014; 335 Landaburu-Aguirre (10.1016/j.chemosphere.2016.12.137_bib18) 2011; 81 El-Abbassi (10.1016/j.chemosphere.2016.12.137_bib5) 2011; 45 Gong (10.1016/j.chemosphere.2016.12.137_bib8) 2009; 164 Chen (10.1016/j.chemosphere.2016.12.137_bib3) 2013; 499 Liu (10.1016/j.chemosphere.2016.12.137_bib20) 2005; 43 Shkol’nikov (10.1016/j.chemosphere.2016.12.137_bib29) 2005; 78 Xiarchos (10.1016/j.chemosphere.2016.12.137_bib33) 2008; 321 Rahmanian (10.1016/j.chemosphere.2016.12.137_bib26) 2010; 184 Zeng (10.1016/j.chemosphere.2016.12.137_bib36) 2011; 185 Juang (10.1016/j.chemosphere.2016.12.137_bib14) 2003; 218 Tang (10.1016/j.chemosphere.2016.12.137_bib31) 2014; 468–469 Xu (10.1016/j.chemosphere.2016.12.137_bib35) 2012; 424 Huang (10.1016/j.chemosphere.2016.12.137_bib10) 2010; 183 Gustafsson (10.1016/j.chemosphere.2016.12.137_bib9) 2010 Provazi (10.1016/j.chemosphere.2016.12.137_bib24) 2001; 102 Karate (10.1016/j.chemosphere.2016.12.137_bib16) 2008; 157 Mungray (10.1016/j.chemosphere.2016.12.137_bib23) 2011; 10 Schwarze (10.1016/j.chemosphere.2016.12.137_bib27) 2012; 421–422 Fu (10.1016/j.chemosphere.2016.12.137_bib6) 2011; 92 |
| References_xml | – volume: 478 start-page: 140 year: 2015 end-page: 147 ident: bib28 article-title: Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate publication-title: J. Membr. Sci. – volume: 31 start-page: 689 year: 2006 end-page: 697 ident: bib4 article-title: Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response publication-title: Chem. Senses – volume: 218 start-page: 257 year: 2003 end-page: 267 ident: bib14 article-title: Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration publication-title: J. Membr. Sci. – volume: 294 start-page: 140 year: 2007 end-page: 146 ident: bib34 article-title: Removal of Cd publication-title: Colloid. Surf. A – volume: 102 start-page: 224 year: 2001 end-page: 232 ident: bib24 article-title: The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior publication-title: J. Power. Sources – volume: 18 start-page: 33 year: 2004 end-page: 40 ident: bib21 article-title: Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium publication-title: Biochem. Eng. J. – volume: 183 start-page: 287 year: 2010 end-page: 293 ident: bib10 article-title: Adsorption of surfactant micelles and Cd publication-title: J. Hazard. Mater. – year: 2011 ident: bib32 article-title: Modern Applications in Membrane Science and Tecnology – year: 2010 ident: bib9 article-title: Visual MINTEQ Version 3.0 – volume: 335 start-page: 1 year: 2014 end-page: 8 ident: bib12 article-title: Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration publication-title: Desalination – volume: 499 start-page: 154 year: 2013 ident: bib3 article-title: Shale gas: surface water also at risk publication-title: Nature – volume: 405 start-page: 87 year: 2008 end-page: 95 ident: bib13 article-title: The influence of small-scale circum-neutral pH change on Cu-bioavailability and toxicity to an estuarine bivalve (Austriella cf plicifera) in whole-sediment toxicity tests publication-title: Sci. Total. Environ. – volume: 52 start-page: 775 year: 2014 end-page: 780 ident: bib25 article-title: Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of cadmium from an aqueous solution publication-title: Korean Chem. Eng. Res. – year: 2003 ident: bib30 article-title: NIST Standard Reference Database 46 – volume: 43 start-page: 25 year: 2005 end-page: 31 ident: bib20 article-title: Combined electrolysis and micellar enhanced ultrafiltration (MEUF) process for metal removal publication-title: Sep. Purif. Technol. – volume: 157 start-page: 464 year: 2008 end-page: 471 ident: bib16 article-title: Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration publication-title: J. Hazard. Mater. – volume: 92 start-page: 407 year: 2011 end-page: 418 ident: bib6 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manag. – volume: 164 start-page: 105 year: 2004 end-page: 110 ident: bib22 article-title: Removal of heavy metals from wastewater by membrane processes: a comparative study publication-title: Desalination – volume: 10 start-page: 27 year: 2011 end-page: 46 ident: bib23 article-title: Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review publication-title: Cent. Eur. J. Chem. – volume: 185 start-page: 1304 year: 2011 end-page: 1310 ident: bib36 article-title: Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS publication-title: J. Hazard. Mater. – volume: 24 start-page: 239 year: 2007 end-page: 245 ident: bib1 article-title: Micellar enhanced ultrafiltration and activated carbon fibre hybrid processes publication-title: Korean. J. Chem. Eng. – volume: 81 start-page: 41 year: 2011 end-page: 48 ident: bib18 article-title: Separation of cadmium and copper from phosphorous rich synthetic waters by micellar-enhanced ultrafiltration publication-title: Sep. Purif. Technol. – volume: 45 start-page: 4522 year: 2011 end-page: 4530 ident: bib5 article-title: Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater publication-title: Water Res. – volume: 340 start-page: 674 year: 2013 end-page: 676 ident: bib2 article-title: Risks of neonicotinoid pesticides publication-title: Science – volume: 184 start-page: 261 year: 2010 end-page: 267 ident: bib26 article-title: Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane publication-title: J. Hazard. Mater. – volume: 191 start-page: 186 year: 2006 end-page: 192 ident: bib17 article-title: Comparison of separation methods of heavy metal from surfactant micellar solutions for the recovery of surfactant publication-title: Desalination – volume: 424 start-page: 1 year: 2012 end-page: 10 ident: bib35 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total. Environ. – volume: 456 start-page: 117 year: 2014 end-page: 127 ident: bib37 article-title: Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater publication-title: J. Membr. Sci. – volume: 78 start-page: 1786 year: 2005 end-page: 1790 ident: bib29 article-title: Thermodynamic characteristics ofthe amphoterism of M(OH) publication-title: Russ. J. Appl. Chem – volume: 125 start-page: 83 year: 2014 end-page: 89 ident: bib11 article-title: Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants publication-title: Sep. Purif. Technol. – volume: 88 start-page: 130 year: 2012 end-page: 137 ident: bib19 article-title: Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration publication-title: Sep. Purif. Technol. – volume: 468–469 start-page: 1014 year: 2014 end-page: 1027 ident: bib31 article-title: Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review publication-title: Sci. Total. Environ. – volume: 452 start-page: 300 year: 2014 end-page: 310 ident: bib7 article-title: Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb publication-title: J. Membr. Sci. – volume: 164 start-page: 1517 year: 2009 end-page: 1522 ident: bib8 article-title: Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent publication-title: J. Hazard. Mater. – volume: 421–422 start-page: 165 year: 2012 end-page: 171 ident: bib27 article-title: Micellar enhanced ultrafiltration of a rhodium catalyst publication-title: J. Membr. Sci. – volume: 12 start-page: 157 year: 1997 end-page: 164 ident: bib15 article-title: Solubility products of salts of selected metal ions and anionic C publication-title: Sep. Purif. Technol. – volume: 321 start-page: 222 year: 2008 end-page: 231 ident: bib33 article-title: Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration publication-title: J. Membr. Sci. – volume: 321 start-page: 222 year: 2008 ident: 10.1016/j.chemosphere.2016.12.137_bib33 article-title: Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.065 – volume: 185 start-page: 1304 year: 2011 ident: 10.1016/j.chemosphere.2016.12.137_bib36 article-title: Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.046 – volume: 164 start-page: 1517 year: 2009 ident: 10.1016/j.chemosphere.2016.12.137_bib8 article-title: Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.09.072 – volume: 78 start-page: 1786 year: 2005 ident: 10.1016/j.chemosphere.2016.12.137_bib29 article-title: Thermodynamic characteristics ofthe amphoterism of M(OH)2 hydroxides in aqueous media publication-title: Russ. J. Appl. Chem doi: 10.1007/s11167-005-0607-2 – volume: 184 start-page: 261 year: 2010 ident: 10.1016/j.chemosphere.2016.12.137_bib26 article-title: Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.08.031 – volume: 183 start-page: 287 year: 2010 ident: 10.1016/j.chemosphere.2016.12.137_bib10 article-title: Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.07.022 – volume: 45 start-page: 4522 year: 2011 ident: 10.1016/j.chemosphere.2016.12.137_bib5 article-title: Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater publication-title: Water Res. doi: 10.1016/j.watres.2011.05.044 – volume: 81 start-page: 41 year: 2011 ident: 10.1016/j.chemosphere.2016.12.137_bib18 article-title: Separation of cadmium and copper from phosphorous rich synthetic waters by micellar-enhanced ultrafiltration publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.06.040 – volume: 43 start-page: 25 year: 2005 ident: 10.1016/j.chemosphere.2016.12.137_bib20 article-title: Combined electrolysis and micellar enhanced ultrafiltration (MEUF) process for metal removal publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2004.09.010 – volume: 340 start-page: 674 year: 2013 ident: 10.1016/j.chemosphere.2016.12.137_bib2 article-title: Risks of neonicotinoid pesticides publication-title: Science – volume: 52 start-page: 775 year: 2014 ident: 10.1016/j.chemosphere.2016.12.137_bib25 article-title: Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of cadmium from an aqueous solution publication-title: Korean Chem. Eng. Res. doi: 10.9713/kcer.2014.52.6.775 – volume: 31 start-page: 689 year: 2006 ident: 10.1016/j.chemosphere.2016.12.137_bib4 article-title: Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response publication-title: Chem. Senses doi: 10.1093/chemse/bjl010 – volume: 88 start-page: 130 year: 2012 ident: 10.1016/j.chemosphere.2016.12.137_bib19 article-title: Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.12.025 – volume: 335 start-page: 1 year: 2014 ident: 10.1016/j.chemosphere.2016.12.137_bib12 article-title: Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration publication-title: Desalination doi: 10.1016/j.desal.2013.11.038 – volume: 125 start-page: 83 year: 2014 ident: 10.1016/j.chemosphere.2016.12.137_bib11 article-title: Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.01.020 – volume: 468–469 start-page: 1014 year: 2014 ident: 10.1016/j.chemosphere.2016.12.137_bib31 article-title: Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2013.09.044 – volume: 294 start-page: 140 year: 2007 ident: 10.1016/j.chemosphere.2016.12.137_bib34 article-title: Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane publication-title: Colloid. Surf. A doi: 10.1016/j.colsurfa.2006.08.017 – volume: 191 start-page: 186 year: 2006 ident: 10.1016/j.chemosphere.2016.12.137_bib17 article-title: Comparison of separation methods of heavy metal from surfactant micellar solutions for the recovery of surfactant publication-title: Desalination doi: 10.1016/j.desal.2005.09.013 – volume: 424 start-page: 1 year: 2012 ident: 10.1016/j.chemosphere.2016.12.137_bib35 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2012.02.023 – volume: 12 start-page: 157 year: 1997 ident: 10.1016/j.chemosphere.2016.12.137_bib15 article-title: Solubility products of salts of selected metal ions and anionic C12 surfactants publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(97)00044-0 – volume: 10 start-page: 27 year: 2011 ident: 10.1016/j.chemosphere.2016.12.137_bib23 article-title: Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review publication-title: Cent. Eur. J. Chem. – volume: 499 start-page: 154 year: 2013 ident: 10.1016/j.chemosphere.2016.12.137_bib3 article-title: Shale gas: surface water also at risk publication-title: Nature doi: 10.1038/499154c – volume: 478 start-page: 140 year: 2015 ident: 10.1016/j.chemosphere.2016.12.137_bib28 article-title: Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.01.010 – volume: 92 start-page: 407 year: 2011 ident: 10.1016/j.chemosphere.2016.12.137_bib6 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manag. – volume: 421–422 start-page: 165 year: 2012 ident: 10.1016/j.chemosphere.2016.12.137_bib27 article-title: Micellar enhanced ultrafiltration of a rhodium catalyst publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.07.017 – year: 2003 ident: 10.1016/j.chemosphere.2016.12.137_bib30 – volume: 18 start-page: 33 year: 2004 ident: 10.1016/j.chemosphere.2016.12.137_bib21 article-title: Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium publication-title: Biochem. Eng. J. doi: 10.1016/S1369-703X(03)00118-9 – volume: 218 start-page: 257 year: 2003 ident: 10.1016/j.chemosphere.2016.12.137_bib14 article-title: Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(03)00183-2 – volume: 405 start-page: 87 year: 2008 ident: 10.1016/j.chemosphere.2016.12.137_bib13 article-title: The influence of small-scale circum-neutral pH change on Cu-bioavailability and toxicity to an estuarine bivalve (Austriella cf plicifera) in whole-sediment toxicity tests publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2008.06.039 – volume: 456 start-page: 117 year: 2014 ident: 10.1016/j.chemosphere.2016.12.137_bib37 article-title: Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.01.001 – volume: 164 start-page: 105 year: 2004 ident: 10.1016/j.chemosphere.2016.12.137_bib22 article-title: Removal of heavy metals from wastewater by membrane processes: a comparative study publication-title: Desalination doi: 10.1016/S0011-9164(04)00169-9 – year: 2011 ident: 10.1016/j.chemosphere.2016.12.137_bib32 – volume: 24 start-page: 239 year: 2007 ident: 10.1016/j.chemosphere.2016.12.137_bib1 article-title: Micellar enhanced ultrafiltration and activated carbon fibre hybrid processes publication-title: Korean. J. Chem. Eng. doi: 10.1007/s11814-007-5035-y – volume: 102 start-page: 224 year: 2001 ident: 10.1016/j.chemosphere.2016.12.137_bib24 article-title: The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior publication-title: J. Power. Sources doi: 10.1016/S0378-7753(01)00819-9 – year: 2010 ident: 10.1016/j.chemosphere.2016.12.137_bib9 – volume: 452 start-page: 300 year: 2014 ident: 10.1016/j.chemosphere.2016.12.137_bib7 article-title: Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.036 – volume: 157 start-page: 464 year: 2008 ident: 10.1016/j.chemosphere.2016.12.137_bib16 article-title: Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.01.013 |
| SSID | ssj0001659 |
| Score | 2.6204379 |
| Snippet | pH plays an important role in heavy metal removal during micellar-enhanced ultrafiltration (MEUF). In the present work, the influence of pH on heavy metal... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 199 |
| SubjectTerms | anionic surfactants cadmium Cadmium - isolation & purification copper Copper - isolation & purification Heavy metal speciation heavy metals Hydrogen-Ion Concentration hydrophilicity lead metal ions Metals, Heavy - isolation & purification Micellar-enhanced ultrafiltration Micelles Removal efficiency Sodium Dodecyl Sulfate Surface-Active Agents - chemistry ultrafiltration Ultrafiltration - methods wastewater Water Pollutants, Chemical - isolation & purification zinc Zinc - isolation & purification |
| Title | Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration |
| URI | https://dx.doi.org/10.1016/j.chemosphere.2016.12.137 https://www.ncbi.nlm.nih.gov/pubmed/28110009 https://www.proquest.com/docview/1861589636 https://www.proquest.com/docview/2000333727 |
| Volume | 173 |
| WOSCitedRecordID | wos000395213700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1298 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001659 issn: 0045-6535 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF4cp69LadNH3EfYQK8uWkv27kIvITh1Qgg9pMU3sZJWRMGWjGw5CfTHd2ZXLxoE7qEHC6HVSra-TzOz43kQ8gXjl9wokENQNhoWKLCnFHBZKq0dzwuk7Rn565JfXYn5XP7o9X5XuTDbBU9TcX8vV_8VajgGYGPq7D_AXV8UDsA-gA5bgB22OwF_XrUdMcHMM_w3AATu9gGbRWNyiGk4v6mikHO9zLaYxIhpJndqjb40rJtYGB8C9qoHnuRDnd7YUIFisclVnCzKartt2xZrD2RrLFNg7FabitjyNMyK0jd9kaQ3RVLLm8L6YM9UqUTRja3tmd9xyjJpBi5N8MG80G1vBWjAJshFWwkrOPZfsK2naxHM3ZYQZbZl0iPhbv0Mt1_D5udgbN4E_bnMlo5p4btaGoBHAoviObLRd3UUYjW0R_ZHfCxFn-yfnE_nF7UmZ5OxfEaOm5jAjjtjRenyWl3mTdfyxZgx16_Iy3L9QU8sb16Tnk4PyPPTqu3fAXk6NXXMH96QZc0kmsV0NaNZSg2TqGESbZhEgUm0ZBJFJtGGSdQwiT5iEv2LSW_Jz7Pp9elsWHbnGIYeczbwSrvcibgOI0BTSx6wsdIxV07MQcFiwnYca1AoSnHOtBeGUkSBkmM3jL3QGUXuO9JPs1QfEhp7jAdoKGupPOWESnquiHQcOPBhTA6IqB6qH5al67GDysKvYhRv_RY0PkLjs5EP0AzIqJ66svVbdpn0rULOLw1Ra2D6QMVdph9XaPsAnnm8qc6Ktc8ELCAE6LxJ9zmYO-e6LqwrBuS9pUr9zSuWfegc-UheNK_dJ9Lf5IX-TJ6E202yzo_IHp-Lo5LmfwAz0MxU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+pH+on+heavy+metal+speciation+and+removal+from+wastewater+using+micellar-enhanced+ultrafiltration&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Huang%2C+Jinhui&rft.au=Yuan%2C+Fang&rft.au=Zeng%2C+Guangming&rft.au=Li%2C+Xue&rft.date=2017-04-01&rft.eissn=1879-1298&rft.volume=173&rft.spage=199&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.12.137&rft_id=info%3Apmid%2F28110009&rft.externalDocID=28110009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |