Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines

Univariate generalized splines are smooth piecewise functions with sections in certain extended Tchebycheff spaces. They are a natural extension of univariate (algebraic) polynomial splines, and enjoy the same structural properties as their polynomial counterparts. In this paper, we consider general...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 272; s. 187 - 198
Hlavní autoři: Bracco, Cesare, Lyche, Tom, Manni, Carla, Roman, Fabio, Speleers, Hendrik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2016
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Univariate generalized splines are smooth piecewise functions with sections in certain extended Tchebycheff spaces. They are a natural extension of univariate (algebraic) polynomial splines, and enjoy the same structural properties as their polynomial counterparts. In this paper, we consider generalized spline spaces over planar T-meshes, and we deepen their parallelism with polynomial spline spaces over the same partitions. First, we extend the homological approach from polynomial to generalized splines. This provides some new insights into the dimension problem of a generalized spline space defined on a prescribed T-mesh for a given degree and smoothness. Second, we extend the construction of LR-splines to the generalized spline context.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2015.08.019