Analysis of photovoltaic array maximum power point tracking under uniform environment and partial shading condition: A review

With the expansion of the scale of application of photovoltaic (PV) power generation, PV maximum power point tracking (MPPT) technology has been transformed from uniform environmental conditions (UEC) to partial shading conditions (PSC), but there are certain limitations in the application of existi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy reports Ročník 8; s. 13235 - 13252
Hlavní autoři: Li, Jianlin, Wu, Yiwen, Ma, Suliang, Chen, Mingxuan, Zhang, Baoping, Jiang, Bing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2022
Elsevier
Témata:
ISSN:2352-4847, 2352-4847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the expansion of the scale of application of photovoltaic (PV) power generation, PV maximum power point tracking (MPPT) technology has been transformed from uniform environmental conditions (UEC) to partial shading conditions (PSC), but there are certain limitations in the application of existing technologies under PSC. At present, a large number of several different PV MPPT algorithms have been proposed. In the research on MPPT technology under UEC, the MPPT technology based on the output characteristics of PV cells is used and the MPPT tracking speed has reached 20 times, in another improvement, the MPPT technology based on PV cell model is used, and the MPPT tracking accuracy has reached 99.4428%. In the process of MPPT technology transformation, there is a lack of sufficient comparative analysis and systematic review of these methods. This paper focuses on the tracking problem of the Voltage–Power (U–P) single-peak curve under the UEC to the U–P​ multi-peak curve under the partial shading conditions (PSC), and discuss four key issues in the development of PV MPPT research: (1) Under UEC, the performance of MPPT algorithms based on PV output characteristics and PV cell model; (2) The failure phenomenon when traditional MPPT technology is applied under PSC; (3) Under the PSC, the application process of the traditional methods and the swarm intelligence optimization algorithm (SIOA); (4) The bottlenecks faced by SIOA applications under PSC and the analysis of solutions. Through the analysis and comparison presented in this study, researchers can comprehensively understand the development and the important changes brought by PSC to MPPT technology. This could lead to exploration and research into the applications of SIOA in MPPT technology under PSC. The relevant conclusions will provide important directions for future research in the field of MPPT under PSC. •Under the uniform environmental conditions, the paper divides the traditional MPPT technology into two categories, the MPPT technology based on photovoltaic cell output characteristics and the MPPT technology based on photovoltaic cell model driving, discusses the implementation ideas and improvements of typical methods, compares their tracking performance in detail, and provide new ideas for MPPT technology.•The characteristics, advantages and disadvantages of the existing technology are compared from the two aspects of uniform environmental conditions and partially shaded conditions, the reasons for the failure of traditional algorithms under partially shaded conditions are analyzed in detail, and the improvement methods of traditional methods under partially shaded conditions are proposed.•For the first time, the bottleneck of the application of swarm intelligence optimization algorithm in partially shaded conditions is comprehensively analyzed from three aspects: start-up condition, dynamic tracking performance and cut-off condition. The work in this paper can provide a new way for the development of MPPT technology in the future.
AbstractList With the expansion of the scale of application of photovoltaic (PV) power generation, PV maximum power point tracking (MPPT) technology has been transformed from uniform environmental conditions (UEC) to partial shading conditions (PSC), but there are certain limitations in the application of existing technologies under PSC. At present, a large number of several different PV MPPT algorithms have been proposed. In the research on MPPT technology under UEC, the MPPT technology based on the output characteristics of PV cells is used and the MPPT tracking speed has reached 20 times, in another improvement, the MPPT technology based on PV cell model is used, and the MPPT tracking accuracy has reached 99.4428%. In the process of MPPT technology transformation, there is a lack of sufficient comparative analysis and systematic review of these methods. This paper focuses on the tracking problem of the Voltage–Power (U–P) single-peak curve under the UEC to the U–P​ multi-peak curve under the partial shading conditions (PSC), and discuss four key issues in the development of PV MPPT research: (1) Under UEC, the performance of MPPT algorithms based on PV output characteristics and PV cell model; (2) The failure phenomenon when traditional MPPT technology is applied under PSC; (3) Under the PSC, the application process of the traditional methods and the swarm intelligence optimization algorithm (SIOA); (4) The bottlenecks faced by SIOA applications under PSC and the analysis of solutions. Through the analysis and comparison presented in this study, researchers can comprehensively understand the development and the important changes brought by PSC to MPPT technology. This could lead to exploration and research into the applications of SIOA in MPPT technology under PSC. The relevant conclusions will provide important directions for future research in the field of MPPT under PSC. •Under the uniform environmental conditions, the paper divides the traditional MPPT technology into two categories, the MPPT technology based on photovoltaic cell output characteristics and the MPPT technology based on photovoltaic cell model driving, discusses the implementation ideas and improvements of typical methods, compares their tracking performance in detail, and provide new ideas for MPPT technology.•The characteristics, advantages and disadvantages of the existing technology are compared from the two aspects of uniform environmental conditions and partially shaded conditions, the reasons for the failure of traditional algorithms under partially shaded conditions are analyzed in detail, and the improvement methods of traditional methods under partially shaded conditions are proposed.•For the first time, the bottleneck of the application of swarm intelligence optimization algorithm in partially shaded conditions is comprehensively analyzed from three aspects: start-up condition, dynamic tracking performance and cut-off condition. The work in this paper can provide a new way for the development of MPPT technology in the future.
With the expansion of the scale of application of photovoltaic (PV) power generation, PV maximum power point tracking (MPPT) technology has been transformed from uniform environmental conditions (UEC) to partial shading conditions (PSC), but there are certain limitations in the application of existing technologies under PSC. At present, a large number of several different PV MPPT algorithms have been proposed. In the research on MPPT technology under UEC, the MPPT technology based on the output characteristics of PV cells is used and the MPPT tracking speed has reached 20 times, in another improvement, the MPPT technology based on PV cell model is used, and the MPPT tracking accuracy has reached 99.4428%. In the process of MPPT technology transformation, there is a lack of sufficient comparative analysis and systematic review of these methods. This paper focuses on the tracking problem of the Voltage–Power (U–P) single-peak curve under the UEC to the U–P​ multi-peak curve under the partial shading conditions (PSC), and discuss four key issues in the development of PV MPPT research: (1) Under UEC, the performance of MPPT algorithms based on PV output characteristics and PV cell model; (2) The failure phenomenon when traditional MPPT technology is applied under PSC; (3) Under the PSC, the application process of the traditional methods and the swarm intelligence optimization algorithm (SIOA); (4) The bottlenecks faced by SIOA applications under PSC and the analysis of solutions. Through the analysis and comparison presented in this study, researchers can comprehensively understand the development and the important changes brought by PSC to MPPT technology. This could lead to exploration and research into the applications of SIOA in MPPT technology under PSC. The relevant conclusions will provide important directions for future research in the field of MPPT under PSC.
Author Chen, Mingxuan
Jiang, Bing
Li, Jianlin
Zhang, Baoping
Ma, Suliang
Wu, Yiwen
Author_xml – sequence: 1
  givenname: Jianlin
  surname: Li
  fullname: Li, Jianlin
  organization: Energy Storage Technology Engineering Research Center, North China University of Technology, Beijing, 100144, China
– sequence: 2
  givenname: Yiwen
  surname: Wu
  fullname: Wu, Yiwen
  organization: Energy Storage Technology Engineering Research Center, North China University of Technology, Beijing, 100144, China
– sequence: 3
  givenname: Suliang
  orcidid: 0000-0003-4916-8595
  surname: Ma
  fullname: Ma, Suliang
  email: msl13811581885@ncut.edu.cn
  organization: Energy Storage Technology Engineering Research Center, North China University of Technology, Beijing, 100144, China
– sequence: 4
  givenname: Mingxuan
  surname: Chen
  fullname: Chen, Mingxuan
  organization: China Three Gorges Technology Co., Ltd., Beijing, 100032, China
– sequence: 5
  givenname: Baoping
  surname: Zhang
  fullname: Zhang, Baoping
  organization: China Three Gorges Technology Co., Ltd., Beijing, 100032, China
– sequence: 6
  givenname: Bing
  surname: Jiang
  fullname: Jiang, Bing
  organization: China Three Gorges Technology Co., Ltd., Beijing, 100032, China
BookMark eNp9Uctu2zAQFIoUaJrmB3riD1glKUoWi16MoI8AAXppz8RquXToSqRB0U59yL-XqhOg6CEXLjGYGezOvK0uQgxUVe8FrwUX3YddTdtTqiWXsua6Flq-qi5l08qV6tX64p__m-p6nnec88Lhqmsuq8dNgPE0-5lFx_b3McdjHDN4ZJASnNgEv_10mNg-PlAqrw-Z5QT4y4ctOwRbwEPwLqaJUTj6FMNEhQLBsj2k7GFk8z3YhY0xWJ99DB_ZhiU6enp4V712MM50_TSvqp9fPv-4-ba6-_719mZzt0IleF71AltCbFRj-7Xkzg7gytRaOtUOre1a0XVWd6obZOMQhbRa2K7gqKUceHNV3Z59bYSd2Sc_QTqZCN78BWLammVZHMm0a91bApJd4xS0pN0AgE4JEohKLl792QtTnOdEzqDPsNxVcvGjEdwsrZidWVoxSyuGa1MSL1L5n_R5lRdFn84iKgGV0JKZ0VNAsj4R5nKBf0n-B-JArB0
CitedBy_id crossref_primary_10_1016_j_rineng_2024_102967
crossref_primary_10_3390_en18030637
crossref_primary_10_1371_journal_pone_0293613
crossref_primary_10_1016_j_prime_2025_100943
crossref_primary_10_1016_j_suscom_2025_101159
crossref_primary_10_3390_en17143546
crossref_primary_10_1016_j_ijepes_2024_110260
crossref_primary_10_1109_ACCESS_2023_3318129
crossref_primary_10_1016_j_renene_2025_123649
crossref_primary_10_3390_jmse12122121
crossref_primary_10_1109_ACCESS_2023_3315150
crossref_primary_10_1109_ACCESS_2025_3568717
crossref_primary_10_1155_2024_6678384
crossref_primary_10_1016_j_epsr_2025_111621
crossref_primary_10_1016_j_renene_2023_119718
crossref_primary_10_1016_j_energy_2024_132927
crossref_primary_10_32604_ee_2024_049423
crossref_primary_10_1016_j_egyr_2022_12_152
crossref_primary_10_1155_2024_8363342
crossref_primary_10_56294_dm2023144
crossref_primary_10_1016_j_energy_2024_131839
crossref_primary_10_1016_j_enganabound_2024_01_022
crossref_primary_10_1007_s12667_024_00706_3
crossref_primary_10_3390_en16052206
crossref_primary_10_1016_j_rineng_2024_102067
crossref_primary_10_1007_s00202_023_02231_5
crossref_primary_10_1016_j_solener_2023_03_003
Cites_doi 10.3390/en9040288
10.1109/TSTE.2014.2363521
10.3390/su12031185
10.3390/app7010095
10.1109/ICPES.2017.8387341
10.1080/10584587.2015.1037202
10.1109/IRSEC48032.2019.9078330
10.1016/j.conengprac.2018.10.013
10.24846/v30i1y202108
10.3390/electronics8060680
10.1016/j.asoc.2018.01.030
10.3390/en10040541
10.1109/TIA.2018.2885216
10.3390/en11020365
10.1109/TEC.2016.2633722
10.1109/IREC.2018.8362525
10.3390/mi11060585
10.1016/j.jclepro.2019.01.150
10.1109/ICRIEECE44171.2018.9009374
10.3390/electronics7120355
10.1155/2019/7687891
10.1016/j.solener.2016.03.023
10.1109/ICEE.2018.8472425
10.1109/ICon-EEI.2018.8784324
10.1016/j.epsr.2017.07.011
10.1016/j.egyr.2019.10.006
10.3390/en12040623
10.1049/iet-rpg.2014.0359
10.1016/j.solener.2018.12.008
10.1109/TIE.2018.2807368
10.1038/s41598-020-69365-5
10.1007/s13369-014-1056-0
10.1080/00207217.2018.1545929
10.1109/SSD.2019.8893172
10.1016/j.jclepro.2020.121983
10.1007/s13369-015-1749-z
10.1109/TCST.2015.2420674
10.1016/j.solener.2019.07.029
10.1016/j.conengprac.2018.10.020
10.1016/j.ijepes.2014.02.009
10.1109/UPEC.2018.8542065
10.3390/en13061304
10.1109/TIE.2018.2877202
10.1007/978-3-319-04573-3_68
10.5755/j01.eie.24.4.21477
10.3390/en12183576
10.1016/j.conengprac.2020.104380
10.23919/ELECO47770.2019.8990426
10.1063/1.4928519
10.1007/s00521-016-2447-9
10.1016/j.enbuild.2014.01.018
10.1109/ACCESS.2020.2995367
10.1177/0142331217697374
10.1109/TIA.2019.2937856
10.3390/en14102902
10.1016/j.solener.2017.10.027
10.1016/j.solener.2019.01.028
10.3390/en11030606
10.1109/ACCESS.2019.2932694
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2022.09.192
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 13252
ExternalDocumentID oai_doaj_org_article_5798deae263f4a5e9fbaacf41e1cc420
10_1016_j_egyr_2022_09_192
S2352484722019199
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c410t-81c5ecc343d8720fdbaf720992f45b5d65166d9646b23fcc12d91d6d65c922b03
IEDL.DBID DOA
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884770900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Fri Oct 03 12:51:04 EDT 2025
Sat Nov 29 07:39:17 EST 2025
Tue Nov 18 21:08:13 EST 2025
Sat Sep 06 17:18:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Photovoltaic mathematical model
Uniform environment condition
Maximum power-point tracking
Swarm intelligence optimization algorithm
Partially shaded conditions
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-81c5ecc343d8720fdbaf720992f45b5d65166d9646b23fcc12d91d6d65c922b03
ORCID 0000-0003-4916-8595
OpenAccessLink https://doaj.org/article/5798deae263f4a5e9fbaacf41e1cc420
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_5798deae263f4a5e9fbaacf41e1cc420
crossref_citationtrail_10_1016_j_egyr_2022_09_192
crossref_primary_10_1016_j_egyr_2022_09_192
elsevier_sciencedirect_doi_10_1016_j_egyr_2022_09_192
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chang (b13) 2020; 11
Vijayakumar, Selvam (b84) 2020; 8
Sarkar, Kumar, Sridhar (b72) 2021
Singh, N., De, M., Swain, K., 2017. Analysis of a PV system under partially shaded condition using enhanced PV model. In: 2017 7th International Conference on Power Systems. ICPS.
Mikkili, Bollipo, Bonthagarla (b52) 2020
Shi, Zhang, Xue (b75) 2019; 19
Joisher, Singh, Taheri (b30) 2020; PP
Li, Yang, Su (b42) 2018
Mishra, Das, Kumar (b53) 2019
Chen, Ma, Wu (b16) 2017; 7
Lixia, Yunfeng, Dandan (b46) 2015; 39
Alshareef, Lin, Ma (b5) 2019; 12
Laird, Lovatt, Savvides (b38) 2008
Rocha, Sampaio, Silva (b70) 2020; 40
Mao, Zhou, Yang (b49) 2019; 83
Liu, Yong, Yu (b44) 2008
Shadlu, M.S., 2018. A Comparative Study Between Two MPPT Algorithms for Photovoltaic Energy Conversion System Based on Modular Multilevel Converter. In: 26th Iranian Conference on Electrical Engineering. ICEE2018.
Ge, Ahmed, Rezvani (b23) 2020; 98
Jain, Gupta, Bohre (b27) 2019
Javed, Ashfaq, Singh (b28) 2019; 17
Ammar, Azar, Shalaby (b6) 2019
Panda, Singh, Sharma (b62) 2018
Murtaza, Chiaberge, Spertino (b57) 2014; 73
Duman, Yorukeren (b20) 2018
Ma, Liu, Lee (b47) 2020; 13
Dileep, Singh (b19) 2017; 158
Mathi, Chinthamalla (b50) 2020
Heydari, Varjani (b25) 2019
Premkumar (b67) 2019
Chen, Cui, Yue (b15) 2018; 322
Ramos-Hernanz, Uriarte, Lopez-Guede (b68) 2020; 10
Sidra, Saghir, Laiq (b76) 2018; 11
Eltamaly, Al-Saud, Abo-Khalil (b22) 2020; 12
Pillai, Ram, Ghias (b65) 2019; PP
Haidar, Saad, Noraisyah (b24) 2018; 11
Lee (b39) 2014; 293
Celik,, 2017. ELECTRIC POWER SYSTEMS RESEARCH.
Zerouali, M., Zouirech, S., Ougli, A.E., et al., 2019. Improvement of Conventional MPPT Techniques P & O and INC by Integration of Fuzzy Logic. In: 2019 7th International Renewable and Sustainable Energy Conference. IRSEC.
Ali, Quynh, Dadfar (b3) 2020; 271
Vimalarani, Kamaraj, Chitti (b85) 2018; 168
Wan, Mao, Zhou (b87) 2019; 8
Pai (b61) 2019
Borni, Bouchakour, Abdelkrim (b11) 2019; 2190
Elobaid, Abdelsalam, Zakzouk (b21) 2015; 9
Saleh, A., Azmi, K., Hardianto, T., et al., 2018. Comparison of MPPT Fuzzy Logic Controller Based on Perturb and Observe (P & O) and Incremental Conductance (InC) Algorithm On Buck-Boost Converter. In: 2018 2nd International Conference on Electrical Engineering and Informatics. ICon EEI.
Su, Yu, Zhao (b79) 2001; 22
Ulaganathan, Devaraj (b82) 2019; 37
Chendi, Yuanrui, Dongbao (b17) 2016; 9
Liang, Cai, Cao (b43) 2020; 585
Li, Lin, Tseng (b41) 2018; 65
Kandemir, Borekci, Cetin (b32) 2018; 24
Abido, Khalid, Worku (b2) 2015; 40
Baolu (b8) 2019; 55
Mohammad, Radzi, Azis (b55) 2020; 12
Pr adhan, Raseswari, Subudhi (b66) 2016; 24
Ho, Lin, Bagci (b26) 2019
Khan, A. (b34) 2021
Merchaoui, M., Sakly, A., Mimouni, M.F., 2018. Improved fast particle swarm optimization based PV MPPT. In: 2018 9th International Renewable Energy Congress. IREC.
Sundareswaran, Sankar, Nayak (b80) 2015; 6
Jun, Soon (b31) 2012
Jin, Hou, Li (b29) 2017; 10
Kermadi, Salam, Ahmed (b33) 2018; 66
Venkatramanan, John (b83) 2019; 55
Westbrook (b89) 2015
Chao, Rizal (b14) 2021; 14
Nkambule, M.S., Hasan, A.N., Ali, A., 2019. MPPT under partial shading conditions based on Perturb & Observe and Incremental Conductance. In: 2019 11th International Conference on Electrical and Electronics Engineering. ELECO.
Mohanty, Subudhi, Ray (b56) 2017; 32
Alshareef (b4) 2021; 30
Kim, Huh, Ko (b35) 2020; 12
Xu, Cheng, Yang (b90) 2020; PP
Necaibia, Kelaiaia, Labar (b59) 2019; 180
Zhang, Chen, Wei (b94) 2019; 12
Lee, Yun (b40) 2019; 12
Rezk, Aly, Al-Dhaifallah (b69) 2019; 7
Abid, R., Mahjoub, S., Masmoudi, F., et al., 2019. MPPT Control Strategies for Photovoltaic Applications: Algorithms and Comparative Analysis. In: 2019 16th International Multi-Conference on Systems, Signals & Devices. SSD.
Satheesh, Sundareswaran, Simon (b73) 2020; 14
Mishra, Das, Kumar (b54) 2021
Vincheh, Kargar, Markadeh (b86) 2014; 39
Yang, Zhu, Wang (b92) 2020; 268
Stitou, Fadili, Chaoui (b78) 2019; 84
Liu, Zhu, Tao (b45) 2019
Yang, Zhong, Zhang (b91) 2019; 215
Peng, Yang, Liu (b63) 2018
Mao, Duan (b48) 2018; 40
Dara Ba, Petreus, Morel (b18) 2014
Bhattacharyya, Patnam, Samanta (b9) 2020; PP
Pilakkat, Kanthalakshmi (b64) 2019; 178
Wang, Yang, Fang (b88) 2018; 7
Zhang, Li, He (b95) 2019
Kumar, Khandelwal, Upadhyay (b37) 2019; 189
Nadkarni, Angadi, Raju (b58) 2018
Suo, Zhang, Wu (b81) 2015; 162
Bollipo, R.B., Mikkili, S., Bonthagorla, P.K., 0000. Application of Radial Basis Neural Network in MPPT Technique for Stand-Alone PV System Under Partial Shading Conditions.
Bao, Lai, Lin (b7) 2020; 20
Kou, Xia, Y. (b36) 2015; 7
Mao (10.1016/j.egyr.2022.09.192_b49) 2019; 83
Xu (10.1016/j.egyr.2022.09.192_b90) 2020; PP
Joisher (10.1016/j.egyr.2022.09.192_b30) 2020; PP
Kou (10.1016/j.egyr.2022.09.192_b36) 2015; 7
Wan (10.1016/j.egyr.2022.09.192_b87) 2019; 8
Murtaza (10.1016/j.egyr.2022.09.192_b57) 2014; 73
10.1016/j.egyr.2022.09.192_b93
Chao (10.1016/j.egyr.2022.09.192_b14) 2021; 14
Heydari (10.1016/j.egyr.2022.09.192_b25) 2019
Anon (10.1016/j.egyr.2022.09.192_b98) 2018
Suo (10.1016/j.egyr.2022.09.192_b81) 2015; 162
10.1016/j.egyr.2022.09.192_b77
Ali (10.1016/j.egyr.2022.09.192_b3) 2020; 271
10.1016/j.egyr.2022.09.192_b74
Nadkarni (10.1016/j.egyr.2022.09.192_b58) 2018
Ma (10.1016/j.egyr.2022.09.192_b47) 2020; 13
Su (10.1016/j.egyr.2022.09.192_b79) 2001; 22
Westbrook (10.1016/j.egyr.2022.09.192_b89) 2015
Kandemir (10.1016/j.egyr.2022.09.192_b32) 2018; 24
Ramos-Hernanz (10.1016/j.egyr.2022.09.192_b68) 2020; 10
Chang (10.1016/j.egyr.2022.09.192_b13) 2020; 11
Laird (10.1016/j.egyr.2022.09.192_b38) 2008
Yang (10.1016/j.egyr.2022.09.192_b92) 2020; 268
Peng (10.1016/j.egyr.2022.09.192_b63) 2018
Vimalarani (10.1016/j.egyr.2022.09.192_b85) 2018; 168
Mao (10.1016/j.egyr.2022.09.192_b48) 2018; 40
Borni (10.1016/j.egyr.2022.09.192_b11) 2019; 2190
Premkumar (10.1016/j.egyr.2022.09.192_b67) 2019
Lee (10.1016/j.egyr.2022.09.192_b40) 2019; 12
Ammar (10.1016/j.egyr.2022.09.192_b6) 2019
10.1016/j.egyr.2022.09.192_b12
10.1016/j.egyr.2022.09.192_b10
Shengqing (10.1016/j.egyr.2022.09.192_b108) 2018
10.1016/j.egyr.2022.09.192_b97
Jain (10.1016/j.egyr.2022.09.192_b27) 2019
Jun (10.1016/j.egyr.2022.09.192_b31) 2012
Kermadi (10.1016/j.egyr.2022.09.192_b33) 2018; 66
Elobaid (10.1016/j.egyr.2022.09.192_b21) 2015; 9
Bao (10.1016/j.egyr.2022.09.192_b7) 2020; 20
Pai (10.1016/j.egyr.2022.09.192_b61) 2019
Haidar (10.1016/j.egyr.2022.09.192_b24) 2018; 11
Zhang (10.1016/j.egyr.2022.09.192_b94) 2019; 12
Lixia (10.1016/j.egyr.2022.09.192_b46) 2015; 39
Yang (10.1016/j.egyr.2022.09.192_b91) 2019; 215
Chendi (10.1016/j.egyr.2022.09.192_b17) 2016; 9
Li (10.1016/j.egyr.2022.09.192_b42) 2018
Alshareef (10.1016/j.egyr.2022.09.192_b5) 2019; 12
Dileep (10.1016/j.egyr.2022.09.192_b19) 2017; 158
Wang (10.1016/j.egyr.2022.09.192_b88) 2018; 7
Chen (10.1016/j.egyr.2022.09.192_b15) 2018; 322
Mohanty (10.1016/j.egyr.2022.09.192_b56) 2017; 32
Sundareswaran (10.1016/j.egyr.2022.09.192_b80) 2015; 6
Venkatramanan (10.1016/j.egyr.2022.09.192_b83) 2019; 55
Ge (10.1016/j.egyr.2022.09.192_b23) 2020; 98
Javed (10.1016/j.egyr.2022.09.192_b28) 2019; 17
Chen (10.1016/j.egyr.2022.09.192_b16) 2017; 7
Mohamed (10.1016/j.egyr.2022.09.192_b103) 2016
Liang (10.1016/j.egyr.2022.09.192_b43) 2020; 585
Pillai (10.1016/j.egyr.2022.09.192_b65) 2019; PP
Baolu (10.1016/j.egyr.2022.09.192_b8) 2019; 55
zgür elik a (10.1016/j.egyr.2022.09.192_b109) 2017; 152
Jin (10.1016/j.egyr.2022.09.192_b29) 2017; 10
Ho (10.1016/j.egyr.2022.09.192_b26) 2019
Mishra (10.1016/j.egyr.2022.09.192_b54) 2021
Ma (10.1016/j.egyr.2022.09.192_b101) 2022
Panda (10.1016/j.egyr.2022.09.192_b62) 2018
Mohammad (10.1016/j.egyr.2022.09.192_b55) 2020; 12
Stitou (10.1016/j.egyr.2022.09.192_b78) 2019; 84
Bhattacharyya (10.1016/j.egyr.2022.09.192_b9) 2020; PP
Vincheh (10.1016/j.egyr.2022.09.192_b86) 2014; 39
Liang (10.1016/j.egyr.2022.09.192_b100) 2020; 8
Rezk (10.1016/j.egyr.2022.09.192_b69) 2019; 7
10.1016/j.egyr.2022.09.192_b106
Kim (10.1016/j.egyr.2022.09.192_b35) 2020; 12
Liu (10.1016/j.egyr.2022.09.192_b44) 2008
10.1016/j.egyr.2022.09.192_b1
Lee (10.1016/j.egyr.2022.09.192_b39) 2014; 293
Murtaza (10.1016/j.egyr.2022.09.192_b105) 2014; 59
Dara Ba (10.1016/j.egyr.2022.09.192_b18) 2014
Mp (10.1016/j.egyr.2022.09.192_b104) 2019; 5
Liu (10.1016/j.egyr.2022.09.192_b45) 2019
Khan (10.1016/j.egyr.2022.09.192_b34) 2021
Alshareef (10.1016/j.egyr.2022.09.192_b4) 2021; 30
Pr adhan (10.1016/j.egyr.2022.09.192_b66) 2016; 24
Sanjeevikumar (10.1016/j.egyr.2022.09.192_b107) 2019; PP
10.1016/j.egyr.2022.09.192_b71
Abido (10.1016/j.egyr.2022.09.192_b2) 2015; 40
Satheesh (10.1016/j.egyr.2022.09.192_b73) 2020; 14
Rocha (10.1016/j.egyr.2022.09.192_b70) 2020; 40
Sarkar (10.1016/j.egyr.2022.09.192_b72) 2021
Ulaganathan (10.1016/j.egyr.2022.09.192_b82) 2019; 37
Mathi (10.1016/j.egyr.2022.09.192_b50) 2020
Mishra (10.1016/j.egyr.2022.09.192_b53) 2019
10.1016/j.egyr.2022.09.192_b51
Mhz (10.1016/j.egyr.2022.09.192_b102) 2021; 309
Shi (10.1016/j.egyr.2022.09.192_b75) 2019; 19
Vijayakumar (10.1016/j.egyr.2022.09.192_b84) 2020; 8
Mikkili (10.1016/j.egyr.2022.09.192_b52) 2020
Sidra (10.1016/j.egyr.2022.09.192_b76) 2018; 11
Duman (10.1016/j.egyr.2022.09.192_b20) 2018
Pilakkat (10.1016/j.egyr.2022.09.192_b64) 2019; 178
Ali (10.1016/j.egyr.2022.09.192_b96) 2020
Kumar (10.1016/j.egyr.2022.09.192_b37) 2019; 189
Zhang (10.1016/j.egyr.2022.09.192_b95) 2019
Li (10.1016/j.egyr.2022.09.192_b41) 2018; 65
Eltamaly (10.1016/j.egyr.2022.09.192_b22) 2020; 12
Carrasco (10.1016/j.egyr.2022.09.192_b99) 2016
Necaibia (10.1016/j.egyr.2022.09.192_b59) 2019; 180
10.1016/j.egyr.2022.09.192_b60
References_xml – year: 2008
  ident: b44
  article-title: Comparison of p & o and hill climbing MPPT methods for grid-connected PV converter
  publication-title: 2008 3rd IEEE Conference on Industrial Electronics and Applications
– volume: 268
  year: 2020
  ident: b92
  article-title: Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition
  publication-title: J. Clean. Prod.
– volume: 17
  start-page: 1
  year: 2019
  end-page: 14
  ident: b28
  article-title: A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems
  publication-title: Int. J. Green Energy
– year: 2018
  ident: b62
  article-title: Tracking comparison of p & o and INC based MPPTs under varying weather conditions
  publication-title: 2018 2nd International Conference on Data Science and Business Analytics
– volume: PP
  start-page: 1
  year: 2020
  ident: b9
  article-title: Steady output and fast tracking MPPT (SOFT MPPT) for P & O and InC algorithms
  publication-title: IEEE Trans. Sustain. Energy
– reference: Merchaoui, M., Sakly, A., Mimouni, M.F., 2018. Improved fast particle swarm optimization based PV MPPT. In: 2018 9th International Renewable Energy Congress. IREC.
– volume: 8
  start-page: 680
  year: 2019
  ident: b87
  article-title: A novel nature-inspired maximum power point tracking (MPPT) controller based on SSA-GWO algorithm for partially shaded photovoltaic systems
  publication-title: Electronics
– year: 2019
  ident: b26
  article-title: Comparison of swarm intelligence based global maximum power point tracking methods for photovoltaic generation system
– year: 2020
  ident: b52
  article-title: A critical review on PV MPPT techniques : Classical, intelligent and optimization
  publication-title: IET Renew. Power Gener.
– volume: 158
  start-page: 1006
  year: 2017
  end-page: 1015
  ident: b19
  article-title: An improved particle swarm optimization based maximum power point tracking algorithm for PV system operating under partial shading conditions
  publication-title: Sol. Energy
– volume: 39
  start-page: 1186
  year: 2015
  end-page: 1191
  ident: b46
  article-title: Non-mechanical modeling of photovoltaic arrays under partial shade
  publication-title: Power Syst. Technol.
– volume: 9
  start-page: 288
  year: 2016
  ident: b17
  article-title: A high-performance adaptive incremental conductance MPPT algorithm for photovoltaic systems
  publication-title: Energies
– year: 2019
  ident: b53
  article-title: Performance comparison of P & O and INC MPPT algorithm for a stand-alone PV system
  publication-title: 2019 Innovations in Power and Advanced Computing Technologies
– volume: 98
  year: 2020
  ident: b23
  article-title: Implementation of a novel hybrid BAT-fuzzy controller based MPPT for grid-connected PV-battery system
  publication-title: Control Eng. Pract.
– volume: PP
  start-page: 1
  year: 2019
  ident: b65
  article-title: An accurate, shade detection-based hybrid maximum power point tracking approach for PV systems
  publication-title: IEEE Trans. Power Electron.
– volume: 37
  start-page: 1085
  year: 2019
  end-page: 1098
  ident: b82
  article-title: A novel MPPT controller using neural network and gain-scheduled PI for solar PV system under rapidly varying environmental condition
  publication-title: J. Intell. Fuzzy Systems
– volume: 55
  start-page: 6234
  year: 2019
  end-page: 6246
  ident: b83
  article-title: Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance
  publication-title: IEEE Trans. Ind. Appl.
– year: 2021
  ident: b54
  article-title: A novel auto-tuned adaptive frequency and adaptive step-size incremental conductance MPPT algorithm for photovoltaic system
– volume: 20
  year: 2020
  ident: b7
  article-title: A deep reinforcement learning-based MPPT control for PV systems under partial shading condition
  publication-title: Sensors (Basel, Switzerland)
– volume: 168
  year: 2018
  ident: b85
  article-title: Improved method of maximum power point tracking of photovoltaic (PV) array using hybrid intelligent controller
  publication-title: Optik
– volume: 7
  start-page: 1
  year: 2019
  ident: b69
  article-title: Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications
  publication-title: IEEE Access
– volume: 83
  start-page: 108
  year: 2019
  end-page: 115
  ident: b49
  article-title: A hybrid intelligent GMPPT algorithm for partial shading PV system
  publication-title: Control Eng. Pract.
– volume: 24
  year: 2018
  ident: b32
  article-title: Conventional and soft-computing based MPPT methods comparisons in direct and indirect modes for single stage PV systems
  publication-title: Elektron. Ir Elektrotech.
– volume: 12
  year: 2019
  ident: b5
  article-title: Accelerated particle swarm optimization for photovoltaic maximum power point tracking under partial shading conditions
  publication-title: Energies
– volume: 7
  start-page: 439
  year: 2015
  end-page: 449
  ident: b36
  article-title: Fast variable step-size maximum power point tracking method for photovoltaic systems
  publication-title: J. Renew. Sustain. Energy
– volume: 30
  start-page: 89
  year: 2021
  end-page: 98
  ident: b4
  article-title: An improved MPPT method based on fuzzy logic controller for a PV system
  publication-title: Stud. Inform. Control
– volume: 12
  year: 2020
  ident: b55
  article-title: A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions
  publication-title: Sustainability
– volume: 9
  start-page: 1043
  year: 2015
  end-page: 1063
  ident: b21
  article-title: Artificial neural network-based photovoltaic maximum power point tracking techniques: A survey
  publication-title: Renew.ble Power Gener. Iet
– year: 2019
  ident: b45
  article-title: A MPPT algorithm based on PSO for PV array under partially shaded condition
  publication-title: 2019 22nd International Conference on Electrical Machines and Systems
– volume: 7
  start-page: 95
  year: 2017
  ident: b16
  article-title: Analysis of MPPT failure and development of an augmented nonlinear controller for MPPT of photovoltaic systems under partial shading conditions
  publication-title: Appl. Sci.
– reference: Saleh, A., Azmi, K., Hardianto, T., et al., 2018. Comparison of MPPT Fuzzy Logic Controller Based on Perturb and Observe (P & O) and Incremental Conductance (InC) Algorithm On Buck-Boost Converter. In: 2018 2nd International Conference on Electrical Engineering and Informatics. ICon EEI.
– year: 2019
  ident: b95
  article-title: Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition
  publication-title: Energy
– year: 2015
  ident: b89
  article-title: Modeling maximum power point tracking efficiency for PV systems
  publication-title: 2015 IEEE 42nd Photovoltaic Specialists Conference
– volume: 65
  start-page: 333
  year: 2018
  end-page: 348
  ident: b41
  article-title: A maximum power point tracking method for PV system with improved gravitational search algorithm
  publication-title: Appl. Soft Comput.
– volume: 2190
  year: 2019
  ident: b11
  article-title: Optimization of the fuzzy MPPT controller by GA for the single-phase grid-connected photovoltaic system controlled by sliding mode
  publication-title: AIP Conf. Proc.
– year: 2008
  ident: b38
  article-title: Comparative study of maximum power point tracking algorithms for thermoelectric generators
  publication-title: Power Engineering Conference, 2008
– volume: 189
  start-page: 151
  year: 2019
  end-page: 178
  ident: b37
  article-title: Global maximum power point tracking using variable sampling time and p-v curve region shifting technique along with incremental conductance for partially shaded photovoltaic systems
  publication-title: Sol. Energy
– volume: 11
  start-page: 606
  year: 2018
  ident: b76
  article-title: Adaptive feedback linearization based NeuroFuzzy maximum power point tracking for a photovoltaic system
  publication-title: Energies
– volume: 11
  start-page: 585
  year: 2020
  ident: b13
  article-title: High-performance pure Sine wave inverter with robust intelligent sliding mode maximum power point tracking for photovoltaic applications
  publication-title: Micromachines
– year: 2012
  ident: b31
  article-title: Photovoltaic model identification using particle swarm optimization with inverse barrier constraint
  publication-title: Power Electron. IEEE Trans.
– year: 2019
  ident: b27
  article-title: Implementation and comparative analysis of P & O and INC MPPT method for PV system
  publication-title: 2018 8th IEEE India International Conference on Power Electronics
– volume: 66
  start-page: 6990
  year: 2018
  end-page: 7000
  ident: b33
  article-title: An effective hybrid maximum power point tracker of photovoltaic arrays for complex partial shading conditions
  publication-title: IEEE Trans. Ind. Electron.
– year: 2019
  ident: b67
  publication-title: Journal of electrical engineering & technology
– volume: 585
  year: 2020
  ident: b43
  article-title: Random inertia weight PSO based MPPT for solar PV under partial shaded condition
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 13
  start-page: 1304
  year: 2020
  ident: b47
  article-title: Maximum power point tracking and voltage regulation of two-stage grid-tied PV system based on model predictive control
  publication-title: Energies
– volume: 7
  year: 2018
  ident: b88
  article-title: An advanced maximum power point tracking method for photovoltaic systems by using variable universe fuzzy logic control considering temperature variability
  publication-title: Electronics
– volume: 215
  start-page: 1203
  year: 2019
  end-page: 1222
  ident: b91
  article-title: Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition
  publication-title: J. Clean. Prod.
– volume: 14
  year: 2021
  ident: b14
  article-title: A hybrid MPPT controller based on the genetic algorithm and ant colony optimization for photovoltaic systems under partially shaded conditions
  publication-title: Energies
– start-page: 1
  year: 2020
  end-page: 18
  ident: b50
  article-title: Global maximum power point tracking technique based on adaptive salp swarm algorithm and P & O techniques for a PV string under partially shaded conditions
  publication-title: Energy Sourc. Part A Recov. Util. Environ. Effects
– volume: 14
  year: 2020
  ident: b73
  article-title: Enhanced energy harvesting from shaded PV systems using an improved particle swarm optimization
  publication-title: IET Renew. Power Gener.
– year: 2018
  ident: b20
  article-title: A novel MPPT algorithm based on optimized artificial neural network by using FPSOGSA for standalone photovoltaic energy systems
  publication-title: Neural Comput. Appl.
– volume: 19
  year: 2019
  ident: b75
  article-title: Moth–flame optimization-based maximum power point tracking for photovoltaic systems under partial shading conditions
  publication-title: J. Power Electron.
– start-page: 1
  year: 2021
  end-page: 11
  ident: b34
  article-title: Novel hybrid maximum power point tracking controller based on artificial intelligence for solar photovoltaic system under variable environmental conditions
  publication-title: J. Electr. Eng. Technol.
– volume: 39
  start-page: 4715
  year: 2014
  end-page: 4725
  ident: b86
  article-title: A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems
  publication-title: Arab. J. Sci. Eng.
– volume: PP
  start-page: 1
  year: 2020
  ident: b30
  article-title: A hybrid evolutionary-based MPPT for photovoltaic systems under partial shading conditions
  publication-title: IEEE Access
– volume: 40
  start-page: 2178
  year: 2018
  end-page: 2199
  ident: b48
  article-title: Comprehensive improvement of artificial fish swarm algorithm for global MPPT in PV system under partial shading conditions
  publication-title: Trans. Inst. Meas. Control
– volume: 178
  start-page: 37
  year: 2019
  end-page: 47
  ident: b64
  article-title: An improved P & O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions
  publication-title: Sol. Energy
– reference: Celik,, 2017. ELECTRIC POWER SYSTEMS RESEARCH.
– volume: 322
  year: 2018
  ident: b15
  article-title: Comparison of P & O and INC methods in maximum power point tracker for PV systems
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 32
  start-page: 340
  year: 2017
  end-page: 347
  ident: b56
  article-title: A grey wolf-assisted perturb & observe MPPT algorithm for a PV system
  publication-title: IEEE Trans. Energy Convers.
– volume: 22
  start-page: 4
  year: 2001
  ident: b79
  article-title: Mathematical models for silicon solar cell engineering
  publication-title: Acta Energiae Sol. Sin.
– volume: 293
  start-page: 545
  year: 2014
  end-page: 552
  ident: b39
  article-title: A three-phase grid-connected PV generation system with a constant voltage based maximum power point tracking
  publication-title: Lect. Notes Electr. Eng.
– year: 2019
  ident: b61
  article-title: An efficient GWO MPPT for a PV system using impedance information acceleration
  publication-title: Int. J. Electron.
– volume: 40
  start-page: 2641
  year: 2015
  end-page: 2651
  ident: b2
  article-title: An efficient ANFIS-based PI controller for maximum power point tracking of PV systems
  publication-title: Arab. J. Sci. Eng.
– volume: 73
  start-page: 13
  year: 2014
  end-page: 25
  ident: b57
  article-title: A maximum power point tracking technique based on bypass diode mechanism for PV arrays under partial shading
  publication-title: Energy Build.
– volume: 6
  start-page: 198
  year: 2015
  end-page: 209
  ident: b80
  article-title: Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony
  publication-title: IEEE Trans. Sustain. Energy
– year: 2019
  ident: b6
  article-title: Metaheuristic optimization of fractional order incremental conductance (FO-INC) maximum power point tracking (MPPT)
  publication-title: Complexity
– volume: 84
  start-page: 1
  year: 2019
  end-page: 12
  ident: b78
  article-title: Output feedback control of sensorless photovoltaic systems, with maximum power point tracking
  publication-title: Control Eng. Pract.
– reference: Zerouali, M., Zouirech, S., Ougli, A.E., et al., 2019. Improvement of Conventional MPPT Techniques P & O and INC by Integration of Fuzzy Logic. In: 2019 7th International Renewable and Sustainable Energy Conference. IRSEC.
– year: 2014
  ident: b18
  article-title: A novel global MPPT based on genetic algorithms for photovoltaic systems under influence of partial shading
  publication-title: Conference of the IEEE Industrial Electronics Society
– year: 2019
  ident: b25
  article-title: A new variable step-size p & o algorithm with power output and sensorless DPC method for grid-connected PV system
  publication-title: 2019 10th International Power Electronics, Drive Systems and Technologies Conference
– volume: 12
  year: 2019
  ident: b94
  article-title: An immune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions
  publication-title: Energies
– year: 2018
  ident: b63
  article-title: An improved PSO algorithm for battery parameters identification optimization based on Thevenin battery model
  publication-title: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems
– volume: 40
  start-page: 1
  year: 2020
  end-page: 14
  ident: b70
  article-title: Comparative analysis of MPPT algorithms based on bat algorithm for PV systems under partial shading condition
  publication-title: Sustain. Energy Technol. Assess.
– volume: 24
  start-page: 285
  year: 2016
  end-page: 292
  ident: b66
  article-title: Double integral sliding mode MPPT control of a photovoltaic system
  publication-title: IEEE Trans. Control Syst. Technol.: A Publ. IEEE Control Syst. Soc.
– volume: 271
  year: 2020
  ident: b3
  article-title: Variable step size perturb and observe MPPT controller by applying
  publication-title: J. Clean. Prod.
– volume: 8
  year: 2020
  ident: b84
  article-title: An adaptive resistance perturbation based MPPT algorithm for photovoltaic applications
  publication-title: IEEE Access
– reference: Singh, N., De, M., Swain, K., 2017. Analysis of a PV system under partially shaded condition using enhanced PV model. In: 2017 7th International Conference on Power Systems. ICPS.
– volume: PP
  start-page: 1
  year: 2020
  ident: b90
  article-title: A modified INC method for PV string under uniform irradiance and partially shaded conditions
  publication-title: IEEE Access
– volume: 180
  start-page: 152
  year: 2019
  end-page: 168
  ident: b59
  article-title: Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter
  publication-title: Solar Energy
– start-page: 1
  year: 2021
  end-page: 13
  ident: b72
  article-title: A new hybrid BAT-ANFIS-based power tracking technique for partial shaded photovoltaic systems
  publication-title: Int. J. Fuzzy Syst.
– volume: 12
  year: 2020
  ident: b22
  article-title: Performance improvement of PV systems’ maximum power point tracker based on a scanning PSO particle strategy
  publication-title: Sustainability
– volume: 10
  start-page: 541
  year: 2017
  end-page: 554
  ident: b29
  article-title: A glowworm swarm optimization-based maximum power point tracking for photovoltaic/thermal systems under non-uniform solar irradiation and temperature distribution
  publication-title: Energies
– volume: 12
  year: 2020
  ident: b35
  article-title: Optimization design and test bed of fuzzy control rule base for PV system MPPT in micro grid
  publication-title: Sustainability
– volume: 10
  year: 2020
  ident: b68
  article-title: Temperature based maximum power point tracking for photovoltaic modules
  publication-title: Sci. Rep.
– reference: Nkambule, M.S., Hasan, A.N., Ali, A., 2019. MPPT under partial shading conditions based on Perturb & Observe and Incremental Conductance. In: 2019 11th International Conference on Electrical and Electronics Engineering. ELECO.
– reference: Abid, R., Mahjoub, S., Masmoudi, F., et al., 2019. MPPT Control Strategies for Photovoltaic Applications: Algorithms and Comparative Analysis. In: 2019 16th International Multi-Conference on Systems, Signals & Devices. SSD.
– start-page: 1
  year: 2018
  ident: b42
  article-title: An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading
  publication-title: IEEE Trans. Ind. Electron.
– year: 2018
  ident: b58
  article-title: Simulation and analysis of MPPT algorithms for solar PV based charging station
  publication-title: International Conference on Computational Techniques, Electronics and Mechanical Systems
– volume: 12
  year: 2019
  ident: b40
  article-title: Advanced MPPT algorithm for distributed photovoltaic systems
  publication-title: Energies
– reference: Shadlu, M.S., 2018. A Comparative Study Between Two MPPT Algorithms for Photovoltaic Energy Conversion System Based on Modular Multilevel Converter. In: 26th Iranian Conference on Electrical Engineering. ICEE2018.
– volume: 162
  start-page: 18
  year: 2015
  end-page: 23
  ident: b81
  article-title: Modelling and simulation of MPPT algorithm for PV grid-connected system
  publication-title: Integr. Ferroelectr.
– volume: 55
  start-page: 1913
  year: 2019
  end-page: 1921
  ident: b8
  article-title: An improved, 0.8 V OC model based GMPPT technique for module level photovoltaic power optimizers
  publication-title: IEEE Trans. Ind. Appl.
– volume: 11
  start-page: 365
  year: 2018
  ident: b24
  article-title: Performance evaluation of maximum power point tracking approaches and photovoltaic systems
  publication-title: Energies
– reference: Bollipo, R.B., Mikkili, S., Bonthagorla, P.K., 0000. Application of Radial Basis Neural Network in MPPT Technique for Stand-Alone PV System Under Partial Shading Conditions.
– volume: 9
  start-page: 288
  issue: 4
  year: 2016
  ident: 10.1016/j.egyr.2022.09.192_b17
  article-title: A high-performance adaptive incremental conductance MPPT algorithm for photovoltaic systems
  publication-title: Energies
  doi: 10.3390/en9040288
– volume: 6
  start-page: 198
  issue: 1
  year: 2015
  ident: 10.1016/j.egyr.2022.09.192_b80
  article-title: Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2363521
– start-page: 217
  year: 2016
  ident: 10.1016/j.egyr.2022.09.192_b103
– volume: 20
  issue: 11
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b7
  article-title: A deep reinforcement learning-based MPPT control for PV systems under partial shading condition
  publication-title: Sensors (Basel, Switzerland)
– volume: 8
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b84
  article-title: An adaptive resistance perturbation based MPPT algorithm for photovoltaic applications
  publication-title: IEEE Access
– volume: 12
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b22
  article-title: Performance improvement of PV systems’ maximum power point tracker based on a scanning PSO particle strategy
  publication-title: Sustainability
  doi: 10.3390/su12031185
– volume: 7
  start-page: 95
  issue: 1
  year: 2017
  ident: 10.1016/j.egyr.2022.09.192_b16
  article-title: Analysis of MPPT failure and development of an augmented nonlinear controller for MPPT of photovoltaic systems under partial shading conditions
  publication-title: Appl. Sci.
  doi: 10.3390/app7010095
– start-page: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b50
  article-title: Global maximum power point tracking technique based on adaptive salp swarm algorithm and P & O techniques for a PV string under partially shaded conditions
  publication-title: Energy Sourc. Part A Recov. Util. Environ. Effects
– ident: 10.1016/j.egyr.2022.09.192_b77
  doi: 10.1109/ICPES.2017.8387341
– volume: 14
  issue: 9
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b73
  article-title: Enhanced energy harvesting from shaded PV systems using an improved particle swarm optimization
  publication-title: IET Renew. Power Gener.
– volume: 162
  start-page: 18
  issue: 1
  year: 2015
  ident: 10.1016/j.egyr.2022.09.192_b81
  article-title: Modelling and simulation of MPPT algorithm for PV grid-connected system
  publication-title: Integr. Ferroelectr.
  doi: 10.1080/10584587.2015.1037202
– ident: 10.1016/j.egyr.2022.09.192_b93
  doi: 10.1109/IRSEC48032.2019.9078330
– volume: 83
  start-page: 108
  issue: FEB.
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b49
  article-title: A hybrid intelligent GMPPT algorithm for partial shading PV system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.10.013
– volume: 30
  start-page: 89
  issue: 1
  year: 2021
  ident: 10.1016/j.egyr.2022.09.192_b4
  article-title: An improved MPPT method based on fuzzy logic controller for a PV system
  publication-title: Stud. Inform. Control
  doi: 10.24846/v30i1y202108
– volume: 8
  start-page: 680
  issue: 6
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b87
  article-title: A novel nature-inspired maximum power point tracking (MPPT) controller based on SSA-GWO algorithm for partially shaded photovoltaic systems
  publication-title: Electronics
  doi: 10.3390/electronics8060680
– volume: 585
  issue: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b43
  article-title: Random inertia weight PSO based MPPT for solar PV under partial shaded condition
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 39
  start-page: 1186
  issue: 05
  year: 2015
  ident: 10.1016/j.egyr.2022.09.192_b46
  article-title: Non-mechanical modeling of photovoltaic arrays under partial shade
  publication-title: Power Syst. Technol.
– volume: 65
  start-page: 333
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b41
  article-title: A maximum power point tracking method for PV system with improved gravitational search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.030
– volume: 10
  start-page: 541
  issue: 4
  year: 2017
  ident: 10.1016/j.egyr.2022.09.192_b29
  article-title: A glowworm swarm optimization-based maximum power point tracking for photovoltaic/thermal systems under non-uniform solar irradiation and temperature distribution
  publication-title: Energies
  doi: 10.3390/en10040541
– volume: 55
  start-page: 1913
  issue: 2
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b8
  article-title: An improved, 0.8 V OC model based GMPPT technique for module level photovoltaic power optimizers
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2018.2885216
– ident: 10.1016/j.egyr.2022.09.192_b12
– volume: 37
  start-page: 1085
  issue: 1
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b82
  article-title: A novel MPPT controller using neural network and gain-scheduled PI for solar PV system under rapidly varying environmental condition
  publication-title: J. Intell. Fuzzy Systems
– volume: 271
  issue: October 2020
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b3
  article-title: Variable step size perturb and observe MPPT controller by applying θ-modified krill herd algorithm-sliding mode controller under partially shaded conditions
  publication-title: J. Clean. Prod.
– volume: 11
  start-page: 365
  issue: 2
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b24
  article-title: Performance evaluation of maximum power point tracking approaches and photovoltaic systems
  publication-title: Energies
  doi: 10.3390/en11020365
– volume: 32
  start-page: 340
  issue: 1
  year: 2017
  ident: 10.1016/j.egyr.2022.09.192_b56
  article-title: A grey wolf-assisted perturb & observe MPPT algorithm for a PV system
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2016.2633722
– start-page: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b96
  article-title: A novel combination algorithm of different methods of maximum power point tracking for grid-connected PV systems
  publication-title: J. Solar Energy Eng.
– ident: 10.1016/j.egyr.2022.09.192_b51
  doi: 10.1109/IREC.2018.8362525
– year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b98
  article-title: Analysis of MPPT methods: P & O, INC and fuzzy logic (CLF) for a PV system
– volume: 11
  start-page: 585
  issue: 6
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b13
  article-title: High-performance pure Sine wave inverter with robust intelligent sliding mode maximum power point tracking for photovoltaic applications
  publication-title: Micromachines
  doi: 10.3390/mi11060585
– volume: 12
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b55
  article-title: A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions
  publication-title: Sustainability
– volume: 215
  start-page: 1203
  issue: APR.1
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b91
  article-title: Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.150
– volume: 309
  year: 2021
  ident: 10.1016/j.egyr.2022.09.192_b102
  article-title: Bio-inspired optimization algorithms based maximum power point tracking technique for photovoltaic systems under partial shading and complex partial shading conditions
  publication-title: J. Clean. Prod.
– start-page: 1
  year: 2021
  ident: 10.1016/j.egyr.2022.09.192_b72
  article-title: A new hybrid BAT-ANFIS-based power tracking technique for partial shaded photovoltaic systems
  publication-title: Int. J. Fuzzy Syst.
– start-page: 1
  year: 2021
  ident: 10.1016/j.egyr.2022.09.192_b34
  article-title: Novel hybrid maximum power point tracking controller based on artificial intelligence for solar photovoltaic system under variable environmental conditions
  publication-title: J. Electr. Eng. Technol.
– ident: 10.1016/j.egyr.2022.09.192_b106
  doi: 10.1109/ICRIEECE44171.2018.9009374
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b27
  article-title: Implementation and comparative analysis of P & O and INC MPPT method for PV system
– volume: 7
  issue: 12
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b88
  article-title: An advanced maximum power point tracking method for photovoltaic systems by using variable universe fuzzy logic control considering temperature variability
  publication-title: Electronics
  doi: 10.3390/electronics7120355
– volume: 40
  start-page: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b70
  article-title: Comparative analysis of MPPT algorithms based on bat algorithm for PV systems under partial shading condition
  publication-title: Sustain. Energy Technol. Assess.
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b6
  article-title: Metaheuristic optimization of fractional order incremental conductance (FO-INC) maximum power point tracking (MPPT)
  publication-title: Complexity
  doi: 10.1155/2019/7687891
– ident: 10.1016/j.egyr.2022.09.192_b10
– year: 2016
  ident: 10.1016/j.egyr.2022.09.192_b99
  article-title: Maximum power point tracking algorithms for single-stage photovoltaic power plants under time-varying reactive power injection
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2016.03.023
– volume: 12
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b35
  article-title: Optimization design and test bed of fuzzy control rule base for PV system MPPT in micro grid
  publication-title: Sustainability
– year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b58
  article-title: Simulation and analysis of MPPT algorithms for solar PV based charging station
– ident: 10.1016/j.egyr.2022.09.192_b74
  doi: 10.1109/ICEE.2018.8472425
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b67
  publication-title: Journal of electrical engineering & technology
– year: 2022
  ident: 10.1016/j.egyr.2022.09.192_b101
  article-title: Design of optimal controller for photovoltaic maximum power point tracking applications
  publication-title: Energy Sources
– year: 2012
  ident: 10.1016/j.egyr.2022.09.192_b31
  article-title: Photovoltaic model identification using particle swarm optimization with inverse barrier constraint
  publication-title: Power Electron. IEEE Trans.
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b45
  article-title: A MPPT algorithm based on PSO for PV array under partially shaded condition
– ident: 10.1016/j.egyr.2022.09.192_b71
  doi: 10.1109/ICon-EEI.2018.8784324
– volume: 152
  start-page: 194
  year: 2017
  ident: 10.1016/j.egyr.2022.09.192_b109
  article-title: A hybrid MPPT method for grid connected photovoltaic systems under rapidly changing atmospheric conditions
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.07.011
– volume: PP
  start-page: 1
  issue: 99
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b30
  article-title: A hybrid evolutionary-based MPPT for photovoltaic systems under partial shading conditions
  publication-title: IEEE Access
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b65
  article-title: An accurate, shade detection-based hybrid maximum power point tracking approach for PV systems
  publication-title: IEEE Trans. Power Electron.
– year: 2015
  ident: 10.1016/j.egyr.2022.09.192_b89
  article-title: Modeling maximum power point tracking efficiency for PV systems
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b26
– volume: 5
  start-page: 1445
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b104
  article-title: An effective maximum power point tracker for partially shaded solar photovoltaic systems
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.10.006
– volume: 12
  issue: 4
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b5
  article-title: Accelerated particle swarm optimization for photovoltaic maximum power point tracking under partial shading conditions
  publication-title: Energies
  doi: 10.3390/en12040623
– year: 2021
  ident: 10.1016/j.egyr.2022.09.192_b54
– volume: 8
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b100
  article-title: A novel pigeon-inspired optimization based MPPT technique for PV systems
  publication-title: Processes
– volume: PP
  start-page: 1
  issue: 99
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b9
  article-title: Steady output and fast tracking MPPT (SOFT MPPT) for P & O and InC algorithms
  publication-title: IEEE Trans. Sustain. Energy
– volume: 9
  start-page: 1043
  issue: 8
  year: 2015
  ident: 10.1016/j.egyr.2022.09.192_b21
  article-title: Artificial neural network-based photovoltaic maximum power point tracking techniques: A survey
  publication-title: Renew.ble Power Gener. Iet
  doi: 10.1049/iet-rpg.2014.0359
– year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b52
  article-title: A critical review on PV MPPT techniques : Classical, intelligent and optimization
  publication-title: IET Renew. Power Gener.
– volume: 178
  start-page: 37
  issue: JAN.
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b64
  article-title: An improved P & O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.12.008
– volume: 17
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b28
  article-title: A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems
  publication-title: Int. J. Green Energy
– volume: 22
  start-page: 4
  issue: 4
  year: 2001
  ident: 10.1016/j.egyr.2022.09.192_b79
  article-title: Mathematical models for silicon solar cell engineering
  publication-title: Acta Energiae Sol. Sin.
– start-page: 1
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b42
  article-title: An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2807368
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b68
  article-title: Temperature based maximum power point tracking for photovoltaic modules
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69365-5
– volume: 39
  start-page: 4715
  issue: 6
  year: 2014
  ident: 10.1016/j.egyr.2022.09.192_b86
  article-title: A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-014-1056-0
– year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b62
  article-title: Tracking comparison of p & o and INC based MPPTs under varying weather conditions
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b61
  article-title: An efficient GWO MPPT for a PV system using impedance information acceleration
  publication-title: Int. J. Electron.
  doi: 10.1080/00207217.2018.1545929
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b25
  article-title: A new variable step-size p & o algorithm with power output and sensorless DPC method for grid-connected PV system
– ident: 10.1016/j.egyr.2022.09.192_b1
  doi: 10.1109/SSD.2019.8893172
– volume: 268
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b92
  article-title: Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121983
– volume: 2190
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b11
  article-title: Optimization of the fuzzy MPPT controller by GA for the single-phase grid-connected photovoltaic system controlled by sliding mode
  publication-title: AIP Conf. Proc.
– volume: 40
  start-page: 2641
  issue: 9
  year: 2015
  ident: 10.1016/j.egyr.2022.09.192_b2
  article-title: An efficient ANFIS-based PI controller for maximum power point tracking of PV systems
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-015-1749-z
– year: 2014
  ident: 10.1016/j.egyr.2022.09.192_b18
  article-title: A novel global MPPT based on genetic algorithms for photovoltaic systems under influence of partial shading
– volume: 24
  start-page: 285
  issue: 1
  year: 2016
  ident: 10.1016/j.egyr.2022.09.192_b66
  article-title: Double integral sliding mode MPPT control of a photovoltaic system
  publication-title: IEEE Trans. Control Syst. Technol.: A Publ. IEEE Control Syst. Soc.
  doi: 10.1109/TCST.2015.2420674
– volume: 189
  start-page: 151
  issue: Sep.
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b37
  article-title: Global maximum power point tracking using variable sampling time and p-v curve region shifting technique along with incremental conductance for partially shaded photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.07.029
– volume: 168
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b85
  article-title: Improved method of maximum power point tracking of photovoltaic (PV) array using hybrid intelligent controller
  publication-title: Optik
– volume: 84
  start-page: 1
  issue: MAR.
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b78
  article-title: Output feedback control of sensorless photovoltaic systems, with maximum power point tracking
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.10.020
– volume: 59
  start-page: 141
  issue: 1
  year: 2014
  ident: 10.1016/j.egyr.2022.09.192_b105
  article-title: A duty cycle optimization based hybrid maximum power point tracking technique for photovoltaic systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.02.009
– ident: 10.1016/j.egyr.2022.09.192_b97
  doi: 10.1109/UPEC.2018.8542065
– volume: 13
  start-page: 1304
  issue: 6
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b47
  article-title: Maximum power point tracking and voltage regulation of two-stage grid-tied PV system based on model predictive control
  publication-title: Energies
  doi: 10.3390/en13061304
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b53
  article-title: Performance comparison of P & O and INC MPPT algorithm for a stand-alone PV system
– volume: 66
  start-page: 6990
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b33
  article-title: An effective hybrid maximum power point tracker of photovoltaic arrays for complex partial shading conditions
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2877202
– volume: 293
  start-page: 545
  year: 2014
  ident: 10.1016/j.egyr.2022.09.192_b39
  article-title: A three-phase grid-connected PV generation system with a constant voltage based maximum power point tracking
  publication-title: Lect. Notes Electr. Eng.
  doi: 10.1007/978-3-319-04573-3_68
– volume: 24
  issue: 4
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b32
  article-title: Conventional and soft-computing based MPPT methods comparisons in direct and indirect modes for single stage PV systems
  publication-title: Elektron. Ir Elektrotech.
  doi: 10.5755/j01.eie.24.4.21477
– volume: 12
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b40
  article-title: Advanced MPPT algorithm for distributed photovoltaic systems
  publication-title: Energies
  doi: 10.3390/en12183576
– year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b63
  article-title: An improved PSO algorithm for battery parameters identification optimization based on Thevenin battery model
– volume: 98
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b23
  article-title: Implementation of a novel hybrid BAT-fuzzy controller based MPPT for grid-connected PV-battery system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104380
– ident: 10.1016/j.egyr.2022.09.192_b60
  doi: 10.23919/ELECO47770.2019.8990426
– volume: 7
  start-page: 439
  issue: 4
  year: 2015
  ident: 10.1016/j.egyr.2022.09.192_b36
  article-title: Fast variable step-size maximum power point tracking method for photovoltaic systems
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4928519
– year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b20
  article-title: A novel MPPT algorithm based on optimized artificial neural network by using FPSOGSA for standalone photovoltaic energy systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2447-9
– year: 2008
  ident: 10.1016/j.egyr.2022.09.192_b38
  article-title: Comparative study of maximum power point tracking algorithms for thermoelectric generators
– volume: 73
  start-page: 13
  issue: apr.
  year: 2014
  ident: 10.1016/j.egyr.2022.09.192_b57
  article-title: A maximum power point tracking technique based on bypass diode mechanism for PV arrays under partial shading
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.01.018
– volume: PP
  start-page: 1
  issue: 99
  year: 2020
  ident: 10.1016/j.egyr.2022.09.192_b90
  article-title: A modified INC method for PV string under uniform irradiance and partially shaded conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995367
– volume: 19
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b75
  article-title: Moth–flame optimization-based maximum power point tracking for photovoltaic systems under partial shading conditions
  publication-title: J. Power Electron.
– year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b108
  article-title: MPPT of photovoltaic system variable acceleration disturbance method based on genetic algorithm
  publication-title: Int. J. Rob. Autom.
– volume: 40
  start-page: 2178
  issue: 7
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b48
  article-title: Comprehensive improvement of artificial fish swarm algorithm for global MPPT in PV system under partial shading conditions
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331217697374
– volume: 55
  start-page: 6234
  issue: 6
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b83
  article-title: Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2937856
– volume: 14
  year: 2021
  ident: 10.1016/j.egyr.2022.09.192_b14
  article-title: A hybrid MPPT controller based on the genetic algorithm and ant colony optimization for photovoltaic systems under partially shaded conditions
  publication-title: Energies
  doi: 10.3390/en14102902
– volume: 158
  start-page: 1006
  issue: dec.
  year: 2017
  ident: 10.1016/j.egyr.2022.09.192_b19
  article-title: An improved particle swarm optimization based maximum power point tracking algorithm for PV system operating under partial shading conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.10.027
– volume: 322
  issue: 7
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b15
  article-title: Comparison of P & O and INC methods in maximum power point tracker for PV systems
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: PP
  issue: 99
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b107
  article-title: A hybrid ANFIS-ABC based MPPT controller for PV system with anti-islanding grid protection: Experimental realization
  publication-title: IEEE Access
– year: 2008
  ident: 10.1016/j.egyr.2022.09.192_b44
  article-title: Comparison of p & o and hill climbing MPPT methods for grid-connected PV converter
– volume: 180
  start-page: 152
  issue: MAR.
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b59
  article-title: Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2019.01.028
– year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b95
  article-title: Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition
  publication-title: Energy
– volume: 11
  start-page: 606
  issue: 3
  year: 2018
  ident: 10.1016/j.egyr.2022.09.192_b76
  article-title: Adaptive feedback linearization based NeuroFuzzy maximum power point tracking for a photovoltaic system
  publication-title: Energies
  doi: 10.3390/en11030606
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b69
  article-title: Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932694
– volume: 12
  year: 2019
  ident: 10.1016/j.egyr.2022.09.192_b94
  article-title: An immune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions
  publication-title: Energies
SSID ssj0001920463
Score 2.4280386
SecondaryResourceType review_article
Snippet With the expansion of the scale of application of photovoltaic (PV) power generation, PV maximum power point tracking (MPPT) technology has been transformed...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 13235
SubjectTerms Maximum power-point tracking
Partially shaded conditions
Photovoltaic mathematical model
Swarm intelligence optimization algorithm
Uniform environment condition
Title Analysis of photovoltaic array maximum power point tracking under uniform environment and partial shading condition: A review
URI https://dx.doi.org/10.1016/j.egyr.2022.09.192
https://doaj.org/article/5798deae263f4a5e9fbaacf41e1cc420
Volume 8
WOSCitedRecordID wos000884770900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09S8UwFA0iDi6iqPj8IoObFJI0TRs3FcVFcVBwC_nUJ76-R62ig_52c5s-7aSLS4aQJuXmktzT3nMuQgeEmFw6QrJSS57xIGmmAzGZc8ZT47moAu-KTZRXV9XdnbwelPqCnLAkD5wMFwG7rJzXnok8cF14GYzWNnDqqbWcdWidlHIAph5T3AJSWF1luYJlPJ7BPWMmJXf5-3cQA2UMRE7Tf9CfW6kT7x9cToML53wVrfSRIj5Ob7iGFny9jj7mIiJ4GvDsYdpO4_ES0b3Fumn0O57ot_HkZYJnUPwstuO6xW2jLXwQx8AXa2ILZKwJHlDcsK4dnoEt4oLPD11aPY5A2XX5XEf4GCeGywa6PT-7Ob3I-goKmeWUtFlFbRH3KOe5q0pGgjM6lECWZYEXpnCioEI4KbgwLA_WUuYkdSL2W8mYIfkmWqyntd9C2FScA9rRoYiIjWvDSl2GUAkeYwpL8xGicwsq28uLQ5WLJzXPI3tUYHUFVldEqmj1ETr8fmaWxDV-HX0CG_M9EoSxu47oLqp3F_WXu4xQMd9W1ccYKXaIU41_WXz7PxbfQcswZaIy7qLFtnnxe2jJvrbj52a_8-DYXn6efQGPi_nF
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+photovoltaic+array+maximum+power+point+tracking+under+uniform+environment+and+partial+shading+condition%3A+A+review&rft.jtitle=Energy+reports&rft.au=Li%2C+Jianlin&rft.au=Wu%2C+Yiwen&rft.au=Ma%2C+Suliang&rft.au=Chen%2C+Mingxuan&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=13235&rft.epage=13252&rft_id=info:doi/10.1016%2Fj.egyr.2022.09.192&rft.externalDocID=S2352484722019199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon