A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem
This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic m...
Uloženo v:
| Vydáno v: | Ain Shams Engineering Journal Ročník 12; číslo 2; s. 2125 - 2133 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2021
Elsevier |
| Témata: | |
| ISSN: | 2090-4479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm. |
|---|---|
| ISSN: | 2090-4479 |
| DOI: | 10.1016/j.asej.2020.11.006 |