A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem

This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ain Shams Engineering Journal Ročník 12; číslo 2; s. 2125 - 2133
Hlavní autori: Elsisy, M.A., El Sayed, M.A., Abo-Elnaga, Y.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2021
Elsevier
Predmet:
ISSN:2090-4479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm.
ISSN:2090-4479
DOI:10.1016/j.asej.2020.11.006