2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture

In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 wh...

Full description

Saved in:
Bibliographic Details
Published in:Finite elements in analysis and design Vol. 130; pp. 27 - 38
Main Authors: Molnár, Gergely, Gravouil, Anthony
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.08.2017
Elsevier BV
Elsevier
Subjects:
ISSN:0168-874X, 1872-6925
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a staggered solution. The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to model diffuse crack propagation in a familiar computational environment. •Diffuse brittle crack propagation modeled with phase-field method.•Staggered, split scheme solution for elastic and phase-field problem.•Easy to use open source UEL implementation in Abaqus/Standard for practical purposes.
AbstractList In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a staggered solution. The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to model diffuse crack propagation in a familiar computational environment.
In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a staggered solution. The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to model diffuse crack propagation in a familiar computational environment. •Diffuse brittle crack propagation modeled with phase-field method.•Staggered, split scheme solution for elastic and phase-field problem.•Easy to use open source UEL implementation in Abaqus/Standard for practical purposes.
Author Molnár, Gergely
Gravouil, Anthony
Author_xml – sequence: 1
  givenname: Gergely
  surname: Molnár
  fullname: Molnár, Gergely
  email: gmolnar.work@gmail.com
– sequence: 2
  givenname: Anthony
  surname: Gravouil
  fullname: Gravouil, Anthony
BackLink https://hal.science/hal-02132509$$DView record in HAL
BookMark eNp9kcFu1DAQhi1UJLaFJ-BiiROHhLETJ_GBw6oFirQSF5C4WY493vXKG29tp1LfnmwDFw49jTT6vtGv-a_J1RQnJOQ9g5oB6z4da-cnDDUH1tfQ1AD8FdmwoedVJ7m4IpuFGqqhb3-_Idc5HwFA8K7dkAO_o3qytLmj21E_zJn60zngCaeii48TjY5qmuI450Jz0fs9JrT0fNAZK-cxWJpjmJ9RFxM9RYvBT3s6Jl9KQOqSNmVO-Ja8djpkfPd33pBfX7_8vL2vdj--fb_d7irTMijVoI3peI89CDtaLZbYrINWAh-ZxFb2jknDAdtB8tEMwgp0gGPPGqFF39rmhnxc7x50UOfkTzo9qai9ut_u1GUHnDVcgHxkC_thZc8pPsyYizrGOU1LPMVkwzrZyvZCyZUyKeac0Cnj1-eUpH1QDNSlBHVUzyWoSwkKGrWUsLjNf-6_SC9bn1cLl0c9ekwqG4-TQesTmqJs9C_6fwCgXaMc
CitedBy_id crossref_primary_10_1016_j_engfracmech_2018_09_027
crossref_primary_10_1016_j_jmps_2025_106063
crossref_primary_10_1016_j_matdes_2024_112700
crossref_primary_10_1007_s10704_025_00861_3
crossref_primary_10_1016_j_engfracmech_2025_111258
crossref_primary_10_1016_j_engfracmech_2025_111014
crossref_primary_10_1016_j_tust_2021_104246
crossref_primary_10_1016_j_mtcomm_2023_105627
crossref_primary_10_1016_j_jobe_2022_104802
crossref_primary_10_1080_10255842_2021_2023135
crossref_primary_10_1016_j_ijsolstr_2023_112632
crossref_primary_10_1093_imanum_drz014
crossref_primary_10_1039_D3MH00137G
crossref_primary_10_1016_j_dental_2022_09_009
crossref_primary_10_1002_nme_7489
crossref_primary_10_1016_j_cma_2019_112704
crossref_primary_10_1016_j_engfracmech_2019_106608
crossref_primary_10_1007_s00707_022_03308_1
crossref_primary_10_1016_j_cma_2022_114580
crossref_primary_10_1016_j_engfracmech_2023_109621
crossref_primary_10_1016_j_engfracmech_2024_110316
crossref_primary_10_1016_j_engfracmech_2025_110859
crossref_primary_10_1016_j_engfracmech_2022_108479
crossref_primary_10_32604_cmes_2024_053047
crossref_primary_10_1016_j_conbuildmat_2025_142035
crossref_primary_10_1016_j_engfracmech_2023_109620
crossref_primary_10_1016_j_ijhydene_2024_08_136
crossref_primary_10_1007_s10704_020_00476_w
crossref_primary_10_1016_j_conbuildmat_2023_132106
crossref_primary_10_1016_j_finel_2019_103344
crossref_primary_10_3390_met11111685
crossref_primary_10_1016_j_engfracmech_2024_110675
crossref_primary_10_1016_j_engfracmech_2024_110799
crossref_primary_10_1016_j_engfracmech_2025_110852
crossref_primary_10_3390_ma16020734
crossref_primary_10_1016_j_cma_2020_113248
crossref_primary_10_1016_j_cma_2020_113004
crossref_primary_10_1016_j_compgeo_2023_105921
crossref_primary_10_4028_www_scientific_net_KEM_774_632
crossref_primary_10_1016_j_tafmec_2020_102665
crossref_primary_10_1016_j_cma_2020_112838
crossref_primary_10_1016_j_cma_2023_116018
crossref_primary_10_1016_j_ijmecsci_2019_03_012
crossref_primary_10_1016_j_engfracmech_2025_110869
crossref_primary_10_1016_j_tust_2023_105233
crossref_primary_10_1016_j_cscm_2024_e03322
crossref_primary_10_1016_j_engfailanal_2025_109528
crossref_primary_10_1016_j_cma_2024_116872
crossref_primary_10_1155_2021_9281961
crossref_primary_10_1016_j_engfracmech_2024_110463
crossref_primary_10_1016_j_cma_2020_113363
crossref_primary_10_3390_met12061032
crossref_primary_10_1016_j_finel_2023_104048
crossref_primary_10_3390_nano14191548
crossref_primary_10_1016_j_finel_2021_103555
crossref_primary_10_1016_j_cma_2024_117160
crossref_primary_10_1088_1361_651X_ad29ae
crossref_primary_10_1007_s11914_022_00743_w
crossref_primary_10_1016_j_compgeo_2023_105470
crossref_primary_10_1016_j_tafmec_2023_104110
crossref_primary_10_1016_j_tafmec_2023_104111
crossref_primary_10_1016_j_cma_2022_115459
crossref_primary_10_1016_j_ijfatigue_2023_108064
crossref_primary_10_1155_2021_4313755
crossref_primary_10_1016_j_tafmec_2023_104009
crossref_primary_10_1016_j_ijmecsci_2019_07_007
crossref_primary_10_1016_j_tafmec_2021_103233
crossref_primary_10_1016_j_tafmec_2023_103831
crossref_primary_10_1016_j_cma_2023_116044
crossref_primary_10_1016_j_tafmec_2021_103236
crossref_primary_10_3390_met11010047
crossref_primary_10_1016_j_advengsoft_2018_09_005
crossref_primary_10_1016_j_finel_2020_103482
crossref_primary_10_1016_j_cma_2020_113472
crossref_primary_10_1016_j_engfailanal_2025_109871
crossref_primary_10_1016_j_ijsolstr_2025_113378
crossref_primary_10_1016_j_enganabound_2024_106025
crossref_primary_10_1016_j_engfracmech_2024_110577
crossref_primary_10_1016_j_tafmec_2019_102440
crossref_primary_10_1016_j_enganabound_2023_09_007
crossref_primary_10_1016_j_cma_2021_113885
crossref_primary_10_1155_2024_5543346
crossref_primary_10_1007_s00466_020_01820_6
crossref_primary_10_1016_j_ijmecsci_2023_108324
crossref_primary_10_1016_j_tafmec_2019_102447
crossref_primary_10_1016_j_tafmec_2020_102527
crossref_primary_10_1016_j_compgeo_2022_105204
crossref_primary_10_1016_j_engfracmech_2022_108564
crossref_primary_10_1016_j_engfracmech_2023_109138
crossref_primary_10_1016_j_engfracmech_2022_108444
crossref_primary_10_1016_j_compstruct_2025_119273
crossref_primary_10_1016_j_tafmec_2022_103565
crossref_primary_10_1016_j_compstruct_2025_118981
crossref_primary_10_1016_j_cma_2022_115364
crossref_primary_10_1007_s00366_024_01949_5
crossref_primary_10_1016_j_euromechsol_2023_104991
crossref_primary_10_1016_j_ijsolstr_2023_112309
crossref_primary_10_1016_j_engfracmech_2023_109492
crossref_primary_10_1016_j_compstruct_2023_116959
crossref_primary_10_1016_j_euromechsol_2021_104472
crossref_primary_10_1016_j_ijsolstr_2022_111615
crossref_primary_10_1111_ffe_14540
crossref_primary_10_1007_s00707_024_04083_x
crossref_primary_10_1016_j_cma_2025_118074
crossref_primary_10_1016_j_engfracmech_2025_111338
crossref_primary_10_1016_j_tafmec_2025_105191
crossref_primary_10_1111_ffe_14429
crossref_primary_10_1016_j_tafmec_2024_104494
crossref_primary_10_3390_ma14081913
crossref_primary_10_1016_j_engfracmech_2021_107919
crossref_primary_10_1016_j_compstruc_2021_106515
crossref_primary_10_3390_app13137776
crossref_primary_10_1002_pc_29754
crossref_primary_10_1016_j_engfracmech_2022_108447
crossref_primary_10_1108_EC_10_2020_0564
crossref_primary_10_1002_cepa_3271
crossref_primary_10_1016_j_finel_2024_104311
crossref_primary_10_1016_j_engfracmech_2024_110517
crossref_primary_10_1016_j_tafmec_2022_103432
crossref_primary_10_1016_j_apm_2023_03_022
crossref_primary_10_1016_j_engfracmech_2023_109268
crossref_primary_10_1016_j_engfracmech_2022_108552
crossref_primary_10_1016_j_jmbbm_2020_104171
crossref_primary_10_1007_s12289_020_01596_3
crossref_primary_10_1016_j_ijmecsci_2025_110092
crossref_primary_10_1016_j_engfracmech_2024_110753
crossref_primary_10_1016_j_compstruc_2023_106984
crossref_primary_10_1111_ffe_14436
crossref_primary_10_1088_2053_1591_ad68ce
crossref_primary_10_1016_j_tafmec_2025_105077
crossref_primary_10_1016_j_engfracmech_2021_107920
crossref_primary_10_1002_nme_6587
crossref_primary_10_1016_j_cma_2023_115886
crossref_primary_10_1016_j_ijrmms_2022_105309
crossref_primary_10_1016_j_engfracmech_2022_108678
crossref_primary_10_1016_j_compstruct_2025_119131
crossref_primary_10_1016_j_engfracmech_2023_109115
crossref_primary_10_1007_s10704_023_00758_z
crossref_primary_10_1016_j_compscitech_2024_110536
crossref_primary_10_1016_j_cscm_2023_e02077
crossref_primary_10_1007_s00466_023_02297_9
crossref_primary_10_1016_j_engfracmech_2025_111235
crossref_primary_10_1016_j_tafmec_2019_01_022
crossref_primary_10_1016_j_compstruct_2024_118762
crossref_primary_10_1016_j_engfracmech_2023_109231
crossref_primary_10_1016_j_engfracmech_2024_110784
crossref_primary_10_1016_j_finel_2023_104004
crossref_primary_10_1016_j_engfracmech_2024_110546
crossref_primary_10_1002_adem_202300867
crossref_primary_10_1016_j_cma_2025_118170
crossref_primary_10_1016_j_matdes_2020_108509
crossref_primary_10_1177_10812865221133860
crossref_primary_10_1016_j_cma_2020_113398
crossref_primary_10_1016_j_compstruct_2019_111551
crossref_primary_10_1016_j_commatsci_2020_109519
crossref_primary_10_1080_15376494_2024_2424492
crossref_primary_10_1016_j_tafmec_2023_104158
crossref_primary_10_1088_1757_899X_1252_1_012024
crossref_primary_10_1007_s00366_024_02041_8
crossref_primary_10_1016_j_engfracmech_2022_108428
crossref_primary_10_1016_j_tafmec_2022_103349
crossref_primary_10_1016_j_engfracmech_2022_108894
crossref_primary_10_1016_j_tafmec_2021_103153
crossref_primary_10_1007_s00707_021_02956_z
crossref_primary_10_1016_j_commatsci_2018_09_021
crossref_primary_10_1016_j_engfracmech_2025_110833
crossref_primary_10_1016_j_compgeo_2024_106373
crossref_primary_10_1063_5_0256645
crossref_primary_10_1080_15502287_2020_1836069
crossref_primary_10_1016_j_ijadhadh_2025_103977
crossref_primary_10_1016_j_cma_2022_115007
crossref_primary_10_1016_j_tafmec_2024_104348
crossref_primary_10_1016_j_engfracmech_2021_107705
crossref_primary_10_1016_j_ijnonlinmec_2019_103245
crossref_primary_10_1016_j_cma_2019_112672
crossref_primary_10_1016_j_compstruct_2019_02_007
crossref_primary_10_3390_jcs7010038
crossref_primary_10_1016_j_finel_2023_104105
crossref_primary_10_1007_s00466_022_02197_4
crossref_primary_10_1007_s12206_023_0314_z
crossref_primary_10_1016_j_engfailanal_2017_12_019
crossref_primary_10_1016_j_tafmec_2019_102252
crossref_primary_10_1016_j_mechrescom_2025_104508
crossref_primary_10_1016_j_matpr_2021_12_146
crossref_primary_10_1016_j_tafmec_2023_104177
crossref_primary_10_1016_j_tafmec_2024_104696
crossref_primary_10_1007_s10704_024_00825_z
crossref_primary_10_1016_j_jobe_2024_108449
crossref_primary_10_1007_s00366_022_01708_4
crossref_primary_10_1007_s40430_018_1508_7
crossref_primary_10_1016_j_euromechsol_2024_105472
crossref_primary_10_1016_j_cma_2025_117997
crossref_primary_10_1002_adts_202401311
crossref_primary_10_1016_j_engfracmech_2023_109344
crossref_primary_10_1007_s12572_023_00347_2
crossref_primary_10_1016_j_engfracmech_2025_111424
crossref_primary_10_1016_j_jmps_2023_105389
crossref_primary_10_1016_j_cma_2021_113821
crossref_primary_10_1016_j_finel_2020_103417
crossref_primary_10_1177_1056789520948933
crossref_primary_10_3390_app15010160
crossref_primary_10_1016_j_ijsolstr_2021_111374
crossref_primary_10_1063_5_0167014
crossref_primary_10_1016_j_engfracmech_2020_107427
crossref_primary_10_1016_j_tafmec_2025_104988
crossref_primary_10_1016_j_carbon_2020_04_060
crossref_primary_10_1016_j_engfracmech_2022_108636
crossref_primary_10_1016_j_tafmec_2023_103779
crossref_primary_10_1016_j_compgeo_2023_105523
crossref_primary_10_1016_j_engfracmech_2022_108758
crossref_primary_10_1016_j_mechmat_2023_104839
crossref_primary_10_1016_j_cma_2023_116430
crossref_primary_10_1016_j_apm_2024_03_032
crossref_primary_10_1016_j_ijmecsci_2023_108160
crossref_primary_10_1016_j_ijmecsci_2025_110447
crossref_primary_10_1016_j_finel_2019_04_001
crossref_primary_10_3390_app10176129
crossref_primary_10_1016_j_ijsolstr_2022_111757
crossref_primary_10_1016_j_engfracmech_2022_109032
crossref_primary_10_1016_j_cemconcomp_2025_105945
crossref_primary_10_1016_j_jmbbm_2023_105659
crossref_primary_10_1016_j_compstruct_2023_117751
crossref_primary_10_1016_j_ijsolstr_2023_112493
crossref_primary_10_1016_j_mechmat_2017_07_002
crossref_primary_10_1088_1361_651X_ac03a4
crossref_primary_10_1016_j_engfracmech_2021_107975
crossref_primary_10_1016_j_tafmec_2024_104432
crossref_primary_10_1016_j_tsf_2021_138920
crossref_primary_10_3390_met13040714
crossref_primary_10_1016_j_compgeo_2021_104587
crossref_primary_10_1007_s10704_025_00882_y
crossref_primary_10_1016_j_engfracmech_2023_109439
crossref_primary_10_1016_j_cma_2021_114327
crossref_primary_10_1080_00405167_2018_1563369
crossref_primary_10_1016_j_jmps_2019_07_001
crossref_primary_10_1016_j_tafmec_2024_104549
crossref_primary_10_2118_212850_PA
crossref_primary_10_1016_j_cma_2022_114881
crossref_primary_10_1016_j_compstruct_2024_118572
crossref_primary_10_1016_j_engfracmech_2023_109442
crossref_primary_10_1016_j_istruc_2025_108485
crossref_primary_10_1111_jace_17148
crossref_primary_10_32604_cmes_2023_026922
crossref_primary_10_3390_app8122488
crossref_primary_10_1016_j_engfracmech_2024_110731
crossref_primary_10_1016_j_engfracmech_2025_111207
crossref_primary_10_1155_2024_3924725
crossref_primary_10_1051_e3sconf_202125701031
crossref_primary_10_1007_s42514_021_00069_6
crossref_primary_10_1016_j_engfracmech_2019_02_033
crossref_primary_10_1080_15376494_2020_1795957
crossref_primary_10_1016_j_compstruct_2025_118908
crossref_primary_10_1016_j_cma_2022_115842
crossref_primary_10_1016_j_jrmge_2025_01_016
crossref_primary_10_1016_j_mechrescom_2023_104196
crossref_primary_10_1016_j_engfracmech_2025_110908
crossref_primary_10_1088_1361_651X_ab8357
crossref_primary_10_1007_s00466_022_02147_0
crossref_primary_10_1051_meca_2020010
crossref_primary_10_1063_5_0054236
crossref_primary_10_1016_j_engfracmech_2022_108289
crossref_primary_10_1016_j_cma_2024_117544
crossref_primary_10_1016_j_engfracmech_2019_04_008
crossref_primary_10_1016_j_engfracmech_2020_107473
crossref_primary_10_1016_j_engfracmech_2020_107355
crossref_primary_10_1016_j_engfracmech_2020_107233
crossref_primary_10_1016_j_taml_2019_06_001
crossref_primary_10_1007_s00366_022_01756_w
crossref_primary_10_1002_nme_6509
crossref_primary_10_1016_j_compstruct_2020_112635
crossref_primary_10_1007_s00707_025_04423_5
crossref_primary_10_1007_s10409_020_00927_6
crossref_primary_10_1080_15376494_2023_2285423
crossref_primary_10_1016_j_enganabound_2024_105869
crossref_primary_10_32604_cmes_2022_020694
crossref_primary_10_1007_s00366_021_01518_0
crossref_primary_10_1016_j_tafmec_2022_103728
crossref_primary_10_1016_j_advengsoft_2025_104013
crossref_primary_10_1007_s10409_020_01027_1
crossref_primary_10_1007_s10338_024_00577_2
crossref_primary_10_1016_j_engfracmech_2023_109779
crossref_primary_10_1016_j_mechrescom_2021_103698
crossref_primary_10_1016_j_cma_2020_113218
crossref_primary_10_1016_j_engfracmech_2023_109419
crossref_primary_10_1016_j_engfracmech_2022_108399
crossref_primary_10_1016_j_conbuildmat_2021_125199
crossref_primary_10_1016_j_engfracmech_2018_10_006
crossref_primary_10_1016_j_engfracmech_2019_01_021
crossref_primary_10_1016_j_finel_2025_104414
crossref_primary_10_1016_j_jobe_2025_111838
crossref_primary_10_1007_s10999_023_09665_6
crossref_primary_10_1016_j_engfracmech_2019_106532
crossref_primary_10_1177_10812865211071088
crossref_primary_10_1016_j_ijmecsci_2024_109608
crossref_primary_10_1016_j_commatsci_2024_112929
crossref_primary_10_1177_10567895241245859
crossref_primary_10_1016_j_commatsci_2020_109694
crossref_primary_10_1016_j_commatsci_2023_112509
crossref_primary_10_1016_j_engfracmech_2022_108390
crossref_primary_10_1016_j_finel_2024_104279
crossref_primary_10_1016_j_compstruc_2024_107616
crossref_primary_10_1016_j_ijsolstr_2023_112385
crossref_primary_10_1080_15376494_2021_2000081
crossref_primary_10_1016_j_tafmec_2020_102622
crossref_primary_10_1016_j_mechmat_2021_103797
crossref_primary_10_1016_j_ijmecsci_2023_108102
crossref_primary_10_1557_s43577_024_00831_5
crossref_primary_10_1016_j_ijplas_2020_102786
crossref_primary_10_1016_j_compgeo_2025_107106
crossref_primary_10_1016_j_engfracmech_2025_111518
crossref_primary_10_1016_j_advengsoft_2025_103863
crossref_primary_10_1016_j_tafmec_2025_104916
crossref_primary_10_1016_j_cscm_2024_e03883
crossref_primary_10_1016_j_engfracmech_2020_107133
crossref_primary_10_1002_nme_6767
crossref_primary_10_1016_j_cma_2021_114134
crossref_primary_10_1016_j_engfracmech_2024_110025
crossref_primary_10_1007_s11709_018_0471_9
crossref_primary_10_1080_15376494_2023_2193184
crossref_primary_10_1038_s41598_019_41304_z
crossref_primary_10_1016_j_compstruct_2020_112534
crossref_primary_10_1007_s00170_020_05488_3
crossref_primary_10_3390_ma13163548
crossref_primary_10_1007_s10704_024_00773_8
crossref_primary_10_1007_s00466_019_01733_z
crossref_primary_10_1007_s10704_024_00806_2
crossref_primary_10_1016_j_compositesb_2022_110055
crossref_primary_10_1177_10567895211001410
crossref_primary_10_1016_j_cma_2019_112808
crossref_primary_10_1016_j_microrel_2021_114244
crossref_primary_10_1016_j_tafmec_2020_102736
crossref_primary_10_3390_app12020849
crossref_primary_10_1016_j_engfracmech_2018_10_026
crossref_primary_10_1016_j_cma_2023_116123
crossref_primary_10_1016_j_ijmecsci_2023_108372
crossref_primary_10_1016_j_cma_2022_115096
crossref_primary_10_1016_j_cma_2023_116122
crossref_primary_10_1108_EC_12_2022_0735
crossref_primary_10_1016_j_cma_2021_114266
crossref_primary_10_1016_j_engfracmech_2019_106752
crossref_primary_10_1016_j_engfracmech_2024_110496
crossref_primary_10_1016_j_jmbbm_2024_106577
crossref_primary_10_1002_nme_7609
crossref_primary_10_1007_s00466_023_02426_4
crossref_primary_10_1007_s11661_022_06677_3
crossref_primary_10_1016_j_jmbbm_2021_105029
crossref_primary_10_1016_j_cma_2019_02_017
crossref_primary_10_1016_j_cma_2021_113729
crossref_primary_10_1016_j_ijplas_2024_104106
crossref_primary_10_1016_j_jbiomech_2021_110600
Cites_doi 10.1016/S0022-5096(98)00034-9
10.1016/S0966-9795(01)00008-5
10.1007/s002050100187
10.1016/j.jallcom.2006.08.336
10.1007/BF00020156
10.1038/nmat3115
10.1016/j.actamat.2014.12.016
10.1023/A:1007545213010
10.1016/j.finel.2015.12.005
10.1002/nme.429
10.1016/j.cma.2005.10.005
10.1016/j.actamat.2016.03.053
10.1098/rsta.1921.0006
10.1016/j.actamat.2016.05.027
10.1016/S0167-6636(97)00048-3
10.1016/j.cma.2010.04.011
10.1002/nme.4886
10.1016/j.commatsci.2014.05.071
10.1016/S0045-7949(97)00073-4
10.4028/www.scientific.net/AMM.182-183.1524
10.1002/nme.857
10.1016/j.jmps.2013.06.007
10.1002/nme.2861
10.1016/j.ijplas.2016.04.011
10.1007/978-3-662-43081-1_5
10.1016/j.cma.2014.11.017
10.1016/j.jnoncrysol.2016.02.024
10.1002/nme.3069
10.1002/nme.4387
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1002/cpa.3160420503
10.1016/j.cma.2014.11.016
10.1016/0013-7944(95)00247-2
10.1016/j.cma.2008.12.028
10.1016/S0022-5096(99)00028-9
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Aug 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.finel.2017.03.002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
EndPage 38
ExternalDocumentID oai:HAL:hal-02132509v1
10_1016_j_finel_2017_03_002
S0168874X16304954
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c410t-8acc627e705dbda51681604902b19e497f19c20e4892bc85d5ef0eb7135a574d3
ISICitedReferencesCount 376
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401217300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Tue Oct 14 20:55:25 EDT 2025
Sun Nov 30 03:53:51 EST 2025
Tue Nov 18 22:18:20 EST 2025
Sat Nov 29 04:56:31 EST 2025
Fri Feb 23 02:34:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Phase-field
Staggered solution
Brittle fracture
Abaqus UEL
Crack propagation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-8acc627e705dbda51681604902b19e497f19c20e4892bc85d5ef0eb7135a574d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7274-5373
0000-0002-5967-8452
OpenAccessLink https://hal.science/hal-02132509
PQID 1931694941
PQPubID 2045476
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_02132509v1
proquest_journals_1931694941
crossref_citationtrail_10_1016_j_finel_2017_03_002
crossref_primary_10_1016_j_finel_2017_03_002
elsevier_sciencedirect_doi_10_1016_j_finel_2017_03_002
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
20170801
2017-08
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Finite elements in analysis and design
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Francfort, Marigo (bib14) 1998; 46
Miehe, Schänzel (bib22) 2014; 65
Bourdin, Francfort, Marigo (bib11) 2008
Miehe, Welschinger, Hofacker (bib12) 2010; 83
Buliga (bib15) 1998; 52
Choe, Chen, Schneibel, Ritchie (bib30) 2001; 9
Bourdin, Francfort, Marigo (bib16) 2000; 48
Kermouche, Guillonneau, Michler, Teisseire, Barthel (bib4) 2016; 114
Ritchie (bib28) 2011; 10
Moës, Gravouil, Belytschko (bib9) 2002; 53
Gürses, Miehe (bib10) 2009; 198
ABAQUS, ABAQUS Documentation, Dassault Systemes, Providence, RI, USA, 2011.
Molnár, Ferentzi, Weltsch, Szebényi, Borbás, Bojtár (bib38) 2016; 59
Miehe, Aldakheel, Raina (bib37) 2016; 84
Mumford, Shah (bib13) 1989; 42
Miehe, Hofacker, Schänzel, Aldakheel (bib25) 2015; 294
Msekh, Sargado, Jamshidian, Areias, Rabczuk (bib18) 2015; 96
Peng, Wang (bib5) 2012; 182–183
Singh, Verhoosel, de Borst, van Brummelen (bib23) 2016; 113
G.R. Irwin, Fracture, Springer Berlin Heidelberg, Berlin, Heidelberg, 1958, pp. 551–590.
Zienkiewicz, Taylor, Fox (bib39) 2014
Cazes, Moës (bib34) 2015; 103
Miehe, Hofacker, Welschinger (bib20) 2010; 199
Moës, Stolz, Bernard, Chevaugeon (bib27) 2011; 86
Griffith (bib1) 1921; 221
Molnár, Ganster, Török, Tanguy (bib35) 2016; 440
Zhou, Molinari (bib6) 2004; 59
Moës, Dolbow, Belytschko (bib8) 1999; 46
Bittencourt, Wawrzynek, Ingraffea, Sousa (bib33) 1996; 55
Azevedo, Lemos (bib7) 2006; 195
Mueller, Pejchal, Žagar, Singh, Cantoni, Mortensen (bib36) 2015; 86
Melin (bib31) 1983; 23
Miehe (bib26) 1998; 66
Rountree, Prades, Bonamy, Bouchaud, Kalia, Guillot (bib29) 2007; 434–435
Miehe, Schänzel, Ulmer (bib24) 2015; 294
Dal Maso, Toader (bib17) 2002; 162
Molnár, Ganster, Tanguy, Barthel, Kermouche (bib3) 2016; 111
Hofacker, Miehe (bib21) 2013; 93
Sumi, Wang (bib32) 1998; 28
Bourdin (10.1016/j.finel.2017.03.002_bib16) 2000; 48
Peng (10.1016/j.finel.2017.03.002_bib5) 2012; 182–183
Choe (10.1016/j.finel.2017.03.002_bib30) 2001; 9
Singh (10.1016/j.finel.2017.03.002_bib23) 2016; 113
Ritchie (10.1016/j.finel.2017.03.002_bib28) 2011; 10
Miehe (10.1016/j.finel.2017.03.002_bib20) 2010; 199
Bittencourt (10.1016/j.finel.2017.03.002_bib33) 1996; 55
Miehe (10.1016/j.finel.2017.03.002_bib22) 2014; 65
Moës (10.1016/j.finel.2017.03.002_bib8) 1999; 46
Mueller (10.1016/j.finel.2017.03.002_bib36) 2015; 86
Msekh (10.1016/j.finel.2017.03.002_bib18) 2015; 96
Mumford (10.1016/j.finel.2017.03.002_bib13) 1989; 42
Miehe (10.1016/j.finel.2017.03.002_bib12) 2010; 83
Molnár (10.1016/j.finel.2017.03.002_bib38) 2016; 59
Francfort (10.1016/j.finel.2017.03.002_bib14) 1998; 46
Buliga (10.1016/j.finel.2017.03.002_bib15) 1998; 52
Miehe (10.1016/j.finel.2017.03.002_bib25) 2015; 294
Miehe (10.1016/j.finel.2017.03.002_bib37) 2016; 84
10.1016/j.finel.2017.03.002_bib19
Moës (10.1016/j.finel.2017.03.002_bib27) 2011; 86
Sumi (10.1016/j.finel.2017.03.002_bib32) 1998; 28
Hofacker (10.1016/j.finel.2017.03.002_bib21) 2013; 93
Griffith (10.1016/j.finel.2017.03.002_bib1) 1921; 221
Melin (10.1016/j.finel.2017.03.002_bib31) 1983; 23
Cazes (10.1016/j.finel.2017.03.002_bib34) 2015; 103
Dal Maso (10.1016/j.finel.2017.03.002_bib17) 2002; 162
Molnár (10.1016/j.finel.2017.03.002_bib35) 2016; 440
Rountree (10.1016/j.finel.2017.03.002_bib29) 2007; 434–435
Zienkiewicz (10.1016/j.finel.2017.03.002_bib39) 2014
Molnár (10.1016/j.finel.2017.03.002_bib3) 2016; 111
Azevedo (10.1016/j.finel.2017.03.002_bib7) 2006; 195
Gürses (10.1016/j.finel.2017.03.002_bib10) 2009; 198
Kermouche (10.1016/j.finel.2017.03.002_bib4) 2016; 114
Bourdin (10.1016/j.finel.2017.03.002_bib11) 2008
Miehe (10.1016/j.finel.2017.03.002_bib24) 2015; 294
Moës (10.1016/j.finel.2017.03.002_bib9) 2002; 53
Miehe (10.1016/j.finel.2017.03.002_bib26) 1998; 66
10.1016/j.finel.2017.03.002_bib2
Zhou (10.1016/j.finel.2017.03.002_bib6) 2004; 59
References_xml – volume: 199
  start-page: 2765
  year: 2010
  end-page: 2778
  ident: bib20
  article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 93
  start-page: 276
  year: 2013
  end-page: 301
  ident: bib21
  article-title: A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns
  publication-title: Int. J. Numer. Methods Eng.
– volume: 53
  start-page: 2549
  year: 2002
  end-page: 2568
  ident: bib9
  article-title: Non-planar 3D crack growth by the extended finite element and level sets – Part I: mechanical model
  publication-title: Int. J. Numer. Methods Eng.
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  ident: bib14
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
– volume: 23
  start-page: 37
  year: 1983
  end-page: 45
  ident: bib31
  article-title: Why do cracks avoid each other?
  publication-title: Int. J. Fract.
– volume: 84
  start-page: 1
  year: 2016
  end-page: 32
  ident: bib37
  article-title: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory
  publication-title: Int. J. Plast.
– volume: 86
  start-page: 358
  year: 2011
  end-page: 380
  ident: bib27
  article-title: A level set based model for damage growth: the thick level set approach
  publication-title: Int. J. Numer. Methods Eng.
– volume: 195
  start-page: 4579
  year: 2006
  end-page: 4593
  ident: bib7
  article-title: Hybrid discrete element/finite element method for fracture analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 65
  start-page: 93
  year: 2014
  end-page: 113
  ident: bib22
  article-title: Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure
  publication-title: J. Mech. Phys. Solids
– volume: 66
  start-page: 37
  year: 1998
  end-page: 43
  ident: bib26
  article-title: Comparison of two algorithms for the computation of fourth-order isotropic tensor functions
  publication-title: Comput. Struct.
– volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  ident: bib8
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int. J. Numer. Methods Eng.
– volume: 103
  start-page: 114
  year: 2015
  end-page: 143
  ident: bib34
  article-title: Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture
  publication-title: Int. J. Numer. Methods Eng.
– volume: 111
  start-page: 129
  year: 2016
  end-page: 137
  ident: bib3
  article-title: Densification dependent yield criteria for sodium silicate glasses – an atomistic simulation approach
  publication-title: Acta Mater.
– volume: 42
  start-page: 577
  year: 1989
  end-page: 685
  ident: bib13
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
– volume: 294
  start-page: 486
  year: 2015
  end-page: 522
  ident: bib25
  article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 86
  start-page: 385
  year: 2015
  end-page: 395
  ident: bib36
  article-title: Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams
  publication-title: Acta Mater.
– volume: 294
  start-page: 449
  year: 2015
  end-page: 485
  ident: bib24
  article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 113
  start-page: 14
  year: 2016
  end-page: 29
  ident: bib23
  article-title: A fracture-controlled path-following technique for phase-field modeling of brittle fracture
  publication-title: Finite Elem. Anal. Des.
– volume: 9
  start-page: 319
  year: 2001
  end-page: 329
  ident: bib30
  article-title: Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at%) intermetallic
  publication-title: Intermetallics
– volume: 440
  start-page: 12
  year: 2016
  end-page: 25
  ident: bib35
  article-title: Sodium effect on static mechanical behavior of md-modeled sodium silicate glasses
  publication-title: J. Non-Cryst. Solids
– volume: 10
  start-page: 817
  year: 2011
  end-page: 822
  ident: bib28
  article-title: The conflicts between strength and toughness
  publication-title: Nat. Mater.
– year: 2014
  ident: bib39
  article-title: The Finite Element Method for Solid and Structural Mechanics
– volume: 59
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib38
  article-title: Fragmentation of wedge loaded tempered structural glass
  publication-title: Glass Struct. Eng.
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  ident: bib12
  article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations
  publication-title: Int. J. Numer. Methods Eng.
– reference: ABAQUS, ABAQUS Documentation, Dassault Systemes, Providence, RI, USA, 2011.
– volume: 182–183
  start-page: 1524
  year: 2012
  end-page: 1528
  ident: bib5
  article-title: A node split method for crack growth problem
  publication-title: Appl. Mech. Mater.
– volume: 114
  start-page: 146
  year: 2016
  end-page: 153
  ident: bib4
  article-title: Perfectly plastic flow in silica glass
  publication-title: Acta Mater.
– volume: 52
  start-page: 201
  year: 1998
  ident: bib15
  article-title: Energy minimizing brittle crack propagation
  publication-title: J. Elast.
– volume: 28
  start-page: 197
  year: 1998
  end-page: 206
  ident: bib32
  article-title: A finite-element simulation method for a system of growing cracks in a heterogeneous material
  publication-title: Mech. Mater.
– volume: 198
  start-page: 1413
  year: 2009
  end-page: 1428
  ident: bib10
  article-title: A computational framework of three-dimensional configurational-force-driven brittle crack propagation
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 55
  start-page: 321
  year: 1996
  end-page: 334
  ident: bib33
  article-title: Quasi-automatic simulation of crack propagation for 2D LEFM problems
  publication-title: Eng. Fract. Mech.
– year: 2008
  ident: bib11
  article-title: The Variational Approach to Fracture
– volume: 221
  start-page: 163
  year: 1921
  end-page: 198
  ident: bib1
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
– volume: 162
  start-page: 101
  year: 2002
  end-page: 135
  ident: bib17
  article-title: A model for the quasi-static growth of brittle fractures: existence and approximation results
  publication-title: Arch. Ration. Mech. Anal.
– volume: 59
  start-page: 1
  year: 2004
  end-page: 24
  ident: bib6
  article-title: Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency
  publication-title: Int. J. Numer. Methods Eng.
– volume: 48
  start-page: 797
  year: 2000
  end-page: 826
  ident: bib16
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solids
– volume: 96
  start-page: 472
  year: 2015
  end-page: 484
  ident: bib18
  article-title: Abaqus implementation of phase-field model for brittle fracture
  publication-title: Comput. Mater. Sci.
– volume: 434–435
  start-page: 60
  year: 2007
  end-page: 63
  ident: bib29
  article-title: A unified study of crack propagation in amorphous silica: using experiments and simulations
  publication-title: J. Alloy. Compd.
– reference: G.R. Irwin, Fracture, Springer Berlin Heidelberg, Berlin, Heidelberg, 1958, pp. 551–590.
– volume: 46
  start-page: 1319
  issue: 8
  year: 1998
  ident: 10.1016/j.finel.2017.03.002_bib14
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00034-9
– volume: 9
  start-page: 319
  issue: 4
  year: 2001
  ident: 10.1016/j.finel.2017.03.002_bib30
  article-title: Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at%) intermetallic
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(01)00008-5
– volume: 162
  start-page: 101
  issue: 2
  year: 2002
  ident: 10.1016/j.finel.2017.03.002_bib17
  article-title: A model for the quasi-static growth of brittle fractures: existence and approximation results
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050100187
– volume: 434–435
  start-page: 60
  year: 2007
  ident: 10.1016/j.finel.2017.03.002_bib29
  article-title: A unified study of crack propagation in amorphous silica: using experiments and simulations
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2006.08.336
– volume: 23
  start-page: 37
  issue: 1
  year: 1983
  ident: 10.1016/j.finel.2017.03.002_bib31
  article-title: Why do cracks avoid each other?
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00020156
– volume: 59
  start-page: 1
  year: 2016
  ident: 10.1016/j.finel.2017.03.002_bib38
  article-title: Fragmentation of wedge loaded tempered structural glass
  publication-title: Glass Struct. Eng.
– volume: 10
  start-page: 817
  issue: 11
  year: 2011
  ident: 10.1016/j.finel.2017.03.002_bib28
  article-title: The conflicts between strength and toughness
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3115
– volume: 86
  start-page: 385
  year: 2015
  ident: 10.1016/j.finel.2017.03.002_bib36
  article-title: Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.12.016
– volume: 52
  start-page: 201
  issue: 3
  year: 1998
  ident: 10.1016/j.finel.2017.03.002_bib15
  article-title: Energy minimizing brittle crack propagation
  publication-title: J. Elast.
  doi: 10.1023/A:1007545213010
– volume: 113
  start-page: 14
  year: 2016
  ident: 10.1016/j.finel.2017.03.002_bib23
  article-title: A fracture-controlled path-following technique for phase-field modeling of brittle fracture
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2015.12.005
– volume: 53
  start-page: 2549
  issue: 11
  year: 2002
  ident: 10.1016/j.finel.2017.03.002_bib9
  article-title: Non-planar 3D crack growth by the extended finite element and level sets – Part I: mechanical model
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.429
– volume: 195
  start-page: 4579
  issue: 33–36
  year: 2006
  ident: 10.1016/j.finel.2017.03.002_bib7
  article-title: Hybrid discrete element/finite element method for fracture analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.10.005
– volume: 111
  start-page: 129
  year: 2016
  ident: 10.1016/j.finel.2017.03.002_bib3
  article-title: Densification dependent yield criteria for sodium silicate glasses – an atomistic simulation approach
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.053
– year: 2008
  ident: 10.1016/j.finel.2017.03.002_bib11
– ident: 10.1016/j.finel.2017.03.002_bib19
– volume: 221
  start-page: 163
  issue: 582–593
  year: 1921
  ident: 10.1016/j.finel.2017.03.002_bib1
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1921.0006
– volume: 114
  start-page: 146
  year: 2016
  ident: 10.1016/j.finel.2017.03.002_bib4
  article-title: Perfectly plastic flow in silica glass
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.027
– volume: 28
  start-page: 197
  issue: 1–4
  year: 1998
  ident: 10.1016/j.finel.2017.03.002_bib32
  article-title: A finite-element simulation method for a system of growing cracks in a heterogeneous material
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(97)00048-3
– volume: 199
  start-page: 2765
  issue: 45–48
  year: 2010
  ident: 10.1016/j.finel.2017.03.002_bib20
  article-title: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.04.011
– year: 2014
  ident: 10.1016/j.finel.2017.03.002_bib39
– volume: 103
  start-page: 114
  issue: 2
  year: 2015
  ident: 10.1016/j.finel.2017.03.002_bib34
  article-title: Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4886
– volume: 96
  start-page: 472
  issue: Part B
  year: 2015
  ident: 10.1016/j.finel.2017.03.002_bib18
  article-title: Abaqus implementation of phase-field model for brittle fracture
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2014.05.071
– volume: 66
  start-page: 37
  issue: 1
  year: 1998
  ident: 10.1016/j.finel.2017.03.002_bib26
  article-title: Comparison of two algorithms for the computation of fourth-order isotropic tensor functions
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(97)00073-4
– volume: 182–183
  start-page: 1524
  year: 2012
  ident: 10.1016/j.finel.2017.03.002_bib5
  article-title: A node split method for crack growth problem
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.182-183.1524
– volume: 59
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.finel.2017.03.002_bib6
  article-title: Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.857
– volume: 65
  start-page: 93
  year: 2014
  ident: 10.1016/j.finel.2017.03.002_bib22
  article-title: Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2013.06.007
– volume: 83
  start-page: 1273
  issue: 10
  year: 2010
  ident: 10.1016/j.finel.2017.03.002_bib12
  article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2861
– volume: 84
  start-page: 1
  year: 2016
  ident: 10.1016/j.finel.2017.03.002_bib37
  article-title: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.04.011
– ident: 10.1016/j.finel.2017.03.002_bib2
  doi: 10.1007/978-3-662-43081-1_5
– volume: 294
  start-page: 486
  year: 2015
  ident: 10.1016/j.finel.2017.03.002_bib25
  article-title: Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.11.017
– volume: 440
  start-page: 12
  year: 2016
  ident: 10.1016/j.finel.2017.03.002_bib35
  article-title: Sodium effect on static mechanical behavior of md-modeled sodium silicate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2016.02.024
– volume: 86
  start-page: 358
  issue: 3
  year: 2011
  ident: 10.1016/j.finel.2017.03.002_bib27
  article-title: A level set based model for damage growth: the thick level set approach
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3069
– volume: 93
  start-page: 276
  issue: 3
  year: 2013
  ident: 10.1016/j.finel.2017.03.002_bib21
  article-title: A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4387
– volume: 46
  start-page: 131
  issue: 1
  year: 1999
  ident: 10.1016/j.finel.2017.03.002_bib8
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– volume: 42
  start-page: 577
  issue: 5
  year: 1989
  ident: 10.1016/j.finel.2017.03.002_bib13
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160420503
– volume: 294
  start-page: 449
  year: 2015
  ident: 10.1016/j.finel.2017.03.002_bib24
  article-title: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.11.016
– volume: 55
  start-page: 321
  issue: 2
  year: 1996
  ident: 10.1016/j.finel.2017.03.002_bib33
  article-title: Quasi-automatic simulation of crack propagation for 2D LEFM problems
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(95)00247-2
– volume: 198
  start-page: 1413
  issue: 15–16
  year: 2009
  ident: 10.1016/j.finel.2017.03.002_bib10
  article-title: A computational framework of three-dimensional configurational-force-driven brittle crack propagation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.12.028
– volume: 48
  start-page: 797
  issue: 4
  year: 2000
  ident: 10.1016/j.finel.2017.03.002_bib16
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00028-9
SSID ssj0005264
Score 2.6202877
Snippet In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the commercial finite element code Abaqus/Standard....
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms Abaqus UEL
Brittle fracture
Coalescing
Computer simulation
Crack propagation
Cracks
Engineering Sciences
Finite element analysis
Finite element method
Fracture mechanics
Mathematical models
Mechanics
Phase-field
Robustness (mathematics)
Solid mechanics
Staggered solution
Stiffness
Three dimensional models
Title 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture
URI https://dx.doi.org/10.1016/j.finel.2017.03.002
https://www.proquest.com/docview/1931694941
https://hal.science/hal-02132509
Volume 130
WOSCitedRecordID wos000401217300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOfAwQg4EsxC0Exc6Xfazo0EAwcRhSb5adOG2nKi3phyb-ep5jO8s2UbEDl7SymsTJ-9Xv-fnn30PoPUk11ZWuQs1SFiayYKGKuAqjIs7KXDJT1botNpGfnbHJhP8YDH77vTC7RV7X7PKSr_6rqaENjG22zt7B3N1FoQG-g9HhCGaH4z8Zno7bBYF4HIyU_LVdm42QjiPuo0MZNEu1XW9MImE6NdU6g9UM3FnY8tkC37-WgtiWyjH5BNXMjd5xUJl9VU6HpCvwOTeha6DtfVqKrfRqJ6Yz5TWeyPflom4X6Elj0_LNVPdYpY3cLbc2Ne2kDfqpCXB3nhjXZSszBsOtpWB2w61bh3EDZt5zvVbn5dagbvMLFx8riLvNahHJrS4tvfJhft3-hmvrCIeey3Yh2osIcxERxaLVIT2gecrZEB2MvpxMvvYIQplThrcP4TWrWnbgrb78La65NzME2xt-vg1ezp-gR27WgUcWLU_RQNeH6LGbgWA3vq8P0cOePOUzNKNjDNbD8RhbKOHrUMLLCktsoYQ7KOEelLCHEgYoYQ8l7KCEPZSeo5-fT84_nYauMkdYJCTahEwWRUZznUdpqUqZwisimVlDpopwnfC8IrygkU4Yp6pgaZnqKtLKlIOUaZ6U8Qs0rJe1folwklSlLJWEMLJM4JObKlZERlVFo1hRcoSof6-icLL1pnrKQuyx6RH60J20sqot-3-eeYMJF3jagFIABPef-A7M293CSLWfjr4J0waxcwzTC76DJzj21hdunFgLmDeRjCc8Ia_u1tfX6MHVX-0YDTfNVr9B94vdZr5u3joM_wHiKbzc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+and+3D+Abaqus+implementation+of+a+robust+staggered+phase-field+solution+for+modeling+brittle+fracture&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Moln%C3%A1r%2C+Gergely&rft.au=Gravouil%2C+Anthony&rft.date=2017-08-01&rft.issn=0168-874X&rft.volume=130&rft.spage=27&rft.epage=38&rft_id=info:doi/10.1016%2Fj.finel.2017.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_finel_2017_03_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon