Prediction of Li-ion battery state of health based on data-driven algorithm

Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve the accuracy of Li-ion battery SOH estimation, a combined model based on health feature parameters combined with EMD-ICA-GRU is proposed to pre...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy reports Ročník 8; s. 442 - 449
Hlavní autori: Sun, Hanlei, Yang, Dongfang, Du, Jiaxuan, Li, Ping, Wang, Kai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2022
Elsevier
Predmet:
ISSN:2352-4847, 2352-4847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve the accuracy of Li-ion battery SOH estimation, a combined model based on health feature parameters combined with EMD-ICA-GRU is proposed to predict the SOH of Li-ion batteries. The capacity regeneration phenomenon and data noise are decomposed by empirical mode decomposition (EMD), and then the SOH-related health indicators are deeply mined using incremental capacity analysis (ICA), and the peaks of IC curves and their corresponding voltages are extracted as the input of the model. Then, gated recurrent units (GRUs) are formed into a combined SOH estimation model by adaptive weighting factors. Finally, it is validated against the NASA lithium battery dataset. Experimental results show that the mean squared error (MSE) of the proposed combined model can reach about 0.3%, and it has stronger generalization and prediction accuracy than other algorithms driven by independent estimation data.
AbstractList Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve the accuracy of Li-ion battery SOH estimation, a combined model based on health feature parameters combined with EMD-ICA-GRU is proposed to predict the SOH of Li-ion batteries. The capacity regeneration phenomenon and data noise are decomposed by empirical mode decomposition (EMD), and then the SOH-related health indicators are deeply mined using incremental capacity analysis (ICA), and the peaks of IC curves and their corresponding voltages are extracted as the input of the model. Then, gated recurrent units (GRUs) are formed into a combined SOH estimation model by adaptive weighting factors. Finally, it is validated against the NASA lithium battery dataset. Experimental results show that the mean squared error (MSE) of the proposed combined model can reach about 0.3%, and it has stronger generalization and prediction accuracy than other algorithms driven by independent estimation data.
Author Sun, Hanlei
Wang, Kai
Du, Jiaxuan
Li, Ping
Yang, Dongfang
Author_xml – sequence: 1
  givenname: Hanlei
  surname: Sun
  fullname: Sun, Hanlei
  organization: School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266000, China
– sequence: 2
  givenname: Dongfang
  surname: Yang
  fullname: Yang, Dongfang
  organization: Xi’an Traffic Engineering Institute, Xi’an, 710300, China
– sequence: 3
  givenname: Jiaxuan
  surname: Du
  fullname: Du, Jiaxuan
  organization: Northeast Electric Power University, Ji’lin, 132012, China
– sequence: 4
  givenname: Ping
  surname: Li
  fullname: Li, Ping
  organization: Dongying District Science and Technology Bureau, Dong’ying, 257073, China
– sequence: 5
  givenname: Kai
  orcidid: 0000-0002-3513-3511
  surname: Wang
  fullname: Wang, Kai
  email: wangkai@qdu.edu.cn
  organization: School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao, 266000, China
BookMark eNp9kV1LwzAUhoMoOKd_wKv-gdYkTZsGvJHhx3CgF3odTpOTLaNrJQ2D_XtTpyBeeJXDS56XnCcX5LQfeiTkmtGCUVbfbAtcH0LBKecFYwUrxQmZ8bLiuWiEPP01n5OrcdxSSpniVNTljDy_BrTeRD_02eCylc-nqYUYMRyyMULEKd8gdHGT8hFtli5YiJDb4PfYZ9Cth-DjZndJzhx0I159n3Py_nD_tnjKVy-Py8XdKjeC0ZgrA4rXKGtmDG-s5BaQK2Wsq2TJW6maFlBYR6lSFp0zbVnZylWNcUqWlSvnZHnstQNs9UfwOwgHPYDXX8EQ1hpC9KZDDRKl5LwCS5louVNQUyWkLUXbGgVt6mqOXSYM4xjQaePT0klCDOA7zaieHOutnhzrybFmTCfHCeV_0J-n_AvdHiFMgvYegx6Nx96kTwhoYtrA_4d_AtYjmHg
CitedBy_id crossref_primary_10_1016_j_energy_2023_129597
crossref_primary_10_1155_2024_8892634
crossref_primary_10_3390_en16073081
crossref_primary_10_1016_j_measurement_2025_118579
crossref_primary_10_1109_TIM_2025_3573358
crossref_primary_10_1016_j_est_2025_117600
crossref_primary_10_1063_5_0195048
crossref_primary_10_1016_j_egyr_2023_07_025
crossref_primary_10_1016_j_jechem_2023_02_052
crossref_primary_10_1109_ACCESS_2024_3370847
crossref_primary_10_3390_app13095608
crossref_primary_10_3389_fenrg_2023_1178151
crossref_primary_10_1007_s11581_025_06607_4
crossref_primary_10_1016_j_est_2024_113388
crossref_primary_10_3390_batteries11030085
crossref_primary_10_1016_j_jechem_2024_03_013
crossref_primary_10_1016_j_egyr_2025_02_007
crossref_primary_10_1186_s42162_024_00356_w
Cites_doi 10.1016/j.renene.2022.08.123
10.1002/er.7360
10.1016/j.energy.2022.124933
10.1016/j.est.2022.104215
10.1002/er.8671
10.1155/2022/9616124
10.1002/er.8709
10.1002/ente.202200699
10.1109/TIE.2020.2973876
10.1186/s41601-021-00184-0
10.1186/s41601-022-00261-y
10.1186/s41601-020-00160-0
10.1016/j.scib.2022.04.001
10.1016/j.energy.2022.123773
10.3390/en15186665
10.1155/2022/7620382
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2022.11.134
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 449
ExternalDocumentID oai_doaj_org_article_a7e77225ad014b2f9a60947d34bbc9ab
10_1016_j_egyr_2022_11_134
S2352484722025215
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
NCXOZ
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c410t-9ca926e761cc28d72dae299cdf5732b798bae4df0099deffcb35d5f58cf9735f3
IEDL.DBID DOA
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000892640700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Fri Oct 03 12:46:27 EDT 2025
Thu Nov 13 04:26:44 EST 2025
Tue Nov 18 22:28:45 EST 2025
Tue Dec 03 03:44:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
GRU
SOH
EMD
ICA
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-9ca926e761cc28d72dae299cdf5732b798bae4df0099deffcb35d5f58cf9735f3
ORCID 0000-0002-3513-3511
OpenAccessLink https://doaj.org/article/a7e77225ad014b2f9a60947d34bbc9ab
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_a7e77225ad014b2f9a60947d34bbc9ab
crossref_citationtrail_10_1016_j_egyr_2022_11_134
crossref_primary_10_1016_j_egyr_2022_11_134
elsevier_sciencedirect_doi_10_1016_j_egyr_2022_11_134
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Liu, Shang, Quan, Dhammika (b10) 2021; 68
Li, Li, Zhao, Wang, Wang (b17) 2022; 50
Wang, Yin, Xu, Yin, Wen, Jiang (b18) 2020; 5
Sun, Sun, Zhao, Wang, Wang (b13) 2022; 2022
Wang, Yang, Huang, Hu, Wang, Wang (b7) 2022
Liu, Zhou, Guo, Shi, Tiancheng, Schomer (b19) 2021; 6
Li, Su, Li, Zhang, Zhang, Zhang (b15) 2022; 67
Guo, Yu, Zhu, Zhao, Wang, Wang (b2) 2022
Li, Wang, Duan, Li, Wang (b6) 2022; 46
Zhang, Liu, Wang, Zhang (b11) 2022; 239
Li, Yang, Li, Wang, Wang (b3) 2022; 15
Cui, Kang, Li, Wang, Wang (b4) 2022; 98
Cui, Dai, Sun, Li, Wang, Wang (b21) 2022; 2022
Guo, Yang, Zhang, Wang, Wang (b22) 2022; 7
Cui, Wang, Li, Wang (b8) 2021
Liu, Li, Wang, Li, Wang (b20) 2022
Wang, Yang, Yan, Wang, Hu, Wang (b12) 2022
Li, Li, Zhang, Sun, Wang, Wang (b16) 2022; 250
Zhang, Wang, Zhou (b23) 2020; 2020
Liu, Zhang, Sun, Cui, Wang (b9) 2022; 46
Cui, Kang, Li, Wang, Wang (b5) 2022; 259
Yi, Zhao, Sun, Wang, Wang, Ma (b14) 2022; 2022
Sun, Yang, Wang, Wang (b1) 2022
Wang (10.1016/j.egyr.2022.11.134_b18) 2020; 5
Guo (10.1016/j.egyr.2022.11.134_b2) 2022
Li (10.1016/j.egyr.2022.11.134_b15) 2022; 67
Cui (10.1016/j.egyr.2022.11.134_b21) 2022; 2022
Zhang (10.1016/j.egyr.2022.11.134_b23) 2020; 2020
Sun (10.1016/j.egyr.2022.11.134_b1) 2022
Wang (10.1016/j.egyr.2022.11.134_b7) 2022
Liu (10.1016/j.egyr.2022.11.134_b10) 2021; 68
Zhang (10.1016/j.egyr.2022.11.134_b11) 2022; 239
Wang (10.1016/j.egyr.2022.11.134_b12) 2022
Li (10.1016/j.egyr.2022.11.134_b16) 2022; 250
Cui (10.1016/j.egyr.2022.11.134_b5) 2022; 259
Li (10.1016/j.egyr.2022.11.134_b6) 2022; 46
Yi (10.1016/j.egyr.2022.11.134_b14) 2022; 2022
Cui (10.1016/j.egyr.2022.11.134_b8) 2021
Li (10.1016/j.egyr.2022.11.134_b17) 2022; 50
Liu (10.1016/j.egyr.2022.11.134_b20) 2022
Guo (10.1016/j.egyr.2022.11.134_b22) 2022; 7
Sun (10.1016/j.egyr.2022.11.134_b13) 2022; 2022
Liu (10.1016/j.egyr.2022.11.134_b9) 2022; 46
Liu (10.1016/j.egyr.2022.11.134_b19) 2021; 6
Li (10.1016/j.egyr.2022.11.134_b3) 2022; 15
Cui (10.1016/j.egyr.2022.11.134_b4) 2022; 98
References_xml – volume: 2022
  year: 2022
  ident: b13
  article-title: Data-driven ICA-Bi-LSTM combined lithium battery SOH estimation
  publication-title: Math Probl Eng
– volume: 50
  year: 2022
  ident: b17
  article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression
  publication-title: J Energy Storage
– year: 2021
  ident: b8
  article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network
  publication-title: Int J Energy Res
– volume: 239
  year: 2022
  ident: b11
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
– year: 2022
  ident: b20
  article-title: Strong robustness and high accuracy remaining useful life prediction on supercapacitors
  publication-title: APL Mater
– volume: 98
  start-page: 1328
  year: 2022
  end-page: 1340
  ident: b4
  article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures
  publication-title: Renew Energy
– volume: 68
  start-page: 3170
  year: 2021
  end-page: 3180
  ident: b10
  article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
  publication-title: IEEE Trans Ind Electron
– year: 2022
  ident: b12
  article-title: Triboelectric nanogenerators: the beginning of blue dream
  publication-title: Front Chem Sci Eng
– volume: 15
  start-page: 6665
  year: 2022
  ident: b3
  article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries
  publication-title: Energies
– volume: 250
  year: 2022
  ident: b16
  article-title: Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine
  publication-title: Energy
– year: 2022
  ident: b1
  article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model
  publication-title: Int J Energy Res
– volume: 5
  start-page: 16
  year: 2020
  ident: b18
  article-title: Fault line selection in cooperation with multi-mode grounding control for the floating nuclear power plant grid
  publication-title: Prot Control Mod Power Syst
– start-page: 2200699
  year: 2022
  ident: b7
  article-title: Electrodeless nanogenerator for dust recover
  publication-title: Energy Technol
– volume: 259
  year: 2022
  ident: b5
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
– volume: 67
  start-page: 1145
  year: 2022
  end-page: 1153
  ident: b15
  article-title: Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry
  publication-title: Sci Bull
– volume: 2022
  year: 2022
  ident: b21
  article-title: Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery
  publication-title: Math Probl Eng
– volume: 7
  start-page: 40
  year: 2022
  ident: b22
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Prot Control Mod Power Syst
– volume: 2020
  year: 2020
  ident: b23
  article-title: Online state of charge estimation of lithium-ion cells using particle filter-based hybrid filtering approach
  publication-title: Complexity
– volume: 2022
  year: 2022
  ident: b14
  article-title: Prediction of the remaining useful life of supercapacitors
  publication-title: Math Probl Eng
– volume: 46
  start-page: 5423
  year: 2022
  end-page: 5440
  ident: b6
  article-title: Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review
  publication-title: Int J Energy Res
– volume: 46
  start-page: 3034
  year: 2022
  end-page: 3043
  ident: b9
  article-title: Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor
  publication-title: Int J Energy Res
– year: 2022
  ident: b2
  article-title: A state-of-health estimation method considering capacity recovery of lithium batteries
  publication-title: Int J Energy Res
– volume: 6
  start-page: 4
  year: 2021
  ident: b19
  article-title: Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage
  publication-title: Prot Control Mod Power Syst
– volume: 98
  start-page: 1328
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b4
  article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.08.123
– volume: 46
  start-page: 3034
  issue: 3
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b9
  article-title: Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor
  publication-title: Int J Energy Res
  doi: 10.1002/er.7360
– volume: 2020
  year: 2020
  ident: 10.1016/j.egyr.2022.11.134_b23
  article-title: Online state of charge estimation of lithium-ion cells using particle filter-based hybrid filtering approach
  publication-title: Complexity
– volume: 259
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b5
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124933
– volume: 50
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b17
  article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104215
– year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b2
  article-title: A state-of-health estimation method considering capacity recovery of lithium batteries
  publication-title: Int J Energy Res
  doi: 10.1002/er.8671
– volume: 2022
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b21
  article-title: Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium-ion battery
  publication-title: Math Probl Eng
  doi: 10.1155/2022/9616124
– year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b1
  article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model
  publication-title: Int J Energy Res
  doi: 10.1002/er.8709
– start-page: 2200699
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b7
  article-title: Electrodeless nanogenerator for dust recover
  publication-title: Energy Technol
  doi: 10.1002/ente.202200699
– year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b20
  article-title: Strong robustness and high accuracy remaining useful life prediction on supercapacitors
  publication-title: APL Mater
– volume: 239
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b11
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
– year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b12
  article-title: Triboelectric nanogenerators: the beginning of blue dream
  publication-title: Front Chem Sci Eng
– volume: 68
  start-page: 3170
  issue: 4
  year: 2021
  ident: 10.1016/j.egyr.2022.11.134_b10
  article-title: A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2973876
– volume: 6
  start-page: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.egyr.2022.11.134_b19
  article-title: Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage
  publication-title: Prot Control Mod Power Syst
  doi: 10.1186/s41601-021-00184-0
– volume: 7
  start-page: 40
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b22
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Prot Control Mod Power Syst
  doi: 10.1186/s41601-022-00261-y
– volume: 46
  start-page: 5423
  issue: 5
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b6
  article-title: Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review
  publication-title: Int J Energy Res
– volume: 5
  start-page: 16
  issue: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.11.134_b18
  article-title: Fault line selection in cooperation with multi-mode grounding control for the floating nuclear power plant grid
  publication-title: Prot Control Mod Power Syst
  doi: 10.1186/s41601-020-00160-0
– volume: 67
  start-page: 1145
  issue: 11
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b15
  article-title: Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2022.04.001
– year: 2021
  ident: 10.1016/j.egyr.2022.11.134_b8
  article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network
  publication-title: Int J Energy Res
– volume: 250
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b16
  article-title: Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123773
– volume: 15
  start-page: 6665
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b3
  article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries
  publication-title: Energies
  doi: 10.3390/en15186665
– volume: 2022
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b13
  article-title: Data-driven ICA-Bi-LSTM combined lithium battery SOH estimation
  publication-title: Math Probl Eng
– volume: 2022
  year: 2022
  ident: 10.1016/j.egyr.2022.11.134_b14
  article-title: Prediction of the remaining useful life of supercapacitors
  publication-title: Math Probl Eng
  doi: 10.1155/2022/7620382
SSID ssj0001920463
Score 2.3438723
Snippet Li-ion battery state of health (SOH) is a key parameter for characterizing actual battery life. SOH cannot be measured directly. In order to further improve...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 442
SubjectTerms EMD
GRU
ICA
Lithium-ion battery
SOH
Title Prediction of Li-ion battery state of health based on data-driven algorithm
URI https://dx.doi.org/10.1016/j.egyr.2022.11.134
https://doaj.org/article/a7e77225ad014b2f9a60947d34bbc9ab
Volume 8
WOSCitedRecordID wos000892640700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRRcX5ix68SXRJm6Y5qmwIzrGDwm4lP2fH3KROYRf_dvOabtTLvHgpJaRJ-V5573s073sIXXJGuE5Th21mUpzojGDpIz02GeQjmeE2WLrPB4NsNBLDRqsvOBMW5IEDcDeSW08AKZPGk3lFnZCpz0i4iROltJAKvG-Hi0YyNQm8BaSwqs5yjOLE--C6YiYc7rLjJYiBUupdxjWJk19RqRLvbwSnRsDp7aHdmilGt-EN99GWnR2gx2EJf1YAzWjuon6B4U5VIpnLqKoOgvFQ3RhBiDKRnwDnQLEpwbNFcjqel8Xi9e0QvfS6z_cPuO6HgHVCOgsstBQ0tTwlWlMPIzXS-miijWM8poqLTEmbGAesz1jntIqZYY5l2gkeMxcfodZsPrPHKNKeuMQ-1SDWicR2pEqUUM5I4jrKEp21EVnhketaLBx6Vkzz1amwSQ4Y5oChzyJyj2EbXa2feQ9SGRtn3wHM65kgc10NeOPntfHzv4zfRmxlpLxmDIEJ-KWKDZuf_Mfmp2gHlgyFiWeotSg_7Tna1l-L4qO8qL5Hf3367v4AyMPlMA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Li-ion+battery+state+of+health+based+on+data-driven+algorithm&rft.jtitle=Energy+reports&rft.au=Sun%2C+Hanlei&rft.au=Yang%2C+Dongfang&rft.au=Du%2C+Jiaxuan&rft.au=Li%2C+Ping&rft.date=2022-11-01&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=442&rft.epage=449&rft_id=info:doi/10.1016%2Fj.egyr.2022.11.134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyr_2022_11_134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon