2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 wh...
Saved in:
| Published in: | Finite elements in analysis and design Vol. 130; pp. 27 - 38 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.08.2017
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 0168-874X, 1872-6925 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a staggered solution.
The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to model diffuse crack propagation in a familiar computational environment.
•Diffuse brittle crack propagation modeled with phase-field method.•Staggered, split scheme solution for elastic and phase-field problem.•Easy to use open source UEL implementation in Abaqus/Standard for practical purposes. |
|---|---|
| AbstractList | In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a staggered solution. The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to model diffuse crack propagation in a familiar computational environment. In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a staggered solution. The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to model diffuse crack propagation in a familiar computational environment. •Diffuse brittle crack propagation modeled with phase-field method.•Staggered, split scheme solution for elastic and phase-field problem.•Easy to use open source UEL implementation in Abaqus/Standard for practical purposes. |
| Author | Molnár, Gergely Gravouil, Anthony |
| Author_xml | – sequence: 1 givenname: Gergely surname: Molnár fullname: Molnár, Gergely email: gmolnar.work@gmail.com – sequence: 2 givenname: Anthony surname: Gravouil fullname: Gravouil, Anthony |
| BackLink | https://hal.science/hal-02132509$$DView record in HAL |
| BookMark | eNp9kcFu1DAQhi1UJLaFJ-BiiROHhLETJ_GBw6oFirQSF5C4WY493vXKG29tp1LfnmwDFw49jTT6vtGv-a_J1RQnJOQ9g5oB6z4da-cnDDUH1tfQ1AD8FdmwoedVJ7m4IpuFGqqhb3-_Idc5HwFA8K7dkAO_o3qytLmj21E_zJn60zngCaeii48TjY5qmuI450Jz0fs9JrT0fNAZK-cxWJpjmJ9RFxM9RYvBT3s6Jl9KQOqSNmVO-Ja8djpkfPd33pBfX7_8vL2vdj--fb_d7irTMijVoI3peI89CDtaLZbYrINWAh-ZxFb2jknDAdtB8tEMwgp0gGPPGqFF39rmhnxc7x50UOfkTzo9qai9ut_u1GUHnDVcgHxkC_thZc8pPsyYizrGOU1LPMVkwzrZyvZCyZUyKeac0Cnj1-eUpH1QDNSlBHVUzyWoSwkKGrWUsLjNf-6_SC9bn1cLl0c9ekwqG4-TQesTmqJs9C_6fwCgXaMc |
| CitedBy_id | crossref_primary_10_1016_j_engfracmech_2018_09_027 crossref_primary_10_1016_j_jmps_2025_106063 crossref_primary_10_1016_j_matdes_2024_112700 crossref_primary_10_1007_s10704_025_00861_3 crossref_primary_10_1016_j_engfracmech_2025_111258 crossref_primary_10_1016_j_engfracmech_2025_111014 crossref_primary_10_1016_j_tust_2021_104246 crossref_primary_10_1016_j_mtcomm_2023_105627 crossref_primary_10_1016_j_jobe_2022_104802 crossref_primary_10_1080_10255842_2021_2023135 crossref_primary_10_1016_j_ijsolstr_2023_112632 crossref_primary_10_1093_imanum_drz014 crossref_primary_10_1039_D3MH00137G crossref_primary_10_1016_j_dental_2022_09_009 crossref_primary_10_1002_nme_7489 crossref_primary_10_1016_j_cma_2019_112704 crossref_primary_10_1016_j_engfracmech_2019_106608 crossref_primary_10_1007_s00707_022_03308_1 crossref_primary_10_1016_j_cma_2022_114580 crossref_primary_10_1016_j_engfracmech_2023_109621 crossref_primary_10_1016_j_engfracmech_2024_110316 crossref_primary_10_1016_j_engfracmech_2025_110859 crossref_primary_10_1016_j_engfracmech_2022_108479 crossref_primary_10_32604_cmes_2024_053047 crossref_primary_10_1016_j_conbuildmat_2025_142035 crossref_primary_10_1016_j_engfracmech_2023_109620 crossref_primary_10_1016_j_ijhydene_2024_08_136 crossref_primary_10_1007_s10704_020_00476_w crossref_primary_10_1016_j_conbuildmat_2023_132106 crossref_primary_10_1016_j_finel_2019_103344 crossref_primary_10_3390_met11111685 crossref_primary_10_1016_j_engfracmech_2024_110675 crossref_primary_10_1016_j_engfracmech_2024_110799 crossref_primary_10_1016_j_engfracmech_2025_110852 crossref_primary_10_3390_ma16020734 crossref_primary_10_1016_j_cma_2020_113248 crossref_primary_10_1016_j_cma_2020_113004 crossref_primary_10_1016_j_compgeo_2023_105921 crossref_primary_10_4028_www_scientific_net_KEM_774_632 crossref_primary_10_1016_j_tafmec_2020_102665 crossref_primary_10_1016_j_cma_2020_112838 crossref_primary_10_1016_j_cma_2023_116018 crossref_primary_10_1016_j_ijmecsci_2019_03_012 crossref_primary_10_1016_j_engfracmech_2025_110869 crossref_primary_10_1016_j_tust_2023_105233 crossref_primary_10_1016_j_cscm_2024_e03322 crossref_primary_10_1016_j_engfailanal_2025_109528 crossref_primary_10_1016_j_cma_2024_116872 crossref_primary_10_1155_2021_9281961 crossref_primary_10_1016_j_engfracmech_2024_110463 crossref_primary_10_1016_j_cma_2020_113363 crossref_primary_10_3390_met12061032 crossref_primary_10_1016_j_finel_2023_104048 crossref_primary_10_3390_nano14191548 crossref_primary_10_1016_j_finel_2021_103555 crossref_primary_10_1016_j_cma_2024_117160 crossref_primary_10_1088_1361_651X_ad29ae crossref_primary_10_1007_s11914_022_00743_w crossref_primary_10_1016_j_compgeo_2023_105470 crossref_primary_10_1016_j_tafmec_2023_104110 crossref_primary_10_1016_j_tafmec_2023_104111 crossref_primary_10_1016_j_cma_2022_115459 crossref_primary_10_1016_j_ijfatigue_2023_108064 crossref_primary_10_1155_2021_4313755 crossref_primary_10_1016_j_tafmec_2023_104009 crossref_primary_10_1016_j_ijmecsci_2019_07_007 crossref_primary_10_1016_j_tafmec_2021_103233 crossref_primary_10_1016_j_tafmec_2023_103831 crossref_primary_10_1016_j_cma_2023_116044 crossref_primary_10_1016_j_tafmec_2021_103236 crossref_primary_10_3390_met11010047 crossref_primary_10_1016_j_advengsoft_2018_09_005 crossref_primary_10_1016_j_finel_2020_103482 crossref_primary_10_1016_j_cma_2020_113472 crossref_primary_10_1016_j_engfailanal_2025_109871 crossref_primary_10_1016_j_ijsolstr_2025_113378 crossref_primary_10_1016_j_enganabound_2024_106025 crossref_primary_10_1016_j_engfracmech_2024_110577 crossref_primary_10_1016_j_tafmec_2019_102440 crossref_primary_10_1016_j_enganabound_2023_09_007 crossref_primary_10_1016_j_cma_2021_113885 crossref_primary_10_1155_2024_5543346 crossref_primary_10_1007_s00466_020_01820_6 crossref_primary_10_1016_j_ijmecsci_2023_108324 crossref_primary_10_1016_j_tafmec_2019_102447 crossref_primary_10_1016_j_tafmec_2020_102527 crossref_primary_10_1016_j_compgeo_2022_105204 crossref_primary_10_1016_j_engfracmech_2022_108564 crossref_primary_10_1016_j_engfracmech_2023_109138 crossref_primary_10_1016_j_engfracmech_2022_108444 crossref_primary_10_1016_j_compstruct_2025_119273 crossref_primary_10_1016_j_tafmec_2022_103565 crossref_primary_10_1016_j_compstruct_2025_118981 crossref_primary_10_1016_j_cma_2022_115364 crossref_primary_10_1007_s00366_024_01949_5 crossref_primary_10_1016_j_euromechsol_2023_104991 crossref_primary_10_1016_j_ijsolstr_2023_112309 crossref_primary_10_1016_j_engfracmech_2023_109492 crossref_primary_10_1016_j_compstruct_2023_116959 crossref_primary_10_1016_j_euromechsol_2021_104472 crossref_primary_10_1016_j_ijsolstr_2022_111615 crossref_primary_10_1111_ffe_14540 crossref_primary_10_1007_s00707_024_04083_x crossref_primary_10_1016_j_cma_2025_118074 crossref_primary_10_1016_j_engfracmech_2025_111338 crossref_primary_10_1016_j_tafmec_2025_105191 crossref_primary_10_1111_ffe_14429 crossref_primary_10_1016_j_tafmec_2024_104494 crossref_primary_10_3390_ma14081913 crossref_primary_10_1016_j_engfracmech_2021_107919 crossref_primary_10_1016_j_compstruc_2021_106515 crossref_primary_10_3390_app13137776 crossref_primary_10_1002_pc_29754 crossref_primary_10_1016_j_engfracmech_2022_108447 crossref_primary_10_1108_EC_10_2020_0564 crossref_primary_10_1002_cepa_3271 crossref_primary_10_1016_j_finel_2024_104311 crossref_primary_10_1016_j_engfracmech_2024_110517 crossref_primary_10_1016_j_tafmec_2022_103432 crossref_primary_10_1016_j_apm_2023_03_022 crossref_primary_10_1016_j_engfracmech_2023_109268 crossref_primary_10_1016_j_engfracmech_2022_108552 crossref_primary_10_1016_j_jmbbm_2020_104171 crossref_primary_10_1007_s12289_020_01596_3 crossref_primary_10_1016_j_ijmecsci_2025_110092 crossref_primary_10_1016_j_engfracmech_2024_110753 crossref_primary_10_1016_j_compstruc_2023_106984 crossref_primary_10_1111_ffe_14436 crossref_primary_10_1088_2053_1591_ad68ce crossref_primary_10_1016_j_tafmec_2025_105077 crossref_primary_10_1016_j_engfracmech_2021_107920 crossref_primary_10_1002_nme_6587 crossref_primary_10_1016_j_cma_2023_115886 crossref_primary_10_1016_j_ijrmms_2022_105309 crossref_primary_10_1016_j_engfracmech_2022_108678 crossref_primary_10_1016_j_compstruct_2025_119131 crossref_primary_10_1016_j_engfracmech_2023_109115 crossref_primary_10_1007_s10704_023_00758_z crossref_primary_10_1016_j_compscitech_2024_110536 crossref_primary_10_1016_j_cscm_2023_e02077 crossref_primary_10_1007_s00466_023_02297_9 crossref_primary_10_1016_j_engfracmech_2025_111235 crossref_primary_10_1016_j_tafmec_2019_01_022 crossref_primary_10_1016_j_compstruct_2024_118762 crossref_primary_10_1016_j_engfracmech_2023_109231 crossref_primary_10_1016_j_engfracmech_2024_110784 crossref_primary_10_1016_j_finel_2023_104004 crossref_primary_10_1016_j_engfracmech_2024_110546 crossref_primary_10_1002_adem_202300867 crossref_primary_10_1016_j_cma_2025_118170 crossref_primary_10_1016_j_matdes_2020_108509 crossref_primary_10_1177_10812865221133860 crossref_primary_10_1016_j_cma_2020_113398 crossref_primary_10_1016_j_compstruct_2019_111551 crossref_primary_10_1016_j_commatsci_2020_109519 crossref_primary_10_1080_15376494_2024_2424492 crossref_primary_10_1016_j_tafmec_2023_104158 crossref_primary_10_1088_1757_899X_1252_1_012024 crossref_primary_10_1007_s00366_024_02041_8 crossref_primary_10_1016_j_engfracmech_2022_108428 crossref_primary_10_1016_j_tafmec_2022_103349 crossref_primary_10_1016_j_engfracmech_2022_108894 crossref_primary_10_1016_j_tafmec_2021_103153 crossref_primary_10_1007_s00707_021_02956_z crossref_primary_10_1016_j_commatsci_2018_09_021 crossref_primary_10_1016_j_engfracmech_2025_110833 crossref_primary_10_1016_j_compgeo_2024_106373 crossref_primary_10_1063_5_0256645 crossref_primary_10_1080_15502287_2020_1836069 crossref_primary_10_1016_j_ijadhadh_2025_103977 crossref_primary_10_1016_j_cma_2022_115007 crossref_primary_10_1016_j_tafmec_2024_104348 crossref_primary_10_1016_j_engfracmech_2021_107705 crossref_primary_10_1016_j_ijnonlinmec_2019_103245 crossref_primary_10_1016_j_cma_2019_112672 crossref_primary_10_1016_j_compstruct_2019_02_007 crossref_primary_10_3390_jcs7010038 crossref_primary_10_1016_j_finel_2023_104105 crossref_primary_10_1007_s00466_022_02197_4 crossref_primary_10_1007_s12206_023_0314_z crossref_primary_10_1016_j_engfailanal_2017_12_019 crossref_primary_10_1016_j_tafmec_2019_102252 crossref_primary_10_1016_j_mechrescom_2025_104508 crossref_primary_10_1016_j_matpr_2021_12_146 crossref_primary_10_1016_j_tafmec_2023_104177 crossref_primary_10_1016_j_tafmec_2024_104696 crossref_primary_10_1007_s10704_024_00825_z crossref_primary_10_1016_j_jobe_2024_108449 crossref_primary_10_1007_s00366_022_01708_4 crossref_primary_10_1007_s40430_018_1508_7 crossref_primary_10_1016_j_euromechsol_2024_105472 crossref_primary_10_1016_j_cma_2025_117997 crossref_primary_10_1002_adts_202401311 crossref_primary_10_1016_j_engfracmech_2023_109344 crossref_primary_10_1007_s12572_023_00347_2 crossref_primary_10_1016_j_engfracmech_2025_111424 crossref_primary_10_1016_j_jmps_2023_105389 crossref_primary_10_1016_j_cma_2021_113821 crossref_primary_10_1016_j_finel_2020_103417 crossref_primary_10_1177_1056789520948933 crossref_primary_10_3390_app15010160 crossref_primary_10_1016_j_ijsolstr_2021_111374 crossref_primary_10_1063_5_0167014 crossref_primary_10_1016_j_engfracmech_2020_107427 crossref_primary_10_1016_j_tafmec_2025_104988 crossref_primary_10_1016_j_carbon_2020_04_060 crossref_primary_10_1016_j_engfracmech_2022_108636 crossref_primary_10_1016_j_tafmec_2023_103779 crossref_primary_10_1016_j_compgeo_2023_105523 crossref_primary_10_1016_j_engfracmech_2022_108758 crossref_primary_10_1016_j_mechmat_2023_104839 crossref_primary_10_1016_j_cma_2023_116430 crossref_primary_10_1016_j_apm_2024_03_032 crossref_primary_10_1016_j_ijmecsci_2023_108160 crossref_primary_10_1016_j_ijmecsci_2025_110447 crossref_primary_10_1016_j_finel_2019_04_001 crossref_primary_10_3390_app10176129 crossref_primary_10_1016_j_ijsolstr_2022_111757 crossref_primary_10_1016_j_engfracmech_2022_109032 crossref_primary_10_1016_j_cemconcomp_2025_105945 crossref_primary_10_1016_j_jmbbm_2023_105659 crossref_primary_10_1016_j_compstruct_2023_117751 crossref_primary_10_1016_j_ijsolstr_2023_112493 crossref_primary_10_1016_j_mechmat_2017_07_002 crossref_primary_10_1088_1361_651X_ac03a4 crossref_primary_10_1016_j_engfracmech_2021_107975 crossref_primary_10_1016_j_tafmec_2024_104432 crossref_primary_10_1016_j_tsf_2021_138920 crossref_primary_10_3390_met13040714 crossref_primary_10_1016_j_compgeo_2021_104587 crossref_primary_10_1007_s10704_025_00882_y crossref_primary_10_1016_j_engfracmech_2023_109439 crossref_primary_10_1016_j_cma_2021_114327 crossref_primary_10_1080_00405167_2018_1563369 crossref_primary_10_1016_j_jmps_2019_07_001 crossref_primary_10_1016_j_tafmec_2024_104549 crossref_primary_10_2118_212850_PA crossref_primary_10_1016_j_cma_2022_114881 crossref_primary_10_1016_j_compstruct_2024_118572 crossref_primary_10_1016_j_engfracmech_2023_109442 crossref_primary_10_1016_j_istruc_2025_108485 crossref_primary_10_1111_jace_17148 crossref_primary_10_32604_cmes_2023_026922 crossref_primary_10_3390_app8122488 crossref_primary_10_1016_j_engfracmech_2024_110731 crossref_primary_10_1016_j_engfracmech_2025_111207 crossref_primary_10_1155_2024_3924725 crossref_primary_10_1051_e3sconf_202125701031 crossref_primary_10_1007_s42514_021_00069_6 crossref_primary_10_1016_j_engfracmech_2019_02_033 crossref_primary_10_1080_15376494_2020_1795957 crossref_primary_10_1016_j_compstruct_2025_118908 crossref_primary_10_1016_j_cma_2022_115842 crossref_primary_10_1016_j_jrmge_2025_01_016 crossref_primary_10_1016_j_mechrescom_2023_104196 crossref_primary_10_1016_j_engfracmech_2025_110908 crossref_primary_10_1088_1361_651X_ab8357 crossref_primary_10_1007_s00466_022_02147_0 crossref_primary_10_1051_meca_2020010 crossref_primary_10_1063_5_0054236 crossref_primary_10_1016_j_engfracmech_2022_108289 crossref_primary_10_1016_j_cma_2024_117544 crossref_primary_10_1016_j_engfracmech_2019_04_008 crossref_primary_10_1016_j_engfracmech_2020_107473 crossref_primary_10_1016_j_engfracmech_2020_107355 crossref_primary_10_1016_j_engfracmech_2020_107233 crossref_primary_10_1016_j_taml_2019_06_001 crossref_primary_10_1007_s00366_022_01756_w crossref_primary_10_1002_nme_6509 crossref_primary_10_1016_j_compstruct_2020_112635 crossref_primary_10_1007_s00707_025_04423_5 crossref_primary_10_1007_s10409_020_00927_6 crossref_primary_10_1080_15376494_2023_2285423 crossref_primary_10_1016_j_enganabound_2024_105869 crossref_primary_10_32604_cmes_2022_020694 crossref_primary_10_1007_s00366_021_01518_0 crossref_primary_10_1016_j_tafmec_2022_103728 crossref_primary_10_1016_j_advengsoft_2025_104013 crossref_primary_10_1007_s10409_020_01027_1 crossref_primary_10_1007_s10338_024_00577_2 crossref_primary_10_1016_j_engfracmech_2023_109779 crossref_primary_10_1016_j_mechrescom_2021_103698 crossref_primary_10_1016_j_cma_2020_113218 crossref_primary_10_1016_j_engfracmech_2023_109419 crossref_primary_10_1016_j_engfracmech_2022_108399 crossref_primary_10_1016_j_conbuildmat_2021_125199 crossref_primary_10_1016_j_engfracmech_2018_10_006 crossref_primary_10_1016_j_engfracmech_2019_01_021 crossref_primary_10_1016_j_finel_2025_104414 crossref_primary_10_1016_j_jobe_2025_111838 crossref_primary_10_1007_s10999_023_09665_6 crossref_primary_10_1016_j_engfracmech_2019_106532 crossref_primary_10_1177_10812865211071088 crossref_primary_10_1016_j_ijmecsci_2024_109608 crossref_primary_10_1016_j_commatsci_2024_112929 crossref_primary_10_1177_10567895241245859 crossref_primary_10_1016_j_commatsci_2020_109694 crossref_primary_10_1016_j_commatsci_2023_112509 crossref_primary_10_1016_j_engfracmech_2022_108390 crossref_primary_10_1016_j_finel_2024_104279 crossref_primary_10_1016_j_compstruc_2024_107616 crossref_primary_10_1016_j_ijsolstr_2023_112385 crossref_primary_10_1080_15376494_2021_2000081 crossref_primary_10_1016_j_tafmec_2020_102622 crossref_primary_10_1016_j_mechmat_2021_103797 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_1557_s43577_024_00831_5 crossref_primary_10_1016_j_ijplas_2020_102786 crossref_primary_10_1016_j_compgeo_2025_107106 crossref_primary_10_1016_j_engfracmech_2025_111518 crossref_primary_10_1016_j_advengsoft_2025_103863 crossref_primary_10_1016_j_tafmec_2025_104916 crossref_primary_10_1016_j_cscm_2024_e03883 crossref_primary_10_1016_j_engfracmech_2020_107133 crossref_primary_10_1002_nme_6767 crossref_primary_10_1016_j_cma_2021_114134 crossref_primary_10_1016_j_engfracmech_2024_110025 crossref_primary_10_1007_s11709_018_0471_9 crossref_primary_10_1080_15376494_2023_2193184 crossref_primary_10_1038_s41598_019_41304_z crossref_primary_10_1016_j_compstruct_2020_112534 crossref_primary_10_1007_s00170_020_05488_3 crossref_primary_10_3390_ma13163548 crossref_primary_10_1007_s10704_024_00773_8 crossref_primary_10_1007_s00466_019_01733_z crossref_primary_10_1007_s10704_024_00806_2 crossref_primary_10_1016_j_compositesb_2022_110055 crossref_primary_10_1177_10567895211001410 crossref_primary_10_1016_j_cma_2019_112808 crossref_primary_10_1016_j_microrel_2021_114244 crossref_primary_10_1016_j_tafmec_2020_102736 crossref_primary_10_3390_app12020849 crossref_primary_10_1016_j_engfracmech_2018_10_026 crossref_primary_10_1016_j_cma_2023_116123 crossref_primary_10_1016_j_ijmecsci_2023_108372 crossref_primary_10_1016_j_cma_2022_115096 crossref_primary_10_1016_j_cma_2023_116122 crossref_primary_10_1108_EC_12_2022_0735 crossref_primary_10_1016_j_cma_2021_114266 crossref_primary_10_1016_j_engfracmech_2019_106752 crossref_primary_10_1016_j_engfracmech_2024_110496 crossref_primary_10_1016_j_jmbbm_2024_106577 crossref_primary_10_1002_nme_7609 crossref_primary_10_1007_s00466_023_02426_4 crossref_primary_10_1007_s11661_022_06677_3 crossref_primary_10_1016_j_jmbbm_2021_105029 crossref_primary_10_1016_j_cma_2019_02_017 crossref_primary_10_1016_j_cma_2021_113729 crossref_primary_10_1016_j_ijplas_2024_104106 crossref_primary_10_1016_j_jbiomech_2021_110600 |
| Cites_doi | 10.1016/S0022-5096(98)00034-9 10.1016/S0966-9795(01)00008-5 10.1007/s002050100187 10.1016/j.jallcom.2006.08.336 10.1007/BF00020156 10.1038/nmat3115 10.1016/j.actamat.2014.12.016 10.1023/A:1007545213010 10.1016/j.finel.2015.12.005 10.1002/nme.429 10.1016/j.cma.2005.10.005 10.1016/j.actamat.2016.03.053 10.1098/rsta.1921.0006 10.1016/j.actamat.2016.05.027 10.1016/S0167-6636(97)00048-3 10.1016/j.cma.2010.04.011 10.1002/nme.4886 10.1016/j.commatsci.2014.05.071 10.1016/S0045-7949(97)00073-4 10.4028/www.scientific.net/AMM.182-183.1524 10.1002/nme.857 10.1016/j.jmps.2013.06.007 10.1002/nme.2861 10.1016/j.ijplas.2016.04.011 10.1007/978-3-662-43081-1_5 10.1016/j.cma.2014.11.017 10.1016/j.jnoncrysol.2016.02.024 10.1002/nme.3069 10.1002/nme.4387 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1002/cpa.3160420503 10.1016/j.cma.2014.11.016 10.1016/0013-7944(95)00247-2 10.1016/j.cma.2008.12.028 10.1016/S0022-5096(99)00028-9 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Aug 2017 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Aug 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
| DOI | 10.1016/j.finel.2017.03.002 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-6925 |
| EndPage | 38 |
| ExternalDocumentID | oai:HAL:hal-02132509v1 10_1016_j_finel_2017_03_002 S0168874X16304954 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c410t-8acc627e705dbda51681604902b19e497f19c20e4892bc85d5ef0eb7135a574d3 |
| ISICitedReferencesCount | 376 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401217300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-874X |
| IngestDate | Tue Oct 14 20:55:25 EDT 2025 Sun Nov 30 03:53:51 EST 2025 Tue Nov 18 22:18:20 EST 2025 Sat Nov 29 04:56:31 EST 2025 Fri Feb 23 02:34:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element method Phase-field Staggered solution Brittle fracture Abaqus UEL Crack propagation |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-8acc627e705dbda51681604902b19e497f19c20e4892bc85d5ef0eb7135a574d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7274-5373 0000-0002-5967-8452 |
| OpenAccessLink | https://hal.science/hal-02132509 |
| PQID | 1931694941 |
| PQPubID | 2045476 |
| PageCount | 12 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02132509v1 proquest_journals_1931694941 crossref_citationtrail_10_1016_j_finel_2017_03_002 crossref_primary_10_1016_j_finel_2017_03_002 elsevier_sciencedirect_doi_10_1016_j_finel_2017_03_002 |
| PublicationCentury | 2000 |
| PublicationDate | August 2017 2017-08-00 20170801 2017-08 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Finite elements in analysis and design |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Francfort, Marigo (bib14) 1998; 46 Miehe, Schänzel (bib22) 2014; 65 Bourdin, Francfort, Marigo (bib11) 2008 Miehe, Welschinger, Hofacker (bib12) 2010; 83 Buliga (bib15) 1998; 52 Choe, Chen, Schneibel, Ritchie (bib30) 2001; 9 Bourdin, Francfort, Marigo (bib16) 2000; 48 Kermouche, Guillonneau, Michler, Teisseire, Barthel (bib4) 2016; 114 Ritchie (bib28) 2011; 10 Moës, Gravouil, Belytschko (bib9) 2002; 53 Gürses, Miehe (bib10) 2009; 198 ABAQUS, ABAQUS Documentation, Dassault Systemes, Providence, RI, USA, 2011. Molnár, Ferentzi, Weltsch, Szebényi, Borbás, Bojtár (bib38) 2016; 59 Miehe, Aldakheel, Raina (bib37) 2016; 84 Mumford, Shah (bib13) 1989; 42 Miehe, Hofacker, Schänzel, Aldakheel (bib25) 2015; 294 Msekh, Sargado, Jamshidian, Areias, Rabczuk (bib18) 2015; 96 Peng, Wang (bib5) 2012; 182–183 Singh, Verhoosel, de Borst, van Brummelen (bib23) 2016; 113 G.R. Irwin, Fracture, Springer Berlin Heidelberg, Berlin, Heidelberg, 1958, pp. 551–590. Zienkiewicz, Taylor, Fox (bib39) 2014 Cazes, Moës (bib34) 2015; 103 Miehe, Hofacker, Welschinger (bib20) 2010; 199 Moës, Stolz, Bernard, Chevaugeon (bib27) 2011; 86 Griffith (bib1) 1921; 221 Molnár, Ganster, Török, Tanguy (bib35) 2016; 440 Zhou, Molinari (bib6) 2004; 59 Moës, Dolbow, Belytschko (bib8) 1999; 46 Bittencourt, Wawrzynek, Ingraffea, Sousa (bib33) 1996; 55 Azevedo, Lemos (bib7) 2006; 195 Mueller, Pejchal, Žagar, Singh, Cantoni, Mortensen (bib36) 2015; 86 Melin (bib31) 1983; 23 Miehe (bib26) 1998; 66 Rountree, Prades, Bonamy, Bouchaud, Kalia, Guillot (bib29) 2007; 434–435 Miehe, Schänzel, Ulmer (bib24) 2015; 294 Dal Maso, Toader (bib17) 2002; 162 Molnár, Ganster, Tanguy, Barthel, Kermouche (bib3) 2016; 111 Hofacker, Miehe (bib21) 2013; 93 Sumi, Wang (bib32) 1998; 28 Bourdin (10.1016/j.finel.2017.03.002_bib16) 2000; 48 Peng (10.1016/j.finel.2017.03.002_bib5) 2012; 182–183 Choe (10.1016/j.finel.2017.03.002_bib30) 2001; 9 Singh (10.1016/j.finel.2017.03.002_bib23) 2016; 113 Ritchie (10.1016/j.finel.2017.03.002_bib28) 2011; 10 Miehe (10.1016/j.finel.2017.03.002_bib20) 2010; 199 Bittencourt (10.1016/j.finel.2017.03.002_bib33) 1996; 55 Miehe (10.1016/j.finel.2017.03.002_bib22) 2014; 65 Moës (10.1016/j.finel.2017.03.002_bib8) 1999; 46 Mueller (10.1016/j.finel.2017.03.002_bib36) 2015; 86 Msekh (10.1016/j.finel.2017.03.002_bib18) 2015; 96 Mumford (10.1016/j.finel.2017.03.002_bib13) 1989; 42 Miehe (10.1016/j.finel.2017.03.002_bib12) 2010; 83 Molnár (10.1016/j.finel.2017.03.002_bib38) 2016; 59 Francfort (10.1016/j.finel.2017.03.002_bib14) 1998; 46 Buliga (10.1016/j.finel.2017.03.002_bib15) 1998; 52 Miehe (10.1016/j.finel.2017.03.002_bib25) 2015; 294 Miehe (10.1016/j.finel.2017.03.002_bib37) 2016; 84 10.1016/j.finel.2017.03.002_bib19 Moës (10.1016/j.finel.2017.03.002_bib27) 2011; 86 Sumi (10.1016/j.finel.2017.03.002_bib32) 1998; 28 Hofacker (10.1016/j.finel.2017.03.002_bib21) 2013; 93 Griffith (10.1016/j.finel.2017.03.002_bib1) 1921; 221 Melin (10.1016/j.finel.2017.03.002_bib31) 1983; 23 Cazes (10.1016/j.finel.2017.03.002_bib34) 2015; 103 Dal Maso (10.1016/j.finel.2017.03.002_bib17) 2002; 162 Molnár (10.1016/j.finel.2017.03.002_bib35) 2016; 440 Rountree (10.1016/j.finel.2017.03.002_bib29) 2007; 434–435 Zienkiewicz (10.1016/j.finel.2017.03.002_bib39) 2014 Molnár (10.1016/j.finel.2017.03.002_bib3) 2016; 111 Azevedo (10.1016/j.finel.2017.03.002_bib7) 2006; 195 Gürses (10.1016/j.finel.2017.03.002_bib10) 2009; 198 Kermouche (10.1016/j.finel.2017.03.002_bib4) 2016; 114 Bourdin (10.1016/j.finel.2017.03.002_bib11) 2008 Miehe (10.1016/j.finel.2017.03.002_bib24) 2015; 294 Moës (10.1016/j.finel.2017.03.002_bib9) 2002; 53 Miehe (10.1016/j.finel.2017.03.002_bib26) 1998; 66 10.1016/j.finel.2017.03.002_bib2 Zhou (10.1016/j.finel.2017.03.002_bib6) 2004; 59 |
| References_xml | – volume: 199 start-page: 2765 year: 2010 end-page: 2778 ident: bib20 article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Eng. – volume: 93 start-page: 276 year: 2013 end-page: 301 ident: bib21 article-title: A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns publication-title: Int. J. Numer. Methods Eng. – volume: 53 start-page: 2549 year: 2002 end-page: 2568 ident: bib9 article-title: Non-planar 3D crack growth by the extended finite element and level sets – Part I: mechanical model publication-title: Int. J. Numer. Methods Eng. – volume: 46 start-page: 1319 year: 1998 end-page: 1342 ident: bib14 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids – volume: 23 start-page: 37 year: 1983 end-page: 45 ident: bib31 article-title: Why do cracks avoid each other? publication-title: Int. J. Fract. – volume: 84 start-page: 1 year: 2016 end-page: 32 ident: bib37 article-title: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory publication-title: Int. J. Plast. – volume: 86 start-page: 358 year: 2011 end-page: 380 ident: bib27 article-title: A level set based model for damage growth: the thick level set approach publication-title: Int. J. Numer. Methods Eng. – volume: 195 start-page: 4579 year: 2006 end-page: 4593 ident: bib7 article-title: Hybrid discrete element/finite element method for fracture analysis publication-title: Comput. Methods Appl. Mech. Eng. – volume: 65 start-page: 93 year: 2014 end-page: 113 ident: bib22 article-title: Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure publication-title: J. Mech. Phys. Solids – volume: 66 start-page: 37 year: 1998 end-page: 43 ident: bib26 article-title: Comparison of two algorithms for the computation of fourth-order isotropic tensor functions publication-title: Comput. Struct. – volume: 46 start-page: 131 year: 1999 end-page: 150 ident: bib8 article-title: A finite element method for crack growth without remeshing publication-title: Int. J. Numer. Methods Eng. – volume: 103 start-page: 114 year: 2015 end-page: 143 ident: bib34 article-title: Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture publication-title: Int. J. Numer. Methods Eng. – volume: 111 start-page: 129 year: 2016 end-page: 137 ident: bib3 article-title: Densification dependent yield criteria for sodium silicate glasses – an atomistic simulation approach publication-title: Acta Mater. – volume: 42 start-page: 577 year: 1989 end-page: 685 ident: bib13 article-title: Optimal approximations by piecewise smooth functions and associated variational problems publication-title: Commun. Pure Appl. Math. – volume: 294 start-page: 486 year: 2015 end-page: 522 ident: bib25 article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids publication-title: Comput. Methods Appl. Mech. Eng. – volume: 86 start-page: 385 year: 2015 end-page: 395 ident: bib36 article-title: Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams publication-title: Acta Mater. – volume: 294 start-page: 449 year: 2015 end-page: 485 ident: bib24 article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids publication-title: Comput. Methods Appl. Mech. Eng. – volume: 113 start-page: 14 year: 2016 end-page: 29 ident: bib23 article-title: A fracture-controlled path-following technique for phase-field modeling of brittle fracture publication-title: Finite Elem. Anal. Des. – volume: 9 start-page: 319 year: 2001 end-page: 329 ident: bib30 article-title: Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at%) intermetallic publication-title: Intermetallics – volume: 440 start-page: 12 year: 2016 end-page: 25 ident: bib35 article-title: Sodium effect on static mechanical behavior of md-modeled sodium silicate glasses publication-title: J. Non-Cryst. Solids – volume: 10 start-page: 817 year: 2011 end-page: 822 ident: bib28 article-title: The conflicts between strength and toughness publication-title: Nat. Mater. – year: 2014 ident: bib39 article-title: The Finite Element Method for Solid and Structural Mechanics – volume: 59 start-page: 1 year: 2016 end-page: 10 ident: bib38 article-title: Fragmentation of wedge loaded tempered structural glass publication-title: Glass Struct. Eng. – volume: 83 start-page: 1273 year: 2010 end-page: 1311 ident: bib12 article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations publication-title: Int. J. Numer. Methods Eng. – reference: ABAQUS, ABAQUS Documentation, Dassault Systemes, Providence, RI, USA, 2011. – volume: 182–183 start-page: 1524 year: 2012 end-page: 1528 ident: bib5 article-title: A node split method for crack growth problem publication-title: Appl. Mech. Mater. – volume: 114 start-page: 146 year: 2016 end-page: 153 ident: bib4 article-title: Perfectly plastic flow in silica glass publication-title: Acta Mater. – volume: 52 start-page: 201 year: 1998 ident: bib15 article-title: Energy minimizing brittle crack propagation publication-title: J. Elast. – volume: 28 start-page: 197 year: 1998 end-page: 206 ident: bib32 article-title: A finite-element simulation method for a system of growing cracks in a heterogeneous material publication-title: Mech. Mater. – volume: 198 start-page: 1413 year: 2009 end-page: 1428 ident: bib10 article-title: A computational framework of three-dimensional configurational-force-driven brittle crack propagation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 55 start-page: 321 year: 1996 end-page: 334 ident: bib33 article-title: Quasi-automatic simulation of crack propagation for 2D LEFM problems publication-title: Eng. Fract. Mech. – year: 2008 ident: bib11 article-title: The Variational Approach to Fracture – volume: 221 start-page: 163 year: 1921 end-page: 198 ident: bib1 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. – volume: 162 start-page: 101 year: 2002 end-page: 135 ident: bib17 article-title: A model for the quasi-static growth of brittle fractures: existence and approximation results publication-title: Arch. Ration. Mech. Anal. – volume: 59 start-page: 1 year: 2004 end-page: 24 ident: bib6 article-title: Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency publication-title: Int. J. Numer. Methods Eng. – volume: 48 start-page: 797 year: 2000 end-page: 826 ident: bib16 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solids – volume: 96 start-page: 472 year: 2015 end-page: 484 ident: bib18 article-title: Abaqus implementation of phase-field model for brittle fracture publication-title: Comput. Mater. Sci. – volume: 434–435 start-page: 60 year: 2007 end-page: 63 ident: bib29 article-title: A unified study of crack propagation in amorphous silica: using experiments and simulations publication-title: J. Alloy. Compd. – reference: G.R. Irwin, Fracture, Springer Berlin Heidelberg, Berlin, Heidelberg, 1958, pp. 551–590. – volume: 46 start-page: 1319 issue: 8 year: 1998 ident: 10.1016/j.finel.2017.03.002_bib14 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00034-9 – volume: 9 start-page: 319 issue: 4 year: 2001 ident: 10.1016/j.finel.2017.03.002_bib30 article-title: Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at%) intermetallic publication-title: Intermetallics doi: 10.1016/S0966-9795(01)00008-5 – volume: 162 start-page: 101 issue: 2 year: 2002 ident: 10.1016/j.finel.2017.03.002_bib17 article-title: A model for the quasi-static growth of brittle fractures: existence and approximation results publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050100187 – volume: 434–435 start-page: 60 year: 2007 ident: 10.1016/j.finel.2017.03.002_bib29 article-title: A unified study of crack propagation in amorphous silica: using experiments and simulations publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2006.08.336 – volume: 23 start-page: 37 issue: 1 year: 1983 ident: 10.1016/j.finel.2017.03.002_bib31 article-title: Why do cracks avoid each other? publication-title: Int. J. Fract. doi: 10.1007/BF00020156 – volume: 59 start-page: 1 year: 2016 ident: 10.1016/j.finel.2017.03.002_bib38 article-title: Fragmentation of wedge loaded tempered structural glass publication-title: Glass Struct. Eng. – volume: 10 start-page: 817 issue: 11 year: 2011 ident: 10.1016/j.finel.2017.03.002_bib28 article-title: The conflicts between strength and toughness publication-title: Nat. Mater. doi: 10.1038/nmat3115 – volume: 86 start-page: 385 year: 2015 ident: 10.1016/j.finel.2017.03.002_bib36 article-title: Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.12.016 – volume: 52 start-page: 201 issue: 3 year: 1998 ident: 10.1016/j.finel.2017.03.002_bib15 article-title: Energy minimizing brittle crack propagation publication-title: J. Elast. doi: 10.1023/A:1007545213010 – volume: 113 start-page: 14 year: 2016 ident: 10.1016/j.finel.2017.03.002_bib23 article-title: A fracture-controlled path-following technique for phase-field modeling of brittle fracture publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2015.12.005 – volume: 53 start-page: 2549 issue: 11 year: 2002 ident: 10.1016/j.finel.2017.03.002_bib9 article-title: Non-planar 3D crack growth by the extended finite element and level sets – Part I: mechanical model publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.429 – volume: 195 start-page: 4579 issue: 33–36 year: 2006 ident: 10.1016/j.finel.2017.03.002_bib7 article-title: Hybrid discrete element/finite element method for fracture analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.10.005 – volume: 111 start-page: 129 year: 2016 ident: 10.1016/j.finel.2017.03.002_bib3 article-title: Densification dependent yield criteria for sodium silicate glasses – an atomistic simulation approach publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.053 – year: 2008 ident: 10.1016/j.finel.2017.03.002_bib11 – ident: 10.1016/j.finel.2017.03.002_bib19 – volume: 221 start-page: 163 issue: 582–593 year: 1921 ident: 10.1016/j.finel.2017.03.002_bib1 article-title: The phenomena of rupture and flow in solids publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.1921.0006 – volume: 114 start-page: 146 year: 2016 ident: 10.1016/j.finel.2017.03.002_bib4 article-title: Perfectly plastic flow in silica glass publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.027 – volume: 28 start-page: 197 issue: 1–4 year: 1998 ident: 10.1016/j.finel.2017.03.002_bib32 article-title: A finite-element simulation method for a system of growing cracks in a heterogeneous material publication-title: Mech. Mater. doi: 10.1016/S0167-6636(97)00048-3 – volume: 199 start-page: 2765 issue: 45–48 year: 2010 ident: 10.1016/j.finel.2017.03.002_bib20 article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.04.011 – year: 2014 ident: 10.1016/j.finel.2017.03.002_bib39 – volume: 103 start-page: 114 issue: 2 year: 2015 ident: 10.1016/j.finel.2017.03.002_bib34 article-title: Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4886 – volume: 96 start-page: 472 issue: Part B year: 2015 ident: 10.1016/j.finel.2017.03.002_bib18 article-title: Abaqus implementation of phase-field model for brittle fracture publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.05.071 – volume: 66 start-page: 37 issue: 1 year: 1998 ident: 10.1016/j.finel.2017.03.002_bib26 article-title: Comparison of two algorithms for the computation of fourth-order isotropic tensor functions publication-title: Comput. Struct. doi: 10.1016/S0045-7949(97)00073-4 – volume: 182–183 start-page: 1524 year: 2012 ident: 10.1016/j.finel.2017.03.002_bib5 article-title: A node split method for crack growth problem publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.182-183.1524 – volume: 59 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.finel.2017.03.002_bib6 article-title: Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.857 – volume: 65 start-page: 93 year: 2014 ident: 10.1016/j.finel.2017.03.002_bib22 article-title: Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2013.06.007 – volume: 83 start-page: 1273 issue: 10 year: 2010 ident: 10.1016/j.finel.2017.03.002_bib12 article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2861 – volume: 84 start-page: 1 year: 2016 ident: 10.1016/j.finel.2017.03.002_bib37 article-title: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.04.011 – ident: 10.1016/j.finel.2017.03.002_bib2 doi: 10.1007/978-3-662-43081-1_5 – volume: 294 start-page: 486 year: 2015 ident: 10.1016/j.finel.2017.03.002_bib25 article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.11.017 – volume: 440 start-page: 12 year: 2016 ident: 10.1016/j.finel.2017.03.002_bib35 article-title: Sodium effect on static mechanical behavior of md-modeled sodium silicate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2016.02.024 – volume: 86 start-page: 358 issue: 3 year: 2011 ident: 10.1016/j.finel.2017.03.002_bib27 article-title: A level set based model for damage growth: the thick level set approach publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.3069 – volume: 93 start-page: 276 issue: 3 year: 2013 ident: 10.1016/j.finel.2017.03.002_bib21 article-title: A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4387 – volume: 46 start-page: 131 issue: 1 year: 1999 ident: 10.1016/j.finel.2017.03.002_bib8 article-title: A finite element method for crack growth without remeshing publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – volume: 42 start-page: 577 issue: 5 year: 1989 ident: 10.1016/j.finel.2017.03.002_bib13 article-title: Optimal approximations by piecewise smooth functions and associated variational problems publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160420503 – volume: 294 start-page: 449 year: 2015 ident: 10.1016/j.finel.2017.03.002_bib24 article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.11.016 – volume: 55 start-page: 321 issue: 2 year: 1996 ident: 10.1016/j.finel.2017.03.002_bib33 article-title: Quasi-automatic simulation of crack propagation for 2D LEFM problems publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(95)00247-2 – volume: 198 start-page: 1413 issue: 15–16 year: 2009 ident: 10.1016/j.finel.2017.03.002_bib10 article-title: A computational framework of three-dimensional configurational-force-driven brittle crack propagation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.12.028 – volume: 48 start-page: 797 issue: 4 year: 2000 ident: 10.1016/j.finel.2017.03.002_bib16 article-title: Numerical experiments in revisited brittle fracture publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00028-9 |
| SSID | ssj0005264 |
| Score | 2.6202877 |
| Snippet | In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard.... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 27 |
| SubjectTerms | Abaqus UEL Brittle fracture Coalescing Computer simulation Crack propagation Cracks Engineering Sciences Finite element analysis Finite element method Fracture mechanics Mathematical models Mechanics Phase-field Robustness (mathematics) Solid mechanics Staggered solution Stiffness Three dimensional models |
| Title | 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture |
| URI | https://dx.doi.org/10.1016/j.finel.2017.03.002 https://www.proquest.com/docview/1931694941 https://hal.science/hal-02132509 |
| Volume | 130 |
| WOSCitedRecordID | wos000401217300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOfAwQg4EsxC0Exc6Xfazo0EAwcRhSb5adOG2nKi3phyb-ep5jO8s2UbEDl7SymsTJ-9Xv-fnn30PoPUk11ZWuQs1SFiayYKGKuAqjIs7KXDJT1botNpGfnbHJhP8YDH77vTC7RV7X7PKSr_6rqaENjG22zt7B3N1FoQG-g9HhCGaH4z8Zno7bBYF4HIyU_LVdm42QjiPuo0MZNEu1XW9MImE6NdU6g9UM3FnY8tkC37-WgtiWyjH5BNXMjd5xUJl9VU6HpCvwOTeha6DtfVqKrfRqJ6Yz5TWeyPflom4X6Elj0_LNVPdYpY3cLbc2Ne2kDfqpCXB3nhjXZSszBsOtpWB2w61bh3EDZt5zvVbn5dagbvMLFx8riLvNahHJrS4tvfJhft3-hmvrCIeey3Yh2osIcxERxaLVIT2gecrZEB2MvpxMvvYIQplThrcP4TWrWnbgrb78La65NzME2xt-vg1ezp-gR27WgUcWLU_RQNeH6LGbgWA3vq8P0cOePOUzNKNjDNbD8RhbKOHrUMLLCktsoYQ7KOEelLCHEgYoYQ8l7KCEPZSeo5-fT84_nYauMkdYJCTahEwWRUZznUdpqUqZwisimVlDpopwnfC8IrygkU4Yp6pgaZnqKtLKlIOUaZ6U8Qs0rJe1folwklSlLJWEMLJM4JObKlZERlVFo1hRcoSof6-icLL1pnrKQuyx6RH60J20sqot-3-eeYMJF3jagFIABPef-A7M293CSLWfjr4J0waxcwzTC76DJzj21hdunFgLmDeRjCc8Ia_u1tfX6MHVX-0YDTfNVr9B94vdZr5u3joM_wHiKbzc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+and+3D+Abaqus+implementation+of+a+robust+staggered+phase-field+solution+for+modeling+brittle+fracture&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Moln%C3%A1r%2C+Gergely&rft.au=Gravouil%2C+Anthony&rft.date=2017-08-01&rft.issn=0168-874X&rft.volume=130&rft.spage=27&rft.epage=38&rft_id=info:doi/10.1016%2Fj.finel.2017.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_finel_2017_03_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |