StressNet: Hybrid model of LSTM and CNN for stress detection from electroencephalogram signal (EEG)

Everyday tasks can cause stress, which can lead to serious medical conditions, such as depression. EEG signal processing can assist medical professionals in managing the emotional state of patients. To detect stress states in EEG signals, we propose a new architecture, StressNet, which is a combinat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Results in control and optimization Ročník 11; s. 100231
Hlavní autori: Mane, Swaymprabha Alias Megha, Shinde, Arundhati
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2023
Elsevier
Predmet:
ISSN:2666-7207, 2666-7207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Everyday tasks can cause stress, which can lead to serious medical conditions, such as depression. EEG signal processing can assist medical professionals in managing the emotional state of patients. To detect stress states in EEG signals, we propose a new architecture, StressNet, which is a combination of a two-dimensional convolutional neural network (CNN) and a long short-term memory (LSTM) network. The EEG signals are first decomposed into alpha, beta, and theta signals, which are then used to generate azimuthal projection-based images. These images are fed into the 2D CNN for feature extraction, which are then passed to the LSTM for further processing. The LSTM’s ability to remember past states makes it particularly effective in modeling the temporal dynamics of EEG signals. Finally, the StressNet model classifies the features using fully connected layers into either stress or normal classes. We evaluate the performance of our model on the DEEP and SEED datasets and compare it to other methods. The results show that the proposed StressNet model outperforms the human stress detection accuracy, achieving an accuracy of 97.8%.
AbstractList Everyday tasks can cause stress, which can lead to serious medical conditions, such as depression. EEG signal processing can assist medical professionals in managing the emotional state of patients. To detect stress states in EEG signals, we propose a new architecture, StressNet, which is a combination of a two-dimensional convolutional neural network (CNN) and a long short-term memory (LSTM) network. The EEG signals are first decomposed into alpha, beta, and theta signals, which are then used to generate azimuthal projection-based images. These images are fed into the 2D CNN for feature extraction, which are then passed to the LSTM for further processing. The LSTM’s ability to remember past states makes it particularly effective in modeling the temporal dynamics of EEG signals. Finally, the StressNet model classifies the features using fully connected layers into either stress or normal classes. We evaluate the performance of our model on the DEEP and SEED datasets and compare it to other methods. The results show that the proposed StressNet model outperforms the human stress detection accuracy, achieving an accuracy of 97.8%.
ArticleNumber 100231
Author Shinde, Arundhati
Mane, Swaymprabha Alias Megha
Author_xml – sequence: 1
  givenname: Swaymprabha Alias Megha
  orcidid: 0000-0002-6022-9144
  surname: Mane
  fullname: Mane, Swaymprabha Alias Megha
  email: er.meghampatil@gmail.com
– sequence: 2
  givenname: Arundhati
  surname: Shinde
  fullname: Shinde, Arundhati
  email: aashinde@bvucoep.edu.in
BookMark eNp9kE1LAzEURYMoqNU_4CpLXbQmmclMKm6k1A-odVFdh0zeS02ZTiQZBP-9GSsiLlzk6_LOhZxjst-FDgk542zCGa8uN5PobZgIJooc5J3vkSNRVdW4Fqze_3U_JKcpbVieUZzndUTsqo-Y0hL7K3r_0UQPdBsAWxocXayeH6npgM6WS-pCpOlrlgL2aHsfOupi2FJs8ysG7Cy-vZo2rKPZ0uTXnWnp-Xx-d3FCDpxpE55-nyPycjt_nt2PF093D7ObxdiWnPVjM60rYLZGpYAVhkkE3pRS5twaq4Qsm0YqK1RjnANVFQxUgdBMpbFWMlaMyMOuF4LZ6LfotyZ-6GC8_gpCXGsTe29b1AAFk040ytVNWU5hKsqaA-dQ8koqFLlL7LpsDClFdD99nOnBut7owboerOud9QypP5D1vRlM9dH49n_0eodiFvTuMepk_aAUfMx68w_8f_gn3rSerA
CitedBy_id crossref_primary_10_3389_fmede_2024_1434753
crossref_primary_10_1038_s41598_025_00071_w
crossref_primary_10_4018_IJCINI_388552
crossref_primary_10_1016_j_compbiomed_2024_108722
crossref_primary_10_1109_TAFFC_2025_3547753
crossref_primary_10_3390_electronics13163153
crossref_primary_10_3390_brainsci13081157
crossref_primary_10_1080_00295639_2024_2306105
crossref_primary_10_3390_ai6040079
crossref_primary_10_3390_app14125069
crossref_primary_10_1007_s11760_024_03632_0
crossref_primary_10_3390_brainsci15080835
crossref_primary_10_1007_s11042_024_19775_8
crossref_primary_10_1007_s42979_024_02730_7
crossref_primary_10_1016_j_jksuci_2024_102013
crossref_primary_10_1007_s00034_025_03230_6
Cites_doi 10.1007/s13198-021-01468-2
10.1088/1741-2560/14/1/016003
10.1109/TNSRE.2019.2938295
10.3390/s19061423
10.1186/s12984-017-0261-y
10.3390/s19071736
10.1016/j.media.2017.07.005
10.1155/2022/9579422
10.1016/j.neunet.2018.09.009
10.1007/978-981-15-5558-9_68
10.1016/j.bbe.2020.05.008
10.1109/ACCESS.2019.2934018
10.1109/TNNLS.2018.2789927
10.3390/s21248370
10.1109/ACCESS.2019.2930958
10.1145/3020078.3021740
10.3389/fneur.2019.00806
10.3390/e21121199
10.1109/TNSRE.2016.2601240
10.3390/mi13081208
10.3389/fnbot.2021.819448
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rico.2023.100231
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-7207
ExternalDocumentID oai_doaj_org_article_dd305f2b8f7b449d92471d11d41658e2
10_1016_j_rico_2023_100231
S2666720723000334
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-a976d0c7e88d03a05ed1b455a97cac8254bb58c28baffd8630d83edb95acc5003
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208929900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-7207
IngestDate Fri Oct 03 12:53:07 EDT 2025
Thu Nov 20 00:52:32 EST 2025
Tue Nov 18 22:30:17 EST 2025
Tue Jul 25 20:55:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Human stress detection
Accuracy
Electroencephalography (EEG)
Brain–computer interfaces (BCIs)
Convolutional neural network (CNN)
Long short-term memory (LSTM)
Stress
Azimuthal projection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-a976d0c7e88d03a05ed1b455a97cac8254bb58c28baffd8630d83edb95acc5003
ORCID 0000-0002-6022-9144
OpenAccessLink https://doaj.org/article/dd305f2b8f7b449d92471d11d41658e2
ParticipantIDs doaj_primary_oai_doaj_org_article_dd305f2b8f7b449d92471d11d41658e2
crossref_primary_10_1016_j_rico_2023_100231
crossref_citationtrail_10_1016_j_rico_2023_100231
elsevier_sciencedirect_doi_10_1016_j_rico_2023_100231
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Results in control and optimization
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hag (b22) 2021; 21
Krishnan, Joseph Raj, Balasubramanian, Chen (b23) 2020; 40
Ruffini (b1) 2019; 10
Khan (b20) 2021; 2021
Al-Saggaf, Naqvi, Moinuddin, Alfakeh, Ali (b27) 2022; 15
Nurvitadhi E, et al. Can FPGAs beat GPUs in accelerating next-generation deep neural networks?. In: FPGA 2017 - Proc. 2017 ACM/SIGDA Int. symp. field-programmable gate arrays. 2017, p. 5–14.
Ron-Angevin, Velasco-Álvarez, Fernández-Rodríguez, Díaz-Estrella, Blanca-Mena, Vizcaíno-Martín (b16) 2017; 14
(b26) 2022
Zheng, Ye (b2) 2022; 2022
Tabar, Halici (b21) 2017; 14
Murugappan, Boon, Raj, Krishnan, Palanisamy (b24) 2020; 672
Lu, Li, Ren, Miao (b17) 2017; 25
Peng, Wang, Xuan, Nguyen (b5) 2022; 13
Litjens (b12) 2017; 42
Padfield, Zabalza, Zhao, Masero, Ren (b10) 2019; 19
Xu (b11) 2019; 7
Majidov, Whangbo (b13) 2019; 19
Zhao, Zhang, Zhu, You, Kuang, Sun (b18) 2019; 27
Hassan, Hussain, Qaisar (b19) 2022; 2022
Sakhavi, Guan, Yan (b9) 2018; 29
.
Khan, Hayat, Porikli (b15) 2017; 110
(b25) 2022
Alazrai, Abuhijleh, Alwanni, Daoud (b7) 2019; 7
Wang, Yang, Nguyen, Vo (b6) 2022; 13
Lee, Choi (b8) 2019; 21
Li (b4) 2022; 2022
Li (b3) 2022; 2022
Murugappan (10.1016/j.rico.2023.100231_b24) 2020; 672
Lu (10.1016/j.rico.2023.100231_b17) 2017; 25
Krishnan (10.1016/j.rico.2023.100231_b23) 2020; 40
Majidov (10.1016/j.rico.2023.100231_b13) 2019; 19
Li (10.1016/j.rico.2023.100231_b3) 2022; 2022
(10.1016/j.rico.2023.100231_b26) 2022
Li (10.1016/j.rico.2023.100231_b4) 2022; 2022
Khan (10.1016/j.rico.2023.100231_b15) 2017; 110
Padfield (10.1016/j.rico.2023.100231_b10) 2019; 19
Tabar (10.1016/j.rico.2023.100231_b21) 2017; 14
Alazrai (10.1016/j.rico.2023.100231_b7) 2019; 7
Hag (10.1016/j.rico.2023.100231_b22) 2021; 21
Wang (10.1016/j.rico.2023.100231_b6) 2022; 13
(10.1016/j.rico.2023.100231_b25) 2022
Zhao (10.1016/j.rico.2023.100231_b18) 2019; 27
Lee (10.1016/j.rico.2023.100231_b8) 2019; 21
Xu (10.1016/j.rico.2023.100231_b11) 2019; 7
Hassan (10.1016/j.rico.2023.100231_b19) 2022; 2022
Ruffini (10.1016/j.rico.2023.100231_b1) 2019; 10
Sakhavi (10.1016/j.rico.2023.100231_b9) 2018; 29
Ron-Angevin (10.1016/j.rico.2023.100231_b16) 2017; 14
Litjens (10.1016/j.rico.2023.100231_b12) 2017; 42
10.1016/j.rico.2023.100231_b14
Khan (10.1016/j.rico.2023.100231_b20) 2021; 2021
Al-Saggaf (10.1016/j.rico.2023.100231_b27) 2022; 15
Zheng (10.1016/j.rico.2023.100231_b2) 2022; 2022
Peng (10.1016/j.rico.2023.100231_b5) 2022; 13
References_xml – reference: Nurvitadhi E, et al. Can FPGAs beat GPUs in accelerating next-generation deep neural networks?. In: FPGA 2017 - Proc. 2017 ACM/SIGDA Int. symp. field-programmable gate arrays. 2017, p. 5–14.
– volume: 19
  start-page: 1736
  year: 2019
  ident: b13
  article-title: Efficient classification of motor imagery electroencephalography signals using deep learning methods
  publication-title: Sensors
– volume: 13
  start-page: 1208
  year: 2022
  ident: b6
  article-title: CFD analysis and optimum design for a centrifugal pump using an effectively artificial intelligent algorithm
  publication-title: Micromachines
– volume: 110
  start-page: 82
  year: 2017
  end-page: 90
  ident: b15
  article-title: Regularization of deep neural networks with spectral dropout
  publication-title: Neural Netw
– volume: 21
  start-page: 8370
  year: 2021
  ident: b22
  article-title: Enhancing EEG-based mental stress state recognition using an improved hybrid feature selection algorithm
  publication-title: Sensors
– volume: 2022
  year: 2022
  ident: b19
  article-title: Epileptic seizure detection using a hybrid 1D CNN-machine learning approach from EEG data
  publication-title: J Healthc Eng
– volume: 2022
  year: 2022
  ident: b2
  article-title: Prediction of cognitive-behavioral therapy using deep learning for the treatment of adolescent social anxiety and mental health conditions
  publication-title: Sci Program
– volume: 13
  start-page: 456
  year: 2022
  end-page: 461
  ident: b5
  article-title: Efficient road traffic anti-collision warning system based on fuzzy nonlinear programming
  publication-title: Int J Syst Assur Eng Manag
– volume: 14
  start-page: 1
  year: 2017
  end-page: 16
  ident: b16
  article-title: Brain-computer interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair
  publication-title: J Neuroeng Rehabil
– volume: 7
  start-page: 109612
  year: 2019
  end-page: 109627
  ident: b7
  article-title: A deep learning framework for decoding motor imagery tasks of the same hand using EEG signals
  publication-title: IEEE Access
– volume: 29
  start-page: 5619
  year: 2018
  end-page: 5629
  ident: b9
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans Neural Networks Learn Syst
– volume: 672
  start-page: 789
  year: 2020
  end-page: 801
  ident: b24
  article-title: Ecg morphological features based sudden cardiac arrest (sca) prediction using nonlinear classifiers
  publication-title: Lect Notes Electr Eng
– volume: 27
  start-page: 2164
  year: 2019
  end-page: 2177
  ident: b18
  article-title: A multi-branch 3D convolutional neural network for EEG-based motor imagery classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 7
  start-page: 112767
  year: 2019
  end-page: 112776
  ident: b11
  article-title: A deep transfer convolutional neural network framework for EEG signal classification
  publication-title: IEEE Access
– year: 2022
  ident: b26
  article-title: DEAP: A dataset for emotion analysis using physiological and audiovisual signals
– volume: 2021
  year: 2021
  ident: b20
  article-title: EEG based aptitude detection system for stress regulation in health care workers
  publication-title: Sci Program
– volume: 19
  start-page: 1423
  year: 2019
  ident: b10
  article-title: EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges
  publication-title: Sensors
– volume: 2022
  year: 2022
  ident: b4
  article-title: Psychological factors and innovation performance of scientific and technological personnel: The mediating role of proactive behavior and the moderating role of organizational support
  publication-title: Sci Program
– volume: 21
  start-page: 1199
  year: 2019
  ident: b8
  article-title: Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface
  publication-title: Entropy
– reference: .
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b12
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– volume: 40
  start-page: 1124
  year: 2020
  end-page: 1139
  ident: b23
  article-title: Schizophrenia detection using MultivariateEmpirical mode decomposition and entropy measures from multichannel EEG signal
  publication-title: Biocybern Biomed Eng
– volume: 10
  start-page: 806
  year: 2019
  ident: b1
  article-title: Deep learning with EEG spectrograms in rapid eye movement behavior disorder
  publication-title: Front Neurol
– year: 2022
  ident: b25
  article-title: SEED dataset
– volume: 25
  start-page: 566
  year: 2017
  end-page: 576
  ident: b17
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 14
  year: 2017
  ident: b21
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J Neural Eng
– volume: 2022
  year: 2022
  ident: b3
  article-title: Data mining algorithm for college students’ mental health questionnaire based on semisupervised deep learning method
  publication-title: Sci Program
– volume: 15
  start-page: 197
  year: 2022
  ident: b27
  article-title: Performance evaluation of EEG based mental stress assessment approaches for wearable devices
  publication-title: Front Neurorobot
– volume: 13
  start-page: 456
  issue: 1
  year: 2022
  ident: 10.1016/j.rico.2023.100231_b5
  article-title: Efficient road traffic anti-collision warning system based on fuzzy nonlinear programming
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-021-01468-2
– volume: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.rico.2023.100231_b21
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/14/1/016003
– volume: 27
  start-page: 2164
  issue: 10
  year: 2019
  ident: 10.1016/j.rico.2023.100231_b18
  article-title: A multi-branch 3D convolutional neural network for EEG-based motor imagery classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2938295
– volume: 19
  start-page: 1423
  issue: 6
  year: 2019
  ident: 10.1016/j.rico.2023.100231_b10
  article-title: EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges
  publication-title: Sensors
  doi: 10.3390/s19061423
– volume: 14
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.rico.2023.100231_b16
  article-title: Brain-computer interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-017-0261-y
– volume: 19
  start-page: 1736
  issue: 7
  year: 2019
  ident: 10.1016/j.rico.2023.100231_b13
  article-title: Efficient classification of motor imagery electroencephalography signals using deep learning methods
  publication-title: Sensors
  doi: 10.3390/s19071736
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.rico.2023.100231_b12
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 2022
  year: 2022
  ident: 10.1016/j.rico.2023.100231_b4
  article-title: Psychological factors and innovation performance of scientific and technological personnel: The mediating role of proactive behavior and the moderating role of organizational support
  publication-title: Sci Program
– volume: 2022
  year: 2022
  ident: 10.1016/j.rico.2023.100231_b3
  article-title: Data mining algorithm for college students’ mental health questionnaire based on semisupervised deep learning method
  publication-title: Sci Program
– volume: 2021
  year: 2021
  ident: 10.1016/j.rico.2023.100231_b20
  article-title: EEG based aptitude detection system for stress regulation in health care workers
  publication-title: Sci Program
– volume: 2022
  year: 2022
  ident: 10.1016/j.rico.2023.100231_b19
  article-title: Epileptic seizure detection using a hybrid 1D CNN-machine learning approach from EEG data
  publication-title: J Healthc Eng
  doi: 10.1155/2022/9579422
– volume: 110
  start-page: 82
  year: 2017
  ident: 10.1016/j.rico.2023.100231_b15
  article-title: Regularization of deep neural networks with spectral dropout
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.09.009
– volume: 672
  start-page: 789
  year: 2020
  ident: 10.1016/j.rico.2023.100231_b24
  article-title: Ecg morphological features based sudden cardiac arrest (sca) prediction using nonlinear classifiers
  publication-title: Lect Notes Electr Eng
  doi: 10.1007/978-981-15-5558-9_68
– volume: 40
  start-page: 1124
  issue: 3
  year: 2020
  ident: 10.1016/j.rico.2023.100231_b23
  article-title: Schizophrenia detection using MultivariateEmpirical mode decomposition and entropy measures from multichannel EEG signal
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2020.05.008
– volume: 7
  start-page: 109612
  year: 2019
  ident: 10.1016/j.rico.2023.100231_b7
  article-title: A deep learning framework for decoding motor imagery tasks of the same hand using EEG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934018
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  ident: 10.1016/j.rico.2023.100231_b9
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2018.2789927
– volume: 21
  start-page: 8370
  issue: 24
  year: 2021
  ident: 10.1016/j.rico.2023.100231_b22
  article-title: Enhancing EEG-based mental stress state recognition using an improved hybrid feature selection algorithm
  publication-title: Sensors
  doi: 10.3390/s21248370
– year: 2022
  ident: 10.1016/j.rico.2023.100231_b26
– volume: 7
  start-page: 112767
  year: 2019
  ident: 10.1016/j.rico.2023.100231_b11
  article-title: A deep transfer convolutional neural network framework for EEG signal classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930958
– ident: 10.1016/j.rico.2023.100231_b14
  doi: 10.1145/3020078.3021740
– volume: 10
  start-page: 806
  issue: JUL
  year: 2019
  ident: 10.1016/j.rico.2023.100231_b1
  article-title: Deep learning with EEG spectrograms in rapid eye movement behavior disorder
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.00806
– volume: 21
  start-page: 1199
  issue: 12
  year: 2019
  ident: 10.1016/j.rico.2023.100231_b8
  article-title: Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface
  publication-title: Entropy
  doi: 10.3390/e21121199
– volume: 25
  start-page: 566
  issue: 6
  year: 2017
  ident: 10.1016/j.rico.2023.100231_b17
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2601240
– volume: 2022
  year: 2022
  ident: 10.1016/j.rico.2023.100231_b2
  article-title: Prediction of cognitive-behavioral therapy using deep learning for the treatment of adolescent social anxiety and mental health conditions
  publication-title: Sci Program
– year: 2022
  ident: 10.1016/j.rico.2023.100231_b25
– volume: 13
  start-page: 1208
  issue: 8
  year: 2022
  ident: 10.1016/j.rico.2023.100231_b6
  article-title: CFD analysis and optimum design for a centrifugal pump using an effectively artificial intelligent algorithm
  publication-title: Micromachines
  doi: 10.3390/mi13081208
– volume: 15
  start-page: 197
  year: 2022
  ident: 10.1016/j.rico.2023.100231_b27
  article-title: Performance evaluation of EEG based mental stress assessment approaches for wearable devices
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2021.819448
SSID ssj0002811281
Score 2.402999
Snippet Everyday tasks can cause stress, which can lead to serious medical conditions, such as depression. EEG signal processing can assist medical professionals in...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100231
SubjectTerms Accuracy
Azimuthal projection
Brain–computer interfaces (BCIs)
Convolutional neural network (CNN)
Deep learning
Electroencephalography (EEG)
Human stress detection
Long short-term memory (LSTM)
Stress
Title StressNet: Hybrid model of LSTM and CNN for stress detection from electroencephalogram signal (EEG)
URI https://dx.doi.org/10.1016/j.rico.2023.100231
https://doaj.org/article/dd305f2b8f7b449d92471d11d41658e2
Volume 11
WOSCitedRecordID wos001208929900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-7207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811281
  issn: 2666-7207
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-7207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811281
  issn: 2666-7207
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29S8UwEA8iDjqIn_j8IoODIsUmaV5TN5WnDloEFdxKmktQ0SpaBRf_dnNJn9RFF5cOIc2VyyX5XXr3O0K2hLR4seCSmplhkg1TnWgONhGC28yyAriKxSbyslQ3N8VFr9QXxoRFeuCouD0Ab5GO18rldZYV4P2FnAFj4JGEVDbsvh719Jyp-3BlxPAXEVaW8_g8yXmadxkzMbjL7zGY-cdFoCAV7MepFMj7e4dT78A5niOzHVKkB_EL58mEbRbITI8_cJGYy5DpUdp2n55-YO4VDZVt6JOjZ5dX51Q3QI_KknpkSmNWCAXbhuirhmJmCe3K4OD6fr7VgcD6kWJQhxe9PRqd7CyR6-PR1dFp0lVNSEzG0jbRHmBAanKrFKRCp9ICqzMpfbvRBh3CupbKcFVr50ANRQpKWKgLqY2RfpEvk8nmqbErhMrCSa45eoFF5oRRKTBnixwy5bTkMCBsrLXKdJTiWNnioRrHjt1XqOkKNV1FTQ_I7vc7z5FQ49fehzgZ3z2RDDs0eBOpOhOp_jKRAZHjqaw6XBHxgh_q7hfhq_8hfI1M45AxumydTLYvb3aDTJn39u71ZTNYrX-ef46-AG-c7m4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StressNet%3A+Hybrid+model+of+LSTM+and+CNN+for+stress+detection+from+electroencephalogram+signal+%28EEG%29&rft.jtitle=Results+in+control+and+optimization&rft.au=Mane%2C+Swaymprabha+Alias+Megha&rft.au=Shinde%2C+Arundhati&rft.date=2023-06-01&rft.pub=Elsevier+B.V&rft.issn=2666-7207&rft.eissn=2666-7207&rft.volume=11&rft_id=info:doi/10.1016%2Fj.rico.2023.100231&rft.externalDocID=S2666720723000334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7207&client=summon