A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques

Determination of pore pressure (PP), a key reservoir parameter that is beneficial for evaluating geomechanical parameters of the reservoir, is so important in oil and gas fields development. Accurate estimation of PP is also essential for safe drilling of oil and gas wells since PP data are used as...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports Vol. 8; pp. 2233 - 2247
Main Authors: Zhang, Guodao, Davoodi, Shadfar, Band, Shahab S., Ghorbani, Hamzeh, Mosavi, Amir, Moslehpour, Massoud
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2022
Elsevier
Subjects:
ISSN:2352-4847, 2352-4847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Determination of pore pressure (PP), a key reservoir parameter that is beneficial for evaluating geomechanical parameters of the reservoir, is so important in oil and gas fields development. Accurate estimation of PP is also essential for safe drilling of oil and gas wells since PP data are used as the input for safe mud window determination. In the present study, empirical equations along with machine learning methods, namely random forest algorithm, support vector regression (SVR) algorithm, artificial neural network (ANN) algorithm, and decision tree (DT) algorithm, are employed for PP prediction applying well log data. To this end, 2827 data records collected from three wells (Well A, Well B, and Well C) drilled in one of the Middle East oil fields are used. The dataset of Wells A and B is used for models’ training, validating, and testing, while Well C dataset is applied for evaluating the models’ generalizability in PP prediction in the field under study. To construct the predictive algorithms, 12 input variables are initially considered in the study. A feature selection analysis is conducted to find the most influential input variables set for developing PP predictive models. The results obtained suggest that the 9-input-variable set is the most efficient combination of inputs used in the ML models construction. Among all the four ML algorithms proposed, the DT algorithm presents the most accurate predictions for PP, delivering R2 and RMSE values of 0.9985 and 14.460 psi, respectively. Furthermore, the model generalization analysis results reveal that the 9-input-variable DT model developed can be used for PP prediction throughout the field of study since it presented an excellent accuracy performance in predicting PP when applied to Well C dataset.
AbstractList Determination of pore pressure (PP), a key reservoir parameter that is beneficial for evaluating geomechanical parameters of the reservoir, is so important in oil and gas fields development. Accurate estimation of PP is also essential for safe drilling of oil and gas wells since PP data are used as the input for safe mud window determination. In the present study, empirical equations along with machine learning methods, namely random forest algorithm, support vector regression (SVR) algorithm, artificial neural network (ANN) algorithm, and decision tree (DT) algorithm, are employed for PP prediction applying well log data. To this end, 2827 data records collected from three wells (Well A, Well B, and Well C) drilled in one of the Middle East oil fields are used. The dataset of Wells A and B is used for models’ training, validating, and testing, while Well C dataset is applied for evaluating the models’ generalizability in PP prediction in the field under study. To construct the predictive algorithms, 12 input variables are initially considered in the study. A feature selection analysis is conducted to find the most influential input variables set for developing PP predictive models. The results obtained suggest that the 9-input-variable set is the most efficient combination of inputs used in the ML models construction. Among all the four ML algorithms proposed, the DT algorithm presents the most accurate predictions for PP, delivering R2 and RMSE values of 0.9985 and 14.460 psi, respectively. Furthermore, the model generalization analysis results reveal that the 9-input-variable DT model developed can be used for PP prediction throughout the field of study since it presented an excellent accuracy performance in predicting PP when applied to Well C dataset.
Author Mosavi, Amir
Davoodi, Shadfar
Zhang, Guodao
Moslehpour, Massoud
Ghorbani, Hamzeh
Band, Shahab S.
Author_xml – sequence: 1
  givenname: Guodao
  orcidid: 0000-0002-6264-5854
  surname: Zhang
  fullname: Zhang, Guodao
  email: guodaozhang@zjut.edu.cn
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
– sequence: 2
  givenname: Shadfar
  orcidid: 0000-0003-1733-1677
  surname: Davoodi
  fullname: Davoodi, Shadfar
  email: davoodis@hw.tpu.ru
  organization: School of Earth Sciences & Engineering, Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russia
– sequence: 3
  givenname: Shahab S.
  surname: Band
  fullname: Band, Shahab S.
  email: shamshirbands@yuntech.edu.tw
  organization: Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
– sequence: 4
  givenname: Hamzeh
  orcidid: 0000-0003-4657-8249
  surname: Ghorbani
  fullname: Ghorbani, Hamzeh
  email: hamzehghorbani68@yahoo.com
  organization: Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
– sequence: 5
  givenname: Amir
  surname: Mosavi
  fullname: Mosavi, Amir
  email: amir.mosavi@kvk.uni-obuda.hu
  organization: Institute of Information Society, University of Public Service, 1083 Budapest, Hungary
– sequence: 6
  givenname: Massoud
  orcidid: 0000-0001-8808-2407
  surname: Moslehpour
  fullname: Moslehpour, Massoud
  email: writetodrm@gmail.com
  organization: Department of Business Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
BookMark eNp9kc9q3DAQxkVJIWmaF8hJL7Bb_bNsQS8htE0g0Et7FiN5vKvFsRxJG_DbV-62EHJYGKQZod_HzHyfyMUUJyTklrMtZ1x_OWxxt6StYEJsGa8hPpArIRuxUZ1qL97kl-Qm5wNjjBvBlJZXJN3RFN0xFwrznCL4PS2RzjEhnRPmfDwlffAlxGn9NC5h2tEZS4rzfsnBw0jHuKM9FKAQeuypW-hzVQoT0hEhTStQ0O-n8HLE_Jl8HGDMePPvvia_v3_7df-wefr54_H-7mnjFWdl00mnh56DhoZLUQthTCOYH3qFAzi3nkK3LUrllNHOd4YD92Zg2IsWnLwmjyfdPsLBzik8Q1pshGD_PsS0s5BK8CNa2XAUQ-uUd145rk3V1cbIRnceJW-rVnfS8inmnHCwPhRYV1IShNFyZlcr7MGuVtjVCst4DVFR8Q7938pZ6OsJwrqg14DJZh9w8tWIhL7UCcI5_A_Ntaci
CitedBy_id crossref_primary_10_1063_5_0222796
crossref_primary_10_3389_feart_2025_1530557
crossref_primary_10_1007_s11053_023_10262_9
crossref_primary_10_1007_s11053_023_10207_2
crossref_primary_10_1088_1742_6596_2834_1_012083
crossref_primary_10_1016_j_energy_2023_127860
crossref_primary_10_2118_215830_PA
crossref_primary_10_1016_j_petsci_2023_09_001
crossref_primary_10_1016_j_petsci_2025_09_020
crossref_primary_10_1007_s13202_022_01531_z
crossref_primary_10_1016_j_geoen_2023_211515
crossref_primary_10_1016_j_geoen_2025_213835
crossref_primary_10_1155_2023_4916267
crossref_primary_10_1016_j_marpetgeo_2022_105772
crossref_primary_10_1016_j_jseaes_2023_105560
crossref_primary_10_1007_s11600_025_01530_8
crossref_primary_10_3390_jmse12050703
crossref_primary_10_1080_10916466_2023_2299711
crossref_primary_10_1007_s13369_024_09052_z
crossref_primary_10_1016_j_egyr_2022_04_073
crossref_primary_10_1016_j_rineng_2025_104799
crossref_primary_10_1109_ACCESS_2023_3336623
crossref_primary_10_1007_s44288_024_00061_x
crossref_primary_10_1038_s41598_025_07048_9
crossref_primary_10_3389_feart_2022_1023578
crossref_primary_10_3389_fevo_2022_1066800
crossref_primary_10_1007_s42452_025_07327_0
crossref_primary_10_3233_IDT_240982
crossref_primary_10_2118_223962_PA
crossref_primary_10_1016_j_engeos_2023_100227
crossref_primary_10_1016_j_geoen_2023_212114
crossref_primary_10_1038_s41598_025_89199_3
crossref_primary_10_1007_s11004_023_10102_9
crossref_primary_10_1016_j_geoen_2024_213322
Cites_doi 10.1016/j.ress.2020.106931
10.1088/1755-1315/62/1/012021
10.1371/journal.pone.0122827
10.1016/S1876-3804(19)60260-0
10.1016/j.cej.2020.127081
10.1016/j.petrol.2019.06.014
10.1002/ese3.641
10.1007/s13202-020-00890-9
10.1007/s13202-019-00818-y
10.1021/acsenergylett.1c00845
10.1016/j.fuel.2020.120046
10.1016/j.conbuildmat.2020.118475
10.1007/s42757-019-0047-5
10.1016/j.renene.2018.07.142
10.1016/S0305-0548(03)00156-4
10.1186/s12859-020-3411-3
10.1023/B:STCO.0000035301.49549.88
10.1007/s13202-021-01087-4
10.1016/j.petrol.2021.109315
10.1016/j.measurement.2018.12.034
10.1016/j.compeleceng.2020.106628
10.2118/27488-PA
10.1016/j.cageo.2020.104548
10.1007/s13202-018-0532-6
10.1016/j.jclepro.2018.08.207
10.2118/144717-JPT
10.1007/s12665-020-09081-5
10.1016/j.scs.2020.102128
10.1016/j.fuel.2021.121872
10.1007/s13202-019-00816-0
10.1016/j.nima.2020.163979
10.1016/j.fuel.2017.06.131
10.1016/j.jngse.2017.04.034
10.1016/j.energy.2020.118457
10.1016/j.compbiomed.2006.01.003
10.2174/2213275911666180904110105
10.1109/34.574797
10.1007/s12517-021-06559-9
10.1016/j.measurement.2020.108943
10.1021/acsomega.1c01340
10.2118/1110-PA
10.1016/j.promfg.2020.05.139
10.1007/s12205-016-0514-5
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2022.01.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 2247
ExternalDocumentID oai_doaj_org_article_351e2f7b4cbc4b1696776993568ce317
10_1016_j_egyr_2022_01_012
S2352484722000129
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c410t-83b6fd1a6a51323b6299520cfd4efabb4efa2677e34b496bc891a1c9f0ed27ab3
IEDL.DBID DOA
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788090400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Fri Oct 03 12:41:57 EDT 2025
Sat Nov 29 06:47:38 EST 2025
Tue Nov 18 21:52:59 EST 2025
Sat Sep 06 17:18:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Petrophysical data
Decision tree algorithm
Machine learning algorithms
Pore pressure
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-83b6fd1a6a51323b6299520cfd4efabb4efa2677e34b496bc891a1c9f0ed27ab3
ORCID 0000-0001-8808-2407
0000-0002-6264-5854
0000-0003-1733-1677
0000-0003-4657-8249
OpenAccessLink https://doaj.org/article/351e2f7b4cbc4b1696776993568ce317
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_351e2f7b4cbc4b1696776993568ce317
crossref_citationtrail_10_1016_j_egyr_2022_01_012
crossref_primary_10_1016_j_egyr_2022_01_012
elsevier_sciencedirect_doi_10_1016_j_egyr_2022_01_012
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Barjouei, Ghorbani, Mohamadian, Wood, Davoodi, Moghadasi (b10) 2021; 11
Maddahi, Moradzadeh, Nejati Kalateh (b41) 2020; 29
Ghorbani, Moghadasi, Wood (b20) 2017; 45
Hidayat, Astsauri (b29) 2021
Hottmann, Johnson (b30) 1965; 17
Jotheeswaran, Koteeswaran (b33) 2020; 13
Osei-Bryson (b47) 2004; 31
Abidin (b5) 2014
Bahmaei, Hosseini (b9) 2020; 10
Farsi, Mohamadian, Ghorbani, Wood, Davoodi, Moghadasi (b18) 2021
Hu, Deng, Zhu, Lin, Chen, Deng (b31) 2013; 18
Shamshirb, Fathi, Dehzangi, Chronopoulos, Alinejad-Rokny (b59) 2021; 113
Rajabi, Beheshtian, Davoodi, Ghorbani, Mohamadian, Radwan (b49) 2021
Shahbaz, Taqvi, Loy, Inayat, Uddin, Bokhari (b57) 2019; 132
Choubineh, Ghorbani, Wood, Moosavi, Khalafi, Sadatshojaei (b14) 2017; 207
Oloruntobi, Falugba, Ekanem-Attah, Awa, Butt (b46) 2020; 79
Smola, Schölkopf (b63) 2004; 14
Belhaj, Elraies, Alnarabiji, Kareem, Shuhli, Mahmood (b11) 2021; 406
Ahmad, Reynolds, Rezgui (b8) 2018; 203
Grape, Branger, Elter, Balkeståhl (b23) 2020; 969
Hazbeh, Aghdam, Ghorbani, Mohamadian, Alvar, Moghadasi (b27) 2021
Naveshki, Naghiei, Soltani Tehrani, Ahmadi Alvar, Ghorbani, Mohamadian (b45) 2021
Richards, Roberts, Bere, Martinez, Tilita, Harrold (b52) 2020
Darvishpour, Seifabad, Wood, Ghorbani (b15) 2019; 46
Abad, Mousavi, Mohamadian, Wood, Ghorbani, Davoodi (b2) 2021; 95
Russell, Norvig (b54) 2002
Wahab, Nefti-Meziani, Atyabi (b66) 2015; 10
Fu, Wu, Zong, Pan (b19) 2020; 21
Lorena, de Carvalho (b40) 2007; 37
Shen, Luan, Zhang, Liu, Zhang, Ge (b62) 2017; 21
Biot, Willis (b12) 1957
Eaton (b16) 1975
Kartal, Özveren (b35) 2020; 209
Bowers (b13) 1995; 10
Haris, Sitorus, Riyanto (b24) 2017; 62
Yu, Chen, Gu (b69) 2020; 143
Shah, Shah, Hussain, Batool (b56) 2020; 84
Zhang, Lv, Wang, Liu, Song, Gao (b70) 2020; 8
Zhou, Lu, Zheng, Tolliver, Keramati (b71) 2020; 200
Yoshida, Ikeda, Eaton (b68) 1996
Hashemitaheri, Mekarthy, Cherukuri (b25) 2020; 48
Larestani, Mousavi, Hadavimoghaddam, Hemmati-Sarapardeh (b36) 2022; 208
Shamshirb, Fathi, Chronopoulos, Montieri, Palumbo, Pescapè (b58) 2020; 55
Legg, Hutter (b37) 2007; 157
Abad, Tehrani, Naveshki, Ghorbani, Mohamadian, Davoodi (b3) 2021
Rui, Zhang, Zhang, Han, Guo (b53) 2019; 180
Abad, Ghorbani, Mohamadian, Davoodi, Mehrad, Aghdam (b1) 2022; 308
Mahetaji, Brahma, Sircar (b42) 2020; 10
Wang, Ma, Fu (b67) 2010
Farsi, Barjouei, Wood, Ghorbani, Mohamadian, Davoodi (b17) 2021; 174
Poole, Mackworth, Goebel (b48) 1998
Ahedor, Anumah, Sarkodie-Kyeremeh (b6) 2020
Rashidi, Asadi (b51) 2018
Vapnik (b65) 2013
Ghorbani, Wood, Moghadasi, Choubineh, Abdizadeh, Mohamadian (b22) 2019; 9
Mousavipour, Riahi, Moghanloo (b44) 2020; 10
Salehi, Farhadi, Moieni, Safaie, Ahmadi (b55) 2020
Jain, Zongker (b32) 1997; 19
Lieder, Griffiths (b39) 2020
Hassanpouryouzb, Joonaki, Edlmann, Haszeldine (b26) 2021; 6
Moosavi, Vaferi, Wood (b43) 2021; 14
Shao, Wang, Bu, Chen, Wang (b61) 2020; 57
Shamshirb, Rabczuk, Chau (b60) 2019; 7
Ahmad, Adnan, Zaidi, Bhargava (b7) 2020; 248
Ranaee, Ghorbani, Keshavarzian, Abarghoei, Riva, Inzoli (b50) 2021; 291
Li, George, Purdy (b38) 2012; 64
Ghorbani, Wood, Choubineh, Mohamadian, Tatar, Farhangian (b21) 2020; 2
Terzaghi (b64) 1943
Hazbeh, Ahmadi Alvar, Aghdam, Ghorbani, Mohamadian, Moghadasi (b28) 2021
Abdelaal, Elkatatny, Abdulraheem (b4) 2021
Karmakar, Maiti (b34) 2019; 135
Hottmann (10.1016/j.egyr.2022.01.012_b30) 1965; 17
Kartal (10.1016/j.egyr.2022.01.012_b35) 2020; 209
Osei-Bryson (10.1016/j.egyr.2022.01.012_b47) 2004; 31
Shao (10.1016/j.egyr.2022.01.012_b61) 2020; 57
Bahmaei (10.1016/j.egyr.2022.01.012_b9) 2020; 10
Poole (10.1016/j.egyr.2022.01.012_b48) 1998
Farsi (10.1016/j.egyr.2022.01.012_b18) 2021
Vapnik (10.1016/j.egyr.2022.01.012_b65) 2013
Ghorbani (10.1016/j.egyr.2022.01.012_b20) 2017; 45
Hazbeh (10.1016/j.egyr.2022.01.012_b28) 2021
Lorena (10.1016/j.egyr.2022.01.012_b40) 2007; 37
Shen (10.1016/j.egyr.2022.01.012_b62) 2017; 21
Hassanpouryouzb (10.1016/j.egyr.2022.01.012_b26) 2021; 6
Shamshirb (10.1016/j.egyr.2022.01.012_b58) 2020; 55
Fu (10.1016/j.egyr.2022.01.012_b19) 2020; 21
Abad (10.1016/j.egyr.2022.01.012_b2) 2021; 95
Richards (10.1016/j.egyr.2022.01.012_b52) 2020
Biot (10.1016/j.egyr.2022.01.012_b12) 1957
Abdelaal (10.1016/j.egyr.2022.01.012_b4) 2021
Hashemitaheri (10.1016/j.egyr.2022.01.012_b25) 2020; 48
Rashidi (10.1016/j.egyr.2022.01.012_b51) 2018
Darvishpour (10.1016/j.egyr.2022.01.012_b15) 2019; 46
Jotheeswaran (10.1016/j.egyr.2022.01.012_b33) 2020; 13
Ahmad (10.1016/j.egyr.2022.01.012_b8) 2018; 203
Shahbaz (10.1016/j.egyr.2022.01.012_b57) 2019; 132
Barjouei (10.1016/j.egyr.2022.01.012_b10) 2021; 11
Ghorbani (10.1016/j.egyr.2022.01.012_b22) 2019; 9
Eaton (10.1016/j.egyr.2022.01.012_b16) 1975
Maddahi (10.1016/j.egyr.2022.01.012_b41) 2020; 29
Moosavi (10.1016/j.egyr.2022.01.012_b43) 2021; 14
Ahmad (10.1016/j.egyr.2022.01.012_b7) 2020; 248
Mousavipour (10.1016/j.egyr.2022.01.012_b44) 2020; 10
Russell (10.1016/j.egyr.2022.01.012_b54) 2002
Ahedor (10.1016/j.egyr.2022.01.012_b6) 2020
Mahetaji (10.1016/j.egyr.2022.01.012_b42) 2020; 10
Hazbeh (10.1016/j.egyr.2022.01.012_b27) 2021
Terzaghi (10.1016/j.egyr.2022.01.012_b64) 1943
Salehi (10.1016/j.egyr.2022.01.012_b55) 2020
Rajabi (10.1016/j.egyr.2022.01.012_b49) 2021
Li (10.1016/j.egyr.2022.01.012_b38) 2012; 64
Larestani (10.1016/j.egyr.2022.01.012_b36) 2022; 208
Smola (10.1016/j.egyr.2022.01.012_b63) 2004; 14
Karmakar (10.1016/j.egyr.2022.01.012_b34) 2019; 135
Yu (10.1016/j.egyr.2022.01.012_b69) 2020; 143
Choubineh (10.1016/j.egyr.2022.01.012_b14) 2017; 207
Hu (10.1016/j.egyr.2022.01.012_b31) 2013; 18
Abidin (10.1016/j.egyr.2022.01.012_b5) 2014
Yoshida (10.1016/j.egyr.2022.01.012_b68) 1996
Jain (10.1016/j.egyr.2022.01.012_b32) 1997; 19
Bowers (10.1016/j.egyr.2022.01.012_b13) 1995; 10
Wang (10.1016/j.egyr.2022.01.012_b67) 2010
Farsi (10.1016/j.egyr.2022.01.012_b17) 2021; 174
Legg (10.1016/j.egyr.2022.01.012_b37) 2007; 157
Abad (10.1016/j.egyr.2022.01.012_b1) 2022; 308
Naveshki (10.1016/j.egyr.2022.01.012_b45) 2021
Ranaee (10.1016/j.egyr.2022.01.012_b50) 2021; 291
Oloruntobi (10.1016/j.egyr.2022.01.012_b46) 2020; 79
Ghorbani (10.1016/j.egyr.2022.01.012_b21) 2020; 2
Grape (10.1016/j.egyr.2022.01.012_b23) 2020; 969
Shamshirb (10.1016/j.egyr.2022.01.012_b59) 2021; 113
Rui (10.1016/j.egyr.2022.01.012_b53) 2019; 180
Belhaj (10.1016/j.egyr.2022.01.012_b11) 2021; 406
Shamshirb (10.1016/j.egyr.2022.01.012_b60) 2019; 7
Zhou (10.1016/j.egyr.2022.01.012_b71) 2020; 200
Zhang (10.1016/j.egyr.2022.01.012_b70) 2020; 8
Lieder (10.1016/j.egyr.2022.01.012_b39) 2020
Shah (10.1016/j.egyr.2022.01.012_b56) 2020; 84
Wahab (10.1016/j.egyr.2022.01.012_b66) 2015; 10
Haris (10.1016/j.egyr.2022.01.012_b24) 2017; 62
Abad (10.1016/j.egyr.2022.01.012_b3) 2021
Hidayat (10.1016/j.egyr.2022.01.012_b29) 2021
References_xml – volume: 10
  start-page: 89
  year: 1995
  end-page: 95
  ident: b13
  article-title: Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction
  publication-title: SPE Drill. Complet.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 14
  ident: b19
  article-title: Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
  publication-title: BMC bioinformatics
– volume: 7
  year: 2019
  ident: b60
  article-title: A survey of deep learning techniques: Application in wind and solar energy resources
  publication-title: IEEE Access
– volume: 10
  start-page: 1
  year: 2015
  end-page: 36
  ident: b66
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– year: 1996
  ident: b68
  article-title: An investigative study of recent technologies used for prediction, detection, and evaluation of abnormal formation pressure and fracture pressure in North and South America
  publication-title: OnePetro
– volume: 9
  start-page: 1355
  year: 2019
  end-page: 1373
  ident: b22
  article-title: Predicting liquid flow-rate performance through wellhead chokes with genetic and solver optimizers: An oil field case study
  publication-title: J. Pet. Explor. Prod. Technol.
– start-page: 2535
  year: 2010
  end-page: 2538
  ident: b67
  article-title: Formation pressure prediction based on hybrid genetic algorithm
  publication-title: IEEE
– volume: 84
  year: 2020
  ident: b56
  article-title: Support vector machines-based heart disease diagnosis using feature subset wrapping selection and extraction methods
  publication-title: Comput. Electr. Eng.
– volume: 248
  year: 2020
  ident: b7
  article-title: A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens
  publication-title: Constr. Build. Mater.
– volume: 37
  start-page: 115
  year: 2007
  end-page: 125
  ident: b40
  article-title: Protein cellular localization prediction with support vector machines and decision trees
  publication-title: Comput. Biol. Med.
– volume: 11
  start-page: 1233
  year: 2021
  end-page: 1261
  ident: b10
  article-title: Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 21
  start-page: 2467
  year: 2017
  ident: b62
  article-title: Novel method for calculating the effective stress coefficient in a tight sandstone reservoir
  publication-title: KSCE J. Civ. Eng.
– year: 1943
  ident: b64
  article-title: Theoretical Soil Mechanics
– volume: 174
  year: 2021
  ident: b17
  article-title: Prediction of oil flow rate through orifice flow meters: Optimized machine-learning techniques
  publication-title: Measurement
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b63
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– year: 2018
  ident: b51
  article-title: An artificial intelligence approach in estimation of formation pore pressure by critical drilling data
  publication-title: OnePetro
– volume: 17
  start-page: 717
  year: 1965
  end-page: 722
  ident: b30
  article-title: Estimation of formation pressures from log-derived shale properties
  publication-title: J. Pet. Technol.
– year: 1998
  ident: b48
  article-title: Computational intelligence
– year: 2021
  ident: b3
  article-title: Predicting oil flow rate through orifice plate with robust machine learning algorithms
  publication-title: Flow Meas. Instrum.
– start-page: 11
  year: 2020
  ident: b55
  article-title: Mathematical modeling of growth and paclitaxel biosynthesis in corylus avellana cell culture responding to fungal elicitors using multilayer perceptron-genetic algorithm
  publication-title: Front. Plant Sci.
– start-page: 1
  year: 2021
  end-page: 23
  ident: b49
  article-title: Novel hybrid machine learning optimizer algorithms to prediction of fracture density by petrophysical data
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 203
  start-page: 810
  year: 2018
  end-page: 821
  ident: b8
  article-title: Predictive modelling for solar thermal energy systems: A comparison of support vector regression random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
– volume: 45
  start-page: 256
  year: 2017
  end-page: 271
  ident: b20
  article-title: Prediction of gas flow rates from gas condensate reservoirs through wellhead chokes using a firefly optimization algorithm
  publication-title: J. Natural Gas Sci. Eng.
– volume: 406
  year: 2021
  ident: b11
  article-title: Experimental investigation binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application
  publication-title: Chem. Eng. J.
– year: 1957
  ident: b12
  article-title: The Elastic Coefficients of the Theory of Consolidation
– volume: 207
  start-page: 547
  year: 2017
  end-page: 560
  ident: b14
  article-title: Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization
  publication-title: Fuel
– volume: 57
  year: 2020
  ident: b61
  article-title: Prediction of energy consumption in hotel buildings via support vector machines
  publication-title: Sustainable Cities Soc.
– volume: 18
  start-page: 4093
  year: 2013
  end-page: 4107
  ident: b31
  article-title: A new pore pressure prediction method-back propagation artificial neural network
  publication-title: Electron J. Geotech. Eng.
– year: 2014
  ident: b5
  article-title: Pore pressure estimation using artificial neural network
– volume: 2
  start-page: 225
  year: 2020
  end-page: 246
  ident: b21
  article-title: Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared
  publication-title: Exp. Comput. Multiph. Flow
– volume: 62
  year: 2017
  ident: b24
  article-title: Pore pressure prediction using probabilistic neural network: Case study of South Sumatra basin
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 291
  year: 2021
  ident: b50
  article-title: Analysis of the performance of a crude-oil desalting system based on historical data
  publication-title: Fuel
– year: 2002
  ident: b54
  article-title: Artificial intelligence: A modern approach
– volume: 13
  start-page: 1284
  year: 2020
  end-page: 1291
  ident: b33
  article-title: Sentiment polarity classification using conjure of genetic algorithm and differential evolution methods for optimized feature selection
  publication-title: Recent Adv. Comput. Sci. Commun.
– volume: 10
  start-page: 1021
  year: 2020
  end-page: 1049
  ident: b42
  article-title: Pre-drill pore pressure prediction and safe well design on the top of Tulamura anticline, Tripura, India: A comparative study
  publication-title: J. Pet. Explor. Prod. Technol.
– start-page: 1
  year: 2020
  end-page: 5
  ident: b52
  article-title: Pore Pressure Prediction Based on the Full Effective Stress (FES) Method
– volume: 10
  start-page: 1051
  year: 2020
  end-page: 1062
  ident: b9
  article-title: Pore pressure prediction using seismic velocity modeling: Case study, Sefid–Zakhor gas field in Southern Iran
  publication-title: J. Pet. Explor. Prod. Technol.
– year: 2021
  ident: b27
  article-title: Comparison of accuracy and computational performance between the machine learning algorithms for rate of penetration in directional drilling well
  publication-title: Pet. Res.
– volume: 46
  start-page: 1031
  year: 2019
  end-page: 1038
  ident: b15
  article-title: Wellbore stability analysis to determine the safe mud weight window for sandstone layers
  publication-title: Pet. Explor. Dev.
– volume: 55
  year: 2020
  ident: b58
  article-title: Computational intelligence intrusion detection techniques in mobile cloud computing environments: Review, taxonomy, and open research issues
  publication-title: J. Inform. Secur. Appl.
– volume: 969
  year: 2020
  ident: b23
  article-title: Determination of spent nuclear fuel parameters using modelled signatures from non-destructive assay and random forest regression
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 180
  start-page: 699
  year: 2019
  end-page: 706
  ident: b53
  article-title: Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization
  publication-title: J. Pet. Sci. Eng.
– volume: 308
  year: 2022
  ident: b1
  article-title: Robust hybrid machine learning algorithms for gas flow rates prediction through wellhead chokes in gas condensate fields
  publication-title: Fuel
– volume: 200
  year: 2020
  ident: b71
  article-title: Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 95
  year: 2021
  ident: b2
  article-title: Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs
  publication-title: J. Natural Gas Sci. Eng.
– year: 1975
  ident: b16
  article-title: The equation for geopressure prediction from well logs
  publication-title: OnePetro
– volume: 64
  start-page: 98
  year: 2012
  end-page: 101
  ident: b38
  article-title: Pore-pressure and wellbore-stability prediction to increase drilling efficiency
  publication-title: J. Pet. Technol.
– volume: 157
  start-page: 17
  year: 2007
  ident: b37
  article-title: A collection of definitions of intelligence
  publication-title: Front. Artif. Intell. Appl.
– year: 2020
  ident: b6
  article-title: Post-drill pore pressure and fracture gradient analyses of Y-field in the offshore tano basin of Ghana
  publication-title: OnePetro
– volume: 8
  start-page: 1962
  year: 2020
  end-page: 1979
  ident: b70
  article-title: Geological characteristics and abnormal pore pressure prediction in shale oil formations of the Dongying depression, China
  publication-title: Energy Sci. Eng.
– year: 2021
  ident: b29
  article-title: Applied random forest for parameter sensitivity of low salinity water injection (LSWI) implementation on carbonate reservoir
  publication-title: Alex. Eng. J.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 12
  ident: b43
  article-title: Auto-characterization of naturally fractured reservoirs drilled by horizontal well using multi-output least squares support vector regression
  publication-title: Arab. J. Geosci.
– volume: 48
  start-page: 1000
  year: 2020
  end-page: 1008
  ident: b25
  article-title: Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by support vector and Gaussian process regression methods
  publication-title: Procedia Manuf.
– volume: 19
  start-page: 153
  year: 1997
  end-page: 158
  ident: b32
  article-title: Feature selection: Evaluation, application, and small sample performance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 113
  year: 2021
  ident: b59
  article-title: A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues
  publication-title: J. Biomed. Inform.
– volume: 209
  year: 2020
  ident: b35
  article-title: A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®
  publication-title: Energy
– volume: 10
  start-page: 1869
  year: 2020
  end-page: 1879
  ident: b44
  article-title: Prediction of in situ stresses, mud window and overpressure zone using well logs in south pars field
  publication-title: J. Pet. Explor. Prod. Technol.
– year: 2013
  ident: b65
  article-title: The Nature of Statistical Learning Theory
– volume: 29
  start-page: 96
  year: 2020
  end-page: 107
  ident: b41
  article-title: Comparison of pore pressure prediction using conventional seismic velocity and acoustic impedance-based methods
  publication-title: J. Pet. Res.
– volume: 208
  year: 2022
  ident: b36
  article-title: Predicting formation damage of oil fields due to mineral scaling during water-flooding operations: Gradient boosting decision tree and cascade-forward back-propagation network
  publication-title: J. Pet. Sci. Eng.
– start-page: 43
  year: 2020
  ident: b39
  article-title: Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources
  publication-title: Behav. Brain Sci.
– year: 2021
  ident: b4
  article-title: Data-driven modeling approach for pore pressure gradient prediction while drilling from drilling parameters
  publication-title: ACS Omega
– year: 2021
  ident: b45
  article-title: Prediction of bubble point pressure using new hybrid computationail intelligence models
  publication-title: J. Chem. Pet. Eng.
– volume: 79
  start-page: 1
  year: 2020
  end-page: 11
  ident: b46
  article-title: The Niger delta basin fracture pressure prediction
  publication-title: Environ. Earth Sci.
– volume: 6
  start-page: 2181
  year: 2021
  end-page: 2186
  ident: b26
  article-title: Offshore geological storage of hydrogen: Is this our best option to achieve net-zero?
  publication-title: ACS Energy Lett.
– volume: 135
  start-page: 852
  year: 2019
  end-page: 868
  ident: b34
  article-title: Short term memory efficient pore pressure prediction via Bayesian neural networks at bering sea slope of IODP expedition 323
  publication-title: Measurement
– volume: 143
  year: 2020
  ident: b69
  article-title: A machine learning methodology for multivariate pore-pressure prediction
  publication-title: Comput. Geosci.
– volume: 132
  start-page: 243
  year: 2019
  end-page: 254
  ident: b57
  article-title: Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO
  publication-title: Renew. Energy
– start-page: 1
  year: 2021
  end-page: 27
  ident: b18
  article-title: Predicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms
  publication-title: Nat. Resour. Res.
– start-page: 14
  year: 2021
  end-page: 27
  ident: b28
  article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm
  publication-title: J. Pet. Min. Eng.
– volume: 31
  start-page: 1933
  year: 2004
  end-page: 1945
  ident: b47
  article-title: Evaluation of decision trees: A multi-criteria approach
  publication-title: Comput. Oper. Res.
– year: 2013
  ident: 10.1016/j.egyr.2022.01.012_b65
– volume: 200
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b71
  article-title: Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.106931
– volume: 62
  year: 2017
  ident: 10.1016/j.egyr.2022.01.012_b24
  article-title: Pore pressure prediction using probabilistic neural network: Case study of South Sumatra basin
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/62/1/012021
– volume: 18
  start-page: 4093
  year: 2013
  ident: 10.1016/j.egyr.2022.01.012_b31
  article-title: A new pore pressure prediction method-back propagation artificial neural network
  publication-title: Electron J. Geotech. Eng.
– volume: 10
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.egyr.2022.01.012_b66
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122827
– volume: 46
  start-page: 1031
  issue: 5
  year: 2019
  ident: 10.1016/j.egyr.2022.01.012_b15
  article-title: Wellbore stability analysis to determine the safe mud weight window for sandstone layers
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(19)60260-0
– volume: 406
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b11
  article-title: Experimental investigation binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127081
– year: 1957
  ident: 10.1016/j.egyr.2022.01.012_b12
– start-page: 14
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b28
  article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm
  publication-title: J. Pet. Min. Eng.
– volume: 157
  start-page: 17
  year: 2007
  ident: 10.1016/j.egyr.2022.01.012_b37
  article-title: A collection of definitions of intelligence
  publication-title: Front. Artif. Intell. Appl.
– year: 1996
  ident: 10.1016/j.egyr.2022.01.012_b68
  article-title: An investigative study of recent technologies used for prediction, detection, and evaluation of abnormal formation pressure and fracture pressure in North and South America
  publication-title: OnePetro
– volume: 180
  start-page: 699
  year: 2019
  ident: 10.1016/j.egyr.2022.01.012_b53
  article-title: Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.06.014
– volume: 8
  start-page: 1962
  issue: 6
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b70
  article-title: Geological characteristics and abnormal pore pressure prediction in shale oil formations of the Dongying depression, China
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.641
– volume: 10
  start-page: 1869
  issue: 5
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b44
  article-title: Prediction of in situ stresses, mud window and overpressure zone using well logs in south pars field
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-020-00890-9
– volume: 10
  start-page: 1051
  issue: 3
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b9
  article-title: Pore pressure prediction using seismic velocity modeling: Case study, Sefid–Zakhor gas field in Southern Iran
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-019-00818-y
– volume: 6
  start-page: 2181
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b26
  article-title: Offshore geological storage of hydrogen: Is this our best option to achieve net-zero?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00845
– volume: 291
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b50
  article-title: Analysis of the performance of a crude-oil desalting system based on historical data
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.120046
– volume: 248
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b7
  article-title: A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118475
– volume: 2
  start-page: 225
  issue: 4
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b21
  article-title: Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared
  publication-title: Exp. Comput. Multiph. Flow
  doi: 10.1007/s42757-019-0047-5
– volume: 132
  start-page: 243
  year: 2019
  ident: 10.1016/j.egyr.2022.01.012_b57
  article-title: Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.07.142
– volume: 31
  start-page: 1933
  issue: 11
  year: 2004
  ident: 10.1016/j.egyr.2022.01.012_b47
  article-title: Evaluation of decision trees: A multi-criteria approach
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(03)00156-4
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b19
  article-title: Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-020-3411-3
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 10.1016/j.egyr.2022.01.012_b63
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b6
  article-title: Post-drill pore pressure and fracture gradient analyses of Y-field in the offshore tano basin of Ghana
  publication-title: OnePetro
– volume: 113
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b59
  article-title: A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues
  publication-title: J. Biomed. Inform.
– volume: 11
  start-page: 1233
  issue: 3
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b10
  article-title: Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-021-01087-4
– volume: 208
  year: 2022
  ident: 10.1016/j.egyr.2022.01.012_b36
  article-title: Predicting formation damage of oil fields due to mineral scaling during water-flooding operations: Gradient boosting decision tree and cascade-forward back-propagation network
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109315
– volume: 135
  start-page: 852
  year: 2019
  ident: 10.1016/j.egyr.2022.01.012_b34
  article-title: Short term memory efficient pore pressure prediction via Bayesian neural networks at bering sea slope of IODP expedition 323
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.12.034
– volume: 84
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b56
  article-title: Support vector machines-based heart disease diagnosis using feature subset wrapping selection and extraction methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106628
– volume: 10
  start-page: 89
  issue: 02
  year: 1995
  ident: 10.1016/j.egyr.2022.01.012_b13
  article-title: Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction
  publication-title: SPE Drill. Complet.
  doi: 10.2118/27488-PA
– volume: 143
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b69
  article-title: A machine learning methodology for multivariate pore-pressure prediction
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104548
– start-page: 1
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b49
  article-title: Novel hybrid machine learning optimizer algorithms to prediction of fracture density by petrophysical data
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 9
  start-page: 1355
  issue: 2
  year: 2019
  ident: 10.1016/j.egyr.2022.01.012_b22
  article-title: Predicting liquid flow-rate performance through wellhead chokes with genetic and solver optimizers: An oil field case study
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-018-0532-6
– volume: 203
  start-page: 810
  year: 2018
  ident: 10.1016/j.egyr.2022.01.012_b8
  article-title: Predictive modelling for solar thermal energy systems: A comparison of support vector regression random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.207
– volume: 64
  start-page: 98
  issue: 02
  year: 2012
  ident: 10.1016/j.egyr.2022.01.012_b38
  article-title: Pore-pressure and wellbore-stability prediction to increase drilling efficiency
  publication-title: J. Pet. Technol.
  doi: 10.2118/144717-JPT
– volume: 79
  start-page: 1
  issue: 13
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b46
  article-title: The Niger delta basin fracture pressure prediction
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-020-09081-5
– year: 2002
  ident: 10.1016/j.egyr.2022.01.012_b54
– volume: 55
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b58
  article-title: Computational intelligence intrusion detection techniques in mobile cloud computing environments: Review, taxonomy, and open research issues
  publication-title: J. Inform. Secur. Appl.
– year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b45
  article-title: Prediction of bubble point pressure using new hybrid computationail intelligence models
  publication-title: J. Chem. Pet. Eng.
– volume: 29
  start-page: 96
  issue: 109
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b41
  article-title: Comparison of pore pressure prediction using conventional seismic velocity and acoustic impedance-based methods
  publication-title: J. Pet. Res.
– volume: 57
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b61
  article-title: Prediction of energy consumption in hotel buildings via support vector machines
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2020.102128
– year: 1975
  ident: 10.1016/j.egyr.2022.01.012_b16
  article-title: The equation for geopressure prediction from well logs
  publication-title: OnePetro
– volume: 7
  year: 2019
  ident: 10.1016/j.egyr.2022.01.012_b60
  article-title: A survey of deep learning techniques: Application in wind and solar energy resources
  publication-title: IEEE Access
– start-page: 2535
  year: 2010
  ident: 10.1016/j.egyr.2022.01.012_b67
  article-title: Formation pressure prediction based on hybrid genetic algorithm
  publication-title: IEEE
– volume: 308
  year: 2022
  ident: 10.1016/j.egyr.2022.01.012_b1
  article-title: Robust hybrid machine learning algorithms for gas flow rates prediction through wellhead chokes in gas condensate fields
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121872
– volume: 10
  start-page: 1021
  issue: 3
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b42
  article-title: Pre-drill pore pressure prediction and safe well design on the top of Tulamura anticline, Tripura, India: A comparative study
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-019-00816-0
– volume: 969
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b23
  article-title: Determination of spent nuclear fuel parameters using modelled signatures from non-destructive assay and random forest regression
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2020.163979
– start-page: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b52
– volume: 207
  start-page: 547
  year: 2017
  ident: 10.1016/j.egyr.2022.01.012_b14
  article-title: Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.06.131
– volume: 45
  start-page: 256
  year: 2017
  ident: 10.1016/j.egyr.2022.01.012_b20
  article-title: Prediction of gas flow rates from gas condensate reservoirs through wellhead chokes using a firefly optimization algorithm
  publication-title: J. Natural Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.04.034
– year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b29
  article-title: Applied random forest for parameter sensitivity of low salinity water injection (LSWI) implementation on carbonate reservoir
  publication-title: Alex. Eng. J.
– year: 1998
  ident: 10.1016/j.egyr.2022.01.012_b48
– year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b3
  article-title: Predicting oil flow rate through orifice plate with robust machine learning algorithms
  publication-title: Flow Meas. Instrum.
– volume: 209
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b35
  article-title: A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118457
– volume: 37
  start-page: 115
  issue: 2
  year: 2007
  ident: 10.1016/j.egyr.2022.01.012_b40
  article-title: Protein cellular localization prediction with support vector machines and decision trees
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2006.01.003
– year: 2018
  ident: 10.1016/j.egyr.2022.01.012_b51
  article-title: An artificial intelligence approach in estimation of formation pore pressure by critical drilling data
  publication-title: OnePetro
– year: 2014
  ident: 10.1016/j.egyr.2022.01.012_b5
– volume: 13
  start-page: 1284
  issue: 6
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b33
  article-title: Sentiment polarity classification using conjure of genetic algorithm and differential evolution methods for optimized feature selection
  publication-title: Recent Adv. Comput. Sci. Commun.
  doi: 10.2174/2213275911666180904110105
– volume: 19
  start-page: 153
  issue: 2
  year: 1997
  ident: 10.1016/j.egyr.2022.01.012_b32
  article-title: Feature selection: Evaluation, application, and small sample performance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.574797
– start-page: 11
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b55
  article-title: Mathematical modeling of growth and paclitaxel biosynthesis in corylus avellana cell culture responding to fungal elicitors using multilayer perceptron-genetic algorithm
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 1
  issue: 7
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b43
  article-title: Auto-characterization of naturally fractured reservoirs drilled by horizontal well using multi-output least squares support vector regression
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-021-06559-9
– volume: 95
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b2
  article-title: Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs
  publication-title: J. Natural Gas Sci. Eng.
– volume: 174
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b17
  article-title: Prediction of oil flow rate through orifice flow meters: Optimized machine-learning techniques
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108943
– start-page: 43
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b39
  article-title: Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources
  publication-title: Behav. Brain Sci.
– year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b4
  article-title: Data-driven modeling approach for pore pressure gradient prediction while drilling from drilling parameters
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c01340
– year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b27
  article-title: Comparison of accuracy and computational performance between the machine learning algorithms for rate of penetration in directional drilling well
  publication-title: Pet. Res.
– volume: 17
  start-page: 717
  issue: 06
  year: 1965
  ident: 10.1016/j.egyr.2022.01.012_b30
  article-title: Estimation of formation pressures from log-derived shale properties
  publication-title: J. Pet. Technol.
  doi: 10.2118/1110-PA
– start-page: 1
  year: 2021
  ident: 10.1016/j.egyr.2022.01.012_b18
  article-title: Predicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms
  publication-title: Nat. Resour. Res.
– volume: 48
  start-page: 1000
  year: 2020
  ident: 10.1016/j.egyr.2022.01.012_b25
  article-title: Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by support vector and Gaussian process regression methods
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.05.139
– year: 1943
  ident: 10.1016/j.egyr.2022.01.012_b64
– volume: 21
  start-page: 2467
  issue: 6
  year: 2017
  ident: 10.1016/j.egyr.2022.01.012_b62
  article-title: Novel method for calculating the effective stress coefficient in a tight sandstone reservoir
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-016-0514-5
SSID ssj0001920463
Score 2.4218886
Snippet Determination of pore pressure (PP), a key reservoir parameter that is beneficial for evaluating geomechanical parameters of the reservoir, is so important in...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2233
SubjectTerms Decision tree algorithm
Machine learning algorithms
Petrophysical data
Pore pressure
Title A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques
URI https://dx.doi.org/10.1016/j.egyr.2022.01.012
https://doaj.org/article/351e2f7b4cbc4b1696776993568ce317
Volume 8
WOSCitedRecordID wos000788090400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRRcX5ixy8SbFJkzY9qmx4cXhQ2K00r8nYmNvoOsGLf7svSTfmZV6EEpqSJuG9R94XeO97hNymGXBexiqyCngkcK-RFgavKrnINAMGvFK-2EQ2GKjhMH_dKvXlYsICPXAQ3H0imeE20wI0CM3SPM2yFJ2qTBUYdH7u9EXUs3WZmgTc4qiwfGU5iXvAM7jNmAnBXWb05chAOfecnYz_8kqevH_LOW05nP4ROWyRIn0IOzwme2Z2QuoHWs_1atnQNRk4beYUMbShPqJ1FV6qsU9XcIOmLo-JIjau54tWJxTPO-pCQ6njh6yo_qIfPqbS0LaIxIhuuF2Xp-S933t7eo7asgkRCBY3kUp0aitWpqXEqyZ20ONIHoOthLGl1q7lKEWTCC3yVIPKWckgt7GpeFbq5Ix0ZvOZOSdUVlZJBYmBTAkLuRYlagBRkjQarDFdwtZiK6DlFHelLabFOnhsUjhRF07URczw4V1yt_lnERg1do5-dNrYjHRs2P4D2kjR2kjxl410iVzrsmiBRQAMONV4x-IX_7H4JTlwU4b8xSvSaeqVuSb78NmMl_WNN1tsX757PzTZ80w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+approach+to+pore+pressure+prediction+applying+petrophysical+log+data+aided+by+machine+learning+techniques&rft.jtitle=Energy+reports&rft.au=Zhang%2C+Guodao&rft.au=Davoodi%2C+Shadfar&rft.au=Band%2C+Shahab+S.&rft.au=Ghorbani%2C+Hamzeh&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=2233&rft.epage=2247&rft_id=info:doi/10.1016%2Fj.egyr.2022.01.012&rft.externalDocID=S2352484722000129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon