Prediction of Li-ion battery state of health based on data-driven algorithm
Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve the accuracy of Li-ion battery SOH estimation, a combined model based on health feature parameters combined with EMD-ICA-GRU is proposed to pre...
Uložené v:
| Vydané v: | Energy reports Ročník 8; s. 442 - 449 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2022
Elsevier |
| Predmet: | |
| ISSN: | 2352-4847, 2352-4847 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve the accuracy of Li-ion battery SOH estimation, a combined model based on health feature parameters combined with EMD-ICA-GRU is proposed to predict the SOH of Li-ion batteries. The capacity regeneration phenomenon and data noise are decomposed by empirical mode decomposition (EMD), and then the SOH-related health indicators are deeply mined using incremental capacity analysis (ICA), and the peaks of IC curves and their corresponding voltages are extracted as the input of the model. Then, gated recurrent units (GRUs) are formed into a combined SOH estimation model by adaptive weighting factors. Finally, it is validated against the NASA lithium battery dataset. Experimental results show that the mean squared error (MSE) of the proposed combined model can reach about 0.3%, and it has stronger generalization and prediction accuracy than other algorithms driven by independent estimation data. |
|---|---|
| AbstractList | Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve the accuracy of Li-ion battery SOH estimation, a combined model based on health feature parameters combined with EMD-ICA-GRU is proposed to predict the SOH of Li-ion batteries. The capacity regeneration phenomenon and data noise are decomposed by empirical mode decomposition (EMD), and then the SOH-related health indicators are deeply mined using incremental capacity analysis (ICA), and the peaks of IC curves and their corresponding voltages are extracted as the input of the model. Then, gated recurrent units (GRUs) are formed into a combined SOH estimation model by adaptive weighting factors. Finally, it is validated against the NASA lithium battery dataset. Experimental results show that the mean squared error (MSE) of the proposed combined model can reach about 0.3%, and it has stronger generalization and prediction accuracy than other algorithms driven by independent estimation data. |
| Author | Sun, Hanlei Wang, Kai Du, Jiaxuan Li, Ping Yang, Dongfang |
| Author_xml | – sequence: 1 givenname: Hanlei surname: Sun fullname: Sun, Hanlei organization: School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266000, China – sequence: 2 givenname: Dongfang surname: Yang fullname: Yang, Dongfang organization: Xi’an Traffic Engineering Institute, Xi’an, 710300, China – sequence: 3 givenname: Jiaxuan surname: Du fullname: Du, Jiaxuan organization: Northeast Electric Power University, Ji’lin, 132012, China – sequence: 4 givenname: Ping surname: Li fullname: Li, Ping organization: Dongying District Science and Technology Bureau, Dong’ying, 257073, China – sequence: 5 givenname: Kai orcidid: 0000-0002-3513-3511 surname: Wang fullname: Wang, Kai email: wangkai@qdu.edu.cn organization: School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266000, China |
| BookMark | eNp9kV1LwzAUhoMoOKd_wKv-gdYkTZsGvJHhx3CgF3odTpOTLaNrJQ2D_XtTpyBeeJXDS56XnCcX5LQfeiTkmtGCUVbfbAtcH0LBKecFYwUrxQmZ8bLiuWiEPP01n5OrcdxSSpniVNTljDy_BrTeRD_02eCylc-nqYUYMRyyMULEKd8gdHGT8hFtli5YiJDb4PfYZ9Cth-DjZndJzhx0I159n3Py_nD_tnjKVy-Py8XdKjeC0ZgrA4rXKGtmDG-s5BaQK2Wsq2TJW6maFlBYR6lSFp0zbVnZylWNcUqWlSvnZHnstQNs9UfwOwgHPYDXX8EQ1hpC9KZDDRKl5LwCS5louVNQUyWkLUXbGgVt6mqOXSYM4xjQaePT0klCDOA7zaieHOutnhzrybFmTCfHCeV_0J-n_AvdHiFMgvYegx6Nx96kTwhoYtrA_4d_AtYjmHg |
| CitedBy_id | crossref_primary_10_1016_j_energy_2023_129597 crossref_primary_10_1155_2024_8892634 crossref_primary_10_3390_en16073081 crossref_primary_10_1016_j_measurement_2025_118579 crossref_primary_10_1109_TIM_2025_3573358 crossref_primary_10_1016_j_est_2025_117600 crossref_primary_10_1063_5_0195048 crossref_primary_10_1016_j_egyr_2023_07_025 crossref_primary_10_1016_j_jechem_2023_02_052 crossref_primary_10_1109_ACCESS_2024_3370847 crossref_primary_10_3390_app13095608 crossref_primary_10_3389_fenrg_2023_1178151 crossref_primary_10_1007_s11581_025_06607_4 crossref_primary_10_1016_j_est_2024_113388 crossref_primary_10_3390_batteries11030085 crossref_primary_10_1016_j_jechem_2024_03_013 crossref_primary_10_1016_j_egyr_2025_02_007 crossref_primary_10_1186_s42162_024_00356_w |
| Cites_doi | 10.1016/j.renene.2022.08.123 10.1002/er.7360 10.1016/j.energy.2022.124933 10.1016/j.est.2022.104215 10.1002/er.8671 10.1155/2022/9616124 10.1002/er.8709 10.1002/ente.202200699 10.1109/TIE.2020.2973876 10.1186/s41601-021-00184-0 10.1186/s41601-022-00261-y 10.1186/s41601-020-00160-0 10.1016/j.scib.2022.04.001 10.1016/j.energy.2022.123773 10.3390/en15186665 10.1155/2022/7620382 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.egyr.2022.11.134 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4847 |
| EndPage | 449 |
| ExternalDocumentID | oai_doaj_org_article_a7e77225ad014b2f9a60947d34bbc9ab 10_1016_j_egyr_2022_11_134 S2352484722025215 |
| GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E NCXOZ O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c410t-9ca926e761cc28d72dae299cdf5732b798bae4df0099deffcb35d5f58cf9735f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000892640700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4847 |
| IngestDate | Fri Oct 03 12:46:27 EDT 2025 Thu Nov 13 04:26:44 EST 2025 Tue Nov 18 22:28:45 EST 2025 Tue Dec 03 03:44:47 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion battery GRU SOH EMD ICA |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-9ca926e761cc28d72dae299cdf5732b798bae4df0099deffcb35d5f58cf9735f3 |
| ORCID | 0000-0002-3513-3511 |
| OpenAccessLink | https://doaj.org/article/a7e77225ad014b2f9a60947d34bbc9ab |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a7e77225ad014b2f9a60947d34bbc9ab crossref_citationtrail_10_1016_j_egyr_2022_11_134 crossref_primary_10_1016_j_egyr_2022_11_134 elsevier_sciencedirect_doi_10_1016_j_egyr_2022_11_134 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy reports |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Liu, Shang, Quan, Dhammika (b10) 2021; 68 Li, Li, Zhao, Wang, Wang (b17) 2022; 50 Wang, Yin, Xu, Yin, Wen, Jiang (b18) 2020; 5 Sun, Sun, Zhao, Wang, Wang (b13) 2022; 2022 Wang, Yang, Huang, Hu, Wang, Wang (b7) 2022 Liu, Zhou, Guo, Shi, Tiancheng, Schomer (b19) 2021; 6 Li, Su, Li, Zhang, Zhang, Zhang (b15) 2022; 67 Guo, Yu, Zhu, Zhao, Wang, Wang (b2) 2022 Li, Wang, Duan, Li, Wang (b6) 2022; 46 Zhang, Liu, Wang, Zhang (b11) 2022; 239 Li, Yang, Li, Wang, Wang (b3) 2022; 15 Cui, Kang, Li, Wang, Wang (b4) 2022; 98 Cui, Dai, Sun, Li, Wang, Wang (b21) 2022; 2022 Guo, Yang, Zhang, Wang, Wang (b22) 2022; 7 Cui, Wang, Li, Wang (b8) 2021 Liu, Li, Wang, Li, Wang (b20) 2022 Wang, Yang, Yan, Wang, Hu, Wang (b12) 2022 Li, Li, Zhang, Sun, Wang, Wang (b16) 2022; 250 Zhang, Wang, Zhou (b23) 2020; 2020 Liu, Zhang, Sun, Cui, Wang (b9) 2022; 46 Cui, Kang, Li, Wang, Wang (b5) 2022; 259 Yi, Zhao, Sun, Wang, Wang, Ma (b14) 2022; 2022 Sun, Yang, Wang, Wang (b1) 2022 Wang (10.1016/j.egyr.2022.11.134_b18) 2020; 5 Guo (10.1016/j.egyr.2022.11.134_b2) 2022 Li (10.1016/j.egyr.2022.11.134_b15) 2022; 67 Cui (10.1016/j.egyr.2022.11.134_b21) 2022; 2022 Zhang (10.1016/j.egyr.2022.11.134_b23) 2020; 2020 Sun (10.1016/j.egyr.2022.11.134_b1) 2022 Wang (10.1016/j.egyr.2022.11.134_b7) 2022 Liu (10.1016/j.egyr.2022.11.134_b10) 2021; 68 Zhang (10.1016/j.egyr.2022.11.134_b11) 2022; 239 Wang (10.1016/j.egyr.2022.11.134_b12) 2022 Li (10.1016/j.egyr.2022.11.134_b16) 2022; 250 Cui (10.1016/j.egyr.2022.11.134_b5) 2022; 259 Li (10.1016/j.egyr.2022.11.134_b6) 2022; 46 Yi (10.1016/j.egyr.2022.11.134_b14) 2022; 2022 Cui (10.1016/j.egyr.2022.11.134_b8) 2021 Li (10.1016/j.egyr.2022.11.134_b17) 2022; 50 Liu (10.1016/j.egyr.2022.11.134_b20) 2022 Guo (10.1016/j.egyr.2022.11.134_b22) 2022; 7 Sun (10.1016/j.egyr.2022.11.134_b13) 2022; 2022 Liu (10.1016/j.egyr.2022.11.134_b9) 2022; 46 Liu (10.1016/j.egyr.2022.11.134_b19) 2021; 6 Li (10.1016/j.egyr.2022.11.134_b3) 2022; 15 Cui (10.1016/j.egyr.2022.11.134_b4) 2022; 98 |
| References_xml | – volume: 2022 year: 2022 ident: b13 article-title: Data-driven ICA-Bi-LSTM combined lithium battery SOH estimation publication-title: Math Probl Eng – volume: 50 year: 2022 ident: b17 article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression publication-title: J Energy Storage – year: 2021 ident: b8 article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network publication-title: Int J Energy Res – volume: 239 year: 2022 ident: b11 article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression publication-title: Energy – year: 2022 ident: b20 article-title: Strong robustness and high accuracy remaining useful life prediction on supercapacitors publication-title: APL Mater – volume: 98 start-page: 1328 year: 2022 end-page: 1340 ident: b4 article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures publication-title: Renew Energy – volume: 68 start-page: 3170 year: 2021 end-page: 3180 ident: b10 article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery publication-title: IEEE Trans Ind Electron – year: 2022 ident: b12 article-title: Triboelectric nanogenerators: the beginning of blue dream publication-title: Front Chem Sci Eng – volume: 15 start-page: 6665 year: 2022 ident: b3 article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries publication-title: Energies – volume: 250 year: 2022 ident: b16 article-title: Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine publication-title: Energy – year: 2022 ident: b1 article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model publication-title: Int J Energy Res – volume: 5 start-page: 16 year: 2020 ident: b18 article-title: Fault line selection in cooperation with multi-mode grounding control for the floating nuclear power plant grid publication-title: Prot Control Mod Power Syst – start-page: 2200699 year: 2022 ident: b7 article-title: Electrodeless nanogenerator for dust recover publication-title: Energy Technol – volume: 259 year: 2022 ident: b5 article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF publication-title: Energy – volume: 67 start-page: 1145 year: 2022 end-page: 1153 ident: b15 article-title: Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry publication-title: Sci Bull – volume: 2022 year: 2022 ident: b21 article-title: Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery publication-title: Math Probl Eng – volume: 7 start-page: 40 year: 2022 ident: b22 article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network publication-title: Prot Control Mod Power Syst – volume: 2020 year: 2020 ident: b23 article-title: Online state of charge estimation of lithium-ion cells using particle filter-based hybrid filtering approach publication-title: Complexity – volume: 2022 year: 2022 ident: b14 article-title: Prediction of the remaining useful life of supercapacitors publication-title: Math Probl Eng – volume: 46 start-page: 5423 year: 2022 end-page: 5440 ident: b6 article-title: Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review publication-title: Int J Energy Res – volume: 46 start-page: 3034 year: 2022 end-page: 3043 ident: b9 article-title: Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor publication-title: Int J Energy Res – year: 2022 ident: b2 article-title: A state-of-health estimation method considering capacity recovery of lithium batteries publication-title: Int J Energy Res – volume: 6 start-page: 4 year: 2021 ident: b19 article-title: Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage publication-title: Prot Control Mod Power Syst – volume: 98 start-page: 1328 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b4 article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures publication-title: Renew Energy doi: 10.1016/j.renene.2022.08.123 – volume: 46 start-page: 3034 issue: 3 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b9 article-title: Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor publication-title: Int J Energy Res doi: 10.1002/er.7360 – volume: 2020 year: 2020 ident: 10.1016/j.egyr.2022.11.134_b23 article-title: Online state of charge estimation of lithium-ion cells using particle filter-based hybrid filtering approach publication-title: Complexity – volume: 259 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b5 article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF publication-title: Energy doi: 10.1016/j.energy.2022.124933 – volume: 50 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b17 article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression publication-title: J Energy Storage doi: 10.1016/j.est.2022.104215 – year: 2022 ident: 10.1016/j.egyr.2022.11.134_b2 article-title: A state-of-health estimation method considering capacity recovery of lithium batteries publication-title: Int J Energy Res doi: 10.1002/er.8671 – volume: 2022 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b21 article-title: Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery publication-title: Math Probl Eng doi: 10.1155/2022/9616124 – year: 2022 ident: 10.1016/j.egyr.2022.11.134_b1 article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model publication-title: Int J Energy Res doi: 10.1002/er.8709 – start-page: 2200699 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b7 article-title: Electrodeless nanogenerator for dust recover publication-title: Energy Technol doi: 10.1002/ente.202200699 – year: 2022 ident: 10.1016/j.egyr.2022.11.134_b20 article-title: Strong robustness and high accuracy remaining useful life prediction on supercapacitors publication-title: APL Mater – volume: 239 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b11 article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression publication-title: Energy – year: 2022 ident: 10.1016/j.egyr.2022.11.134_b12 article-title: Triboelectric nanogenerators: the beginning of blue dream publication-title: Front Chem Sci Eng – volume: 68 start-page: 3170 issue: 4 year: 2021 ident: 10.1016/j.egyr.2022.11.134_b10 article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.2973876 – volume: 6 start-page: 4 issue: 1 year: 2021 ident: 10.1016/j.egyr.2022.11.134_b19 article-title: Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage publication-title: Prot Control Mod Power Syst doi: 10.1186/s41601-021-00184-0 – volume: 7 start-page: 40 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b22 article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network publication-title: Prot Control Mod Power Syst doi: 10.1186/s41601-022-00261-y – volume: 46 start-page: 5423 issue: 5 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b6 article-title: Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review publication-title: Int J Energy Res – volume: 5 start-page: 16 issue: 1 year: 2020 ident: 10.1016/j.egyr.2022.11.134_b18 article-title: Fault line selection in cooperation with multi-mode grounding control for the floating nuclear power plant grid publication-title: Prot Control Mod Power Syst doi: 10.1186/s41601-020-00160-0 – volume: 67 start-page: 1145 issue: 11 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b15 article-title: Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry publication-title: Sci Bull doi: 10.1016/j.scib.2022.04.001 – year: 2021 ident: 10.1016/j.egyr.2022.11.134_b8 article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network publication-title: Int J Energy Res – volume: 250 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b16 article-title: Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2022.123773 – volume: 15 start-page: 6665 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b3 article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries publication-title: Energies doi: 10.3390/en15186665 – volume: 2022 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b13 article-title: Data-driven ICA-Bi-LSTM combined lithium battery SOH estimation publication-title: Math Probl Eng – volume: 2022 year: 2022 ident: 10.1016/j.egyr.2022.11.134_b14 article-title: Prediction of the remaining useful life of supercapacitors publication-title: Math Probl Eng doi: 10.1155/2022/7620382 |
| SSID | ssj0001920463 |
| Score | 2.3438723 |
| Snippet | Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 442 |
| SubjectTerms | EMD GRU ICA Lithium-ion battery SOH |
| Title | Prediction of Li-ion battery state of health based on data-driven algorithm |
| URI | https://dx.doi.org/10.1016/j.egyr.2022.11.134 https://doaj.org/article/a7e77225ad014b2f9a60947d34bbc9ab |
| Volume | 8 |
| WOSCitedRecordID | wos000892640700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRRcX5ix68SXRJm6Y5qmwIzrGDwm4lP2fH3KROYRf_dvOabtTLvHgpJaRJ-V5573s073sIXXJGuE5Th21mUpzojGDpIz02GeQjmeE2WLrPB4NsNBLDRqsvOBMW5IEDcDeSW08AKZPGk3lFnZCpz0i4iROltJAKvG-Hi0YyNQm8BaSwqs5yjOLE--C6YiYc7rLjJYiBUupdxjWJk19RqRLvbwSnRsDp7aHdmilGt-EN99GWnR2gx2EJf1YAzWjuon6B4U5VIpnLqKoOgvFQ3RhBiDKRnwDnQLEpwbNFcjqel8Xi9e0QvfS6z_cPuO6HgHVCOgsstBQ0tTwlWlMPIzXS-miijWM8poqLTEmbGAesz1jntIqZYY5l2gkeMxcfodZsPrPHKNKeuMQ-1SDWicR2pEqUUM5I4jrKEp21EVnhketaLBx6Vkzz1amwSQ4Y5oChzyJyj2EbXa2feQ9SGRtn3wHM65kgc10NeOPntfHzv4zfRmxlpLxmDIEJ-KWKDZuf_Mfmp2gHlgyFiWeotSg_7Tna1l-L4qO8qL5Hf3367v4AyMPlMA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Li-ion+battery+state+of+health+based+on+data-driven+algorithm&rft.jtitle=Energy+reports&rft.au=Sun%2C+Hanlei&rft.au=Yang%2C+Dongfang&rft.au=Du%2C+Jiaxuan&rft.au=Li%2C+Ping&rft.date=2022-11-01&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=442&rft.epage=449&rft_id=info:doi/10.1016%2Fj.egyr.2022.11.134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyr_2022_11_134 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |