A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem
This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic m...
Uloženo v:
| Vydáno v: | Ain Shams Engineering Journal Ročník 12; číslo 2; s. 2125 - 2133 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2021
Elsevier |
| Témata: | |
| ISSN: | 2090-4479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm. |
|---|---|
| AbstractList | This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm. |
| Author | Elsisy, M.A. El Sayed, M.A. Abo-Elnaga, Y. |
| Author_xml | – sequence: 1 givenname: M.A. surname: Elsisy fullname: Elsisy, M.A. organization: Department of Basic Engineering Sciences, Benha Faculty of Engineering, Benha University, ElQalyoubia, Egypt – sequence: 2 givenname: M.A. surname: El Sayed fullname: El Sayed, M.A. organization: Department of Basic Engineering Sciences, Benha Faculty of Engineering, Benha University, ElQalyoubia, Egypt – sequence: 3 givenname: Y. surname: Abo-Elnaga fullname: Abo-Elnaga, Y. organization: Department of Basic Sciences, Higher Technological Institute, Tenth of Ramadan City, Egypt |
| BookMark | eNp9kE1rHSEUQF2k0DTNH-jKPzCvfs0XdBNCmwYC7aJdy1WvEwdnfDjmQf99nbxkk0VWXi6co55P5GJNKxLyhbMDZ7z7Oh9gw_kgmKgLfmCsuyCXgo2sUaofP5LrbQuG1VkM7dBekuMNXdMJI4U4pRzK40J9ynTCFTOUsE70N2Qsifqc1hIw0-SpCU3EHVqeYglNMjPaEk5Ic3qaHqtwjWFFyPSY05RhWXZPnU3E5TP54CFueP1yXpG_P77_uf3ZPPy6u7-9eWis4qw0PVeghAVjmDGybU3vlXTcexh7J2EUAgbTydZKMEyi740bfOs76ZR3wnp5Re7PXpdg1sccFsj_dIKgnxcpTxpyCTaiHjqPinM5toNXbrCjV8BHIzsnTb3VVNdwdtmcti2j1zaUWqcWyRCi5kzv8fWs9_h6j6851zV-RcUb9PUp70LfzhDWQKcaXW824GrRhVxL1x-E9_D_X1aljA |
| CitedBy_id | crossref_primary_10_1007_s13198_024_02292_0 crossref_primary_10_1007_s42979_022_01333_4 crossref_primary_10_1016_j_cie_2024_110631 crossref_primary_10_1016_j_eswa_2025_126729 crossref_primary_10_1016_j_omega_2023_102914 crossref_primary_10_1007_s43069_024_00294_z crossref_primary_10_1016_j_eswa_2023_121833 crossref_primary_10_3233_JIFS_200382 crossref_primary_10_3390_math13081242 crossref_primary_10_1007_s00500_021_06374_0 crossref_primary_10_1007_s13369_025_10081_5 crossref_primary_10_3390_agriculture12101669 crossref_primary_10_1007_s00500_023_09563_1 crossref_primary_10_3390_app122312299 crossref_primary_10_1016_j_eswa_2023_122762 crossref_primary_10_1007_s11280_022_01082_7 crossref_primary_10_1007_s00500_022_07114_8 crossref_primary_10_1155_2022_3889000 crossref_primary_10_1007_s00500_023_09468_z crossref_primary_10_1007_s00500_022_07302_6 crossref_primary_10_1007_s12190_023_01871_x crossref_primary_10_1007_s00500_023_09508_8 crossref_primary_10_1016_j_eswa_2022_117264 crossref_primary_10_1007_s00500_023_08336_0 crossref_primary_10_1007_s13369_024_08952_4 crossref_primary_10_1080_0305215X_2023_2195645 crossref_primary_10_1016_j_eswa_2023_122734 crossref_primary_10_1016_j_ceramint_2024_12_450 crossref_primary_10_1007_s00500_023_08042_x crossref_primary_10_1007_s00500_023_08292_9 crossref_primary_10_1017_S026357472300070X crossref_primary_10_1088_1742_6596_2847_1_012003 |
| Cites_doi | 10.5772/6440 10.1007/s12597-016-0290-5 10.9734/BJMCS/2017/30626 10.1023/A:1011268113791 10.1007/s00500-018-3217-7 10.12785/amis/080622 10.1007/s12597-019-00368-1 10.1016/j.mcm.2008.01.003 10.1007/s00500-018-3205-y 10.1007/s12597-017-0300-2 10.1155/2020/9207650 10.1016/j.ijar.2010.08.012 10.9734/BJMCS/2016/28531 10.3233/FI-1996-272301 10.1007/s12597-020-00461-w 10.1007/BF01001956 10.9734/BJMCS/2015/13430 10.1016/j.aej.2019.12.002 10.1016/j.asej.2020.03.003 10.1016/j.fss.2009.02.022 10.1007/s12597-013-0145-2 10.1016/j.ejor.2007.12.019 10.1016/j.knosys.2014.12.016 10.1016/j.apm.2012.03.002 10.1007/978-3-642-19893-9_19 10.1016/j.ejor.2005.08.024 10.1007/s10107-012-0535-x |
| ContentType | Journal Article |
| Copyright | 2020 Faculty of Engineering, Ain Shams University |
| Copyright_xml | – notice: 2020 Faculty of Engineering, Ain Shams University |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.asej.2020.11.006 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 2133 |
| ExternalDocumentID | oai_doaj_org_article_86fe4113958f4d8c9f4a19b36d3bf43b 10_1016_j_asej_2020_11_006 S2090447920302732 |
| GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c410t-714a42cabb0bb355b7f43d1ffa97d3a922a8b635c3ab03ef7bd8f5f63d4fd2cf3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658517800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2090-4479 |
| IngestDate | Fri Oct 03 12:52:36 EDT 2025 Tue Nov 18 20:54:00 EST 2025 Wed Nov 05 20:47:07 EST 2025 Sat Apr 29 16:16:28 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Multi-objective programming Bi-level programming KKT optimality Rough set |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-714a42cabb0bb355b7f43d1ffa97d3a922a8b635c3ab03ef7bd8f5f63d4fd2cf3 |
| OpenAccessLink | https://doaj.org/article/86fe4113958f4d8c9f4a19b36d3bf43b |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_86fe4113958f4d8c9f4a19b36d3bf43b crossref_citationtrail_10_1016_j_asej_2020_11_006 crossref_primary_10_1016_j_asej_2020_11_006 elsevier_sciencedirect_doi_10_1016_j_asej_2020_11_006 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Ain Shams Engineering Journal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Pawlak (b0130) 1996; 27 Elsisy, Elsaadany, El Sayed (b0055) 2020 Pawlak (b0125) 1982; 11 Ranarahu, Dash, Acharya (b0135) 2017; 54 AbdAlhakim, Emam, El-Mageed (b0010) 2019; 56 Elsisy, El Sayed (b0045) 2019; 58 Gumus, Floudas (b0075) 2001; 20 S. Rissino, G. Lambert-Torres, Rough set theory-fundamental concepts, principals, data extraction, and applications. In: Data mining and knowledge discovery in real life applications. IntechOpen; 2009. Baky (b0025) 2009; 160 Baky, Eid, Elsayed (b0020) 2014; 51 Shi, Lu, Zhang (b0160) 2005; 162 El Sayed MA, Farahat FA. Study of achievement stability set for parametric linear FGP problems. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2020.03.003. Osman, Emam, El Sayed (b0105) 2016; 18 Arora, Gupta (b0005) 2009; 194 Emam, El-Araby, Belal (b0040) 2015; 4 Pramanik, Roy (b0120) 2007; 176 Saad, Emam, Sleem (b0155) 2015; 5 Osman, Emam, El Sayed (b0110) 2018; 7 Chen, Chen (b0035) 2015; 76 Youness, Emam, Hafez (b0170) 2014; 8 Kong, Xu (b0085) 2019; 23 Osman, Raslan, Emam, Farahat (b0115) 2017; 21 Ren (b0140) 2015; 2 Miettinen (b0095) 2012 Elsisy, Eid, Osman (b0050) 2017; 54 Baky, Abo-Sinna (b0030) 2013; 37 Eichfelder G. Solving nonlinear multiobjective bilevel optimization problems with coupled upper level constraints. Evolutionary Multi-Criterion Optimization 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_19. Xu J, yao L. A class of multi objective linear programming models with random rough coefficient. Math Comput Model 49; 2009:189–206. Shi, Yao, Xu (b0150) 2011; 52 El Sayed, Baky, Singh (b0060) 2020; 57 Allende, Still (b0015) 2013; 138 Hamzehee, Yaghoobi, Mashinchi (b0080) 2014; 26 Nayak, Ojha (b0100) 2019; 23 Baky (10.1016/j.asej.2020.11.006_b0030) 2013; 37 AbdAlhakim (10.1016/j.asej.2020.11.006_b0010) 2019; 56 10.1016/j.asej.2020.11.006_b0070 Elsisy (10.1016/j.asej.2020.11.006_b0045) 2019; 58 Arora (10.1016/j.asej.2020.11.006_b0005) 2009; 194 Osman (10.1016/j.asej.2020.11.006_b0115) 2017; 21 Baky (10.1016/j.asej.2020.11.006_b0020) 2014; 51 El Sayed (10.1016/j.asej.2020.11.006_b0060) 2020; 57 Kong (10.1016/j.asej.2020.11.006_b0085) 2019; 23 Nayak (10.1016/j.asej.2020.11.006_b0100) 2019; 23 Pramanik (10.1016/j.asej.2020.11.006_b0120) 2007; 176 Ranarahu (10.1016/j.asej.2020.11.006_b0135) 2017; 54 Allende (10.1016/j.asej.2020.11.006_b0015) 2013; 138 Shi (10.1016/j.asej.2020.11.006_b0160) 2005; 162 Saad (10.1016/j.asej.2020.11.006_b0155) 2015; 5 Miettinen (10.1016/j.asej.2020.11.006_b0095) 2012 Osman (10.1016/j.asej.2020.11.006_b0110) 2018; 7 10.1016/j.asej.2020.11.006_b0145 Shi (10.1016/j.asej.2020.11.006_b0150) 2011; 52 10.1016/j.asej.2020.11.006_b0065 Elsisy (10.1016/j.asej.2020.11.006_b0050) 2017; 54 Ren (10.1016/j.asej.2020.11.006_b0140) 2015; 2 10.1016/j.asej.2020.11.006_b0165 Osman (10.1016/j.asej.2020.11.006_b0105) 2016; 18 Pawlak (10.1016/j.asej.2020.11.006_b0125) 1982; 11 Emam (10.1016/j.asej.2020.11.006_b0040) 2015; 4 Pawlak (10.1016/j.asej.2020.11.006_b0130) 1996; 27 Chen (10.1016/j.asej.2020.11.006_b0035) 2015; 76 Gumus (10.1016/j.asej.2020.11.006_b0075) 2001; 20 Hamzehee (10.1016/j.asej.2020.11.006_b0080) 2014; 26 Baky (10.1016/j.asej.2020.11.006_b0025) 2009; 160 Elsisy (10.1016/j.asej.2020.11.006_b0055) 2020 Youness (10.1016/j.asej.2020.11.006_b0170) 2014; 8 |
| References_xml | – volume: 51 start-page: 280 year: 2014 end-page: 296 ident: b0020 article-title: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm publication-title: Opsearch – volume: 57 start-page: 1374 year: 2020 end-page: 1403 ident: b0060 article-title: A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision-making problem publication-title: Opsearch – volume: 2 start-page: 1 year: 2015 end-page: 11 ident: b0140 article-title: A novel method for solving the fully fuzzy bilevel linear programming problem publication-title: Math Probl Eng – volume: 194 start-page: 368 year: 2009 end-page: 376 ident: b0005 article-title: interactive fuzzy goal programming approach for bi-level programming problem publication-title: Eur J Oper Res – volume: 76 start-page: 189 year: 2015 end-page: 199 ident: b0035 article-title: A two-phase fuzzy approach for solving multi-level decision-making problems publication-title: Knowl-Based Syst – volume: 27 start-page: 103 year: 1996 end-page: 108 ident: b0130 article-title: Rough sets, rough relations and rough functions publication-title: Fundament Inform – volume: 54 start-page: 475 year: 2017 end-page: 504 ident: b0135 article-title: Multi-objective bilevel fuzzy probabilistic programming problem publication-title: Opsearch – volume: 7 start-page: 139 year: 2018 end-page: 149 ident: b0110 article-title: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters publication-title: Beni-Suef J Basic Appl Sci – volume: 20 start-page: 1 year: 2001 end-page: 31 ident: b0075 article-title: Global optimization of nonlinear bilevel programming problems publication-title: J Global Optim – volume: 160 start-page: 2701 year: 2009 end-page: 2713 ident: b0025 article-title: Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems publication-title: Fuzzy Sets Syst – volume: 52 start-page: 261 year: 2011 end-page: 280 ident: b0150 article-title: A probability maximization model based on rough approximation and its application to the inventory problem publication-title: Int J Approx Reason – volume: 18 start-page: 1 year: 2016 end-page: 19 ident: b0105 article-title: On parametric multilevel multi-objective fractional programming problems with fuzziness in the constraints publication-title: Brit J Math Comput Sci – volume: 176 start-page: 1151 year: 2007 end-page: 1166 ident: b0120 article-title: Fuzzy goal programming approach to multi-level programming problems publication-title: Eur J Oper Res – year: 2012 ident: b0095 article-title: Nonlinear multiobjective optimization – volume: 58 start-page: 1471 year: 2019 end-page: 1482 ident: b0045 article-title: Fuzzy rough bi-level multi-objective non-linear programming problems publication-title: Alex Eng J – volume: 8 start-page: 2857 year: 2014 end-page: 2863 ident: b0170 article-title: Fuzzy bi-level multi-objective fractional integer programming publication-title: Appl Math Inform Sci – volume: 54 start-page: 724 year: 2017 end-page: 734 ident: b0050 article-title: Qualitative analysis of basic notions in parametric rough convex programming (parameters in the objective function and feasible region is a rough set) publication-title: Opsearch – volume: 4 start-page: 41 year: 2015 end-page: 49 ident: b0040 article-title: On rough multi-level linear programming problem publication-title: Inform Sci Lett – volume: 26 start-page: 1179 year: 2014 end-page: 1189 ident: b0080 article-title: Linear programming with rough interval coefficients publication-title: Intell Fuzzy Syst – reference: Xu J, yao L. A class of multi objective linear programming models with random rough coefficient. Math Comput Model 49; 2009:189–206. – volume: 23 start-page: 5605 year: 2019 end-page: 5618 ident: b0100 article-title: An approach of fuzzy and TOPSIS to bi-level multi-objective nonlinear fractional programming problem publication-title: Soft Comput – reference: S. Rissino, G. Lambert-Torres, Rough set theory-fundamental concepts, principals, data extraction, and applications. In: Data mining and knowledge discovery in real life applications. IntechOpen; 2009. – year: 2020 ident: b0055 article-title: Using interval operations in the Hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt publication-title: Complexity – volume: 138 start-page: 309 year: 2013 end-page: 332 ident: b0015 article-title: Solving bilevel programs with the KKT-approach publication-title: Math Program – reference: Eichfelder G. Solving nonlinear multiobjective bilevel optimization problems with coupled upper level constraints. Evolutionary Multi-Criterion Optimization 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_19. – volume: 21 start-page: 1 year: 2017 end-page: 17 ident: b0115 article-title: Solving multi-level multi-objective fractional programming problem with rough intervals in the objective functions publication-title: Brit J Math Comput Sci – volume: 162 start-page: 51 year: 2005 end-page: 63 ident: b0160 article-title: An extended Kuhn-Tucker approach for linear bilevel programming publication-title: Appl Math Comput – volume: 37 start-page: 1004 year: 2013 end-page: 1015 ident: b0030 article-title: TOPSIS for bi-level MODM problems publication-title: Appl Math Model – reference: El Sayed MA, Farahat FA. Study of achievement stability set for parametric linear FGP problems. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2020.03.003. – volume: 56 start-page: 367 year: 2019 end-page: 389 ident: b0010 article-title: Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem publication-title: Opsearch – volume: 23 start-page: 3237 year: 2019 end-page: 3251 ident: b0085 article-title: The comparative study of covering rough sets and multi-granulation rough sets publication-title: Soft Comput – volume: 11 start-page: 341 year: 1982 end-page: 356 ident: b0125 article-title: Rough sets publication-title: Int J Comput Inform Sci – volume: 5 start-page: 349 year: 2015 end-page: 366 ident: b0155 article-title: On the solution of a rough interval three-level quadratic programming problem publication-title: Brit J Math Comput Sci – ident: 10.1016/j.asej.2020.11.006_b0145 doi: 10.5772/6440 – volume: 54 start-page: 475 issue: 3 year: 2017 ident: 10.1016/j.asej.2020.11.006_b0135 article-title: Multi-objective bilevel fuzzy probabilistic programming problem publication-title: Opsearch doi: 10.1007/s12597-016-0290-5 – volume: 21 start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.asej.2020.11.006_b0115 article-title: Solving multi-level multi-objective fractional programming problem with rough intervals in the objective functions publication-title: Brit J Math Comput Sci doi: 10.9734/BJMCS/2017/30626 – volume: 20 start-page: 1 year: 2001 ident: 10.1016/j.asej.2020.11.006_b0075 article-title: Global optimization of nonlinear bilevel programming problems publication-title: J Global Optim doi: 10.1023/A:1011268113791 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.asej.2020.11.006_b0140 article-title: A novel method for solving the fully fuzzy bilevel linear programming problem publication-title: Math Probl Eng – volume: 23 start-page: 5605 issue: 14 year: 2019 ident: 10.1016/j.asej.2020.11.006_b0100 article-title: An approach of fuzzy and TOPSIS to bi-level multi-objective nonlinear fractional programming problem publication-title: Soft Comput doi: 10.1007/s00500-018-3217-7 – volume: 8 start-page: 2857 issue: 6 year: 2014 ident: 10.1016/j.asej.2020.11.006_b0170 article-title: Fuzzy bi-level multi-objective fractional integer programming publication-title: Appl Math Inform Sci doi: 10.12785/amis/080622 – volume: 56 start-page: 367 issue: 2 year: 2019 ident: 10.1016/j.asej.2020.11.006_b0010 article-title: Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem publication-title: Opsearch doi: 10.1007/s12597-019-00368-1 – ident: 10.1016/j.asej.2020.11.006_b0165 doi: 10.1016/j.mcm.2008.01.003 – volume: 23 start-page: 3237 issue: 10 year: 2019 ident: 10.1016/j.asej.2020.11.006_b0085 article-title: The comparative study of covering rough sets and multi-granulation rough sets publication-title: Soft Comput doi: 10.1007/s00500-018-3205-y – year: 2012 ident: 10.1016/j.asej.2020.11.006_b0095 – volume: 54 start-page: 724 issue: 4 year: 2017 ident: 10.1016/j.asej.2020.11.006_b0050 article-title: Qualitative analysis of basic notions in parametric rough convex programming (parameters in the objective function and feasible region is a rough set) publication-title: Opsearch doi: 10.1007/s12597-017-0300-2 – year: 2020 ident: 10.1016/j.asej.2020.11.006_b0055 article-title: Using interval operations in the Hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt publication-title: Complexity doi: 10.1155/2020/9207650 – volume: 52 start-page: 261 issue: 2 year: 2011 ident: 10.1016/j.asej.2020.11.006_b0150 article-title: A probability maximization model based on rough approximation and its application to the inventory problem publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2010.08.012 – volume: 18 start-page: 1 issue: 5 year: 2016 ident: 10.1016/j.asej.2020.11.006_b0105 article-title: On parametric multilevel multi-objective fractional programming problems with fuzziness in the constraints publication-title: Brit J Math Comput Sci doi: 10.9734/BJMCS/2016/28531 – volume: 27 start-page: 103 year: 1996 ident: 10.1016/j.asej.2020.11.006_b0130 article-title: Rough sets, rough relations and rough functions publication-title: Fundament Inform doi: 10.3233/FI-1996-272301 – volume: 57 start-page: 1374 year: 2020 ident: 10.1016/j.asej.2020.11.006_b0060 article-title: A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision-making problem publication-title: Opsearch doi: 10.1007/s12597-020-00461-w – volume: 11 start-page: 341 issue: 5 year: 1982 ident: 10.1016/j.asej.2020.11.006_b0125 article-title: Rough sets publication-title: Int J Comput Inform Sci doi: 10.1007/BF01001956 – volume: 162 start-page: 51 year: 2005 ident: 10.1016/j.asej.2020.11.006_b0160 article-title: An extended Kuhn-Tucker approach for linear bilevel programming publication-title: Appl Math Comput – volume: 5 start-page: 349 issue: 3 year: 2015 ident: 10.1016/j.asej.2020.11.006_b0155 article-title: On the solution of a rough interval three-level quadratic programming problem publication-title: Brit J Math Comput Sci doi: 10.9734/BJMCS/2015/13430 – volume: 58 start-page: 1471 year: 2019 ident: 10.1016/j.asej.2020.11.006_b0045 article-title: Fuzzy rough bi-level multi-objective non-linear programming problems publication-title: Alex Eng J doi: 10.1016/j.aej.2019.12.002 – volume: 7 start-page: 139 issue: 1 year: 2018 ident: 10.1016/j.asej.2020.11.006_b0110 article-title: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters publication-title: Beni-Suef J Basic Appl Sci – ident: 10.1016/j.asej.2020.11.006_b0065 doi: 10.1016/j.asej.2020.03.003 – volume: 160 start-page: 2701 issue: 18 year: 2009 ident: 10.1016/j.asej.2020.11.006_b0025 article-title: Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2009.02.022 – volume: 51 start-page: 280 issue: 2 year: 2014 ident: 10.1016/j.asej.2020.11.006_b0020 article-title: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm publication-title: Opsearch doi: 10.1007/s12597-013-0145-2 – volume: 194 start-page: 368 issue: 2 year: 2009 ident: 10.1016/j.asej.2020.11.006_b0005 article-title: interactive fuzzy goal programming approach for bi-level programming problem publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.12.019 – volume: 76 start-page: 189 year: 2015 ident: 10.1016/j.asej.2020.11.006_b0035 article-title: A two-phase fuzzy approach for solving multi-level decision-making problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.12.016 – volume: 37 start-page: 1004 year: 2013 ident: 10.1016/j.asej.2020.11.006_b0030 article-title: TOPSIS for bi-level MODM problems publication-title: Appl Math Model doi: 10.1016/j.apm.2012.03.002 – ident: 10.1016/j.asej.2020.11.006_b0070 doi: 10.1007/978-3-642-19893-9_19 – volume: 176 start-page: 1151 issue: 2 year: 2007 ident: 10.1016/j.asej.2020.11.006_b0120 article-title: Fuzzy goal programming approach to multi-level programming problems publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.08.024 – volume: 138 start-page: 309 issue: 1–2 year: 2013 ident: 10.1016/j.asej.2020.11.006_b0015 article-title: Solving bilevel programs with the KKT-approach publication-title: Math Program doi: 10.1007/s10107-012-0535-x – volume: 4 start-page: 41 issue: 1 year: 2015 ident: 10.1016/j.asej.2020.11.006_b0040 article-title: On rough multi-level linear programming problem publication-title: Inform Sci Lett – volume: 26 start-page: 1179 year: 2014 ident: 10.1016/j.asej.2020.11.006_b0080 article-title: Linear programming with rough interval coefficients publication-title: Intell Fuzzy Syst |
| SSID | ssib044728585 |
| Score | 2.3719714 |
| Snippet | This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 2125 |
| SubjectTerms | Bi-level programming KKT optimality Multi-objective programming Rough set |
| Title | A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem |
| URI | https://dx.doi.org/10.1016/j.asej.2020.11.006 https://doaj.org/article/86fe4113958f4d8c9f4a19b36d3bf43b |
| Volume | 12 |
| WOSCitedRecordID | wos000658517800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2090-4479 databaseCode: M~E dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib044728585 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIECUL3lgQxaJ7Sb2WFArBqgYQGKL7DgHrUpTldKR386dk6KywMISKZFzjs4X-1388o6xi6TKEuiaIPLgMUExTgvn0lQ4hEhWZbSTFXVm7_Lh0Dw_24e1Ul_ECWvkgRvHXZkMKp0iTuka0MGUFrRLrVdZUB608jT7JrldS6YwkrTOJW14UWW5xCYCz237x0xD7sIVYozJoaQpg6hdP1alKN6_tjitLTiDXbbTIkXea55wj21U03026_Fpvawm3E1easzrX984ok7-EsWjicHMH6hsbc2BhAnQKq-B-5GYEDeIR_agqP24meV4LNGDBqNahpvzlqz1RnbaSjMH7GnQf7y5FW3RBFHqNFmIPNVOy9J5n3iPYMLn6KWQAjibB-WslM54RBmlcj5RFeQ-GOhCpoKGIEtQh2wT-62OGMfckOAAvfhSex2c9GCVytD1BqyFDktXTivKVlGcCltMihV1bFyQowtyNKYaBTq6wy6_75k1ehq_tr6msfhuSVrY8QJGSNFGSPFXhHRYdzWSRQsrGriApka_dH78H52fsG1JLJj43eaUbS7mH9UZ2yqXi9H7_DwGLR7vP_tfmHny4Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+algorithm+for+generating+Pareto+frontier+of+bi-level+multi-objective+rough+nonlinear+programming+problem&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Elsisy%2C+M.A.&rft.au=El+Sayed%2C+M.A.&rft.au=Abo-Elnaga%2C+Y.&rft.date=2021-06-01&rft.issn=2090-4479&rft.volume=12&rft.issue=2&rft.spage=2125&rft.epage=2133&rft_id=info:doi/10.1016%2Fj.asej.2020.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asej_2020_11_006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon |