Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines
Univariate generalized splines are smooth piecewise functions with sections in certain extended Tchebycheff spaces. They are a natural extension of univariate (algebraic) polynomial splines, and enjoy the same structural properties as their polynomial counterparts. In this paper, we consider general...
Saved in:
| Published in: | Applied mathematics and computation Vol. 272; pp. 187 - 198 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.01.2016
|
| Subjects: | |
| ISSN: | 0096-3003, 1873-5649 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Univariate generalized splines are smooth piecewise functions with sections in certain extended Tchebycheff spaces. They are a natural extension of univariate (algebraic) polynomial splines, and enjoy the same structural properties as their polynomial counterparts. In this paper, we consider generalized spline spaces over planar T-meshes, and we deepen their parallelism with polynomial spline spaces over the same partitions. First, we extend the homological approach from polynomial to generalized splines. This provides some new insights into the dimension problem of a generalized spline space defined on a prescribed T-mesh for a given degree and smoothness. Second, we extend the construction of LR-splines to the generalized spline context. |
|---|---|
| AbstractList | Univariate generalized splines are smooth piecewise functions with sections in certain extended Tchebycheff spaces. They are a natural extension of univariate (algebraic) polynomial splines, and enjoy the same structural properties as their polynomial counterparts. In this paper, we consider generalized spline spaces over planar T-meshes, and we deepen their parallelism with polynomial spline spaces over the same partitions. First, we extend the homological approach from polynomial to generalized splines. This provides some new insights into the dimension problem of a generalized spline space defined on a prescribed T-mesh for a given degree and smoothness. Second, we extend the construction of LR-splines to the generalized spline context. |
| Author | Bracco, Cesare Manni, Carla Speleers, Hendrik Lyche, Tom Roman, Fabio |
| Author_xml | – sequence: 1 givenname: Cesare surname: Bracco fullname: Bracco, Cesare email: cesare.bracco@unifi.it organization: Department of Mathematics and Computer Science, University of Florence, Italy – sequence: 2 givenname: Tom surname: Lyche fullname: Lyche, Tom email: tom@math.uio.no organization: Department of Mathematics, University of Oslo, Norway – sequence: 3 givenname: Carla orcidid: 0000-0002-1519-4106 surname: Manni fullname: Manni, Carla email: manni@mat.uniroma2.it organization: Department of Mathematics, University of Rome ‘Tor Vergata’, Italy – sequence: 4 givenname: Fabio surname: Roman fullname: Roman, Fabio email: fabio.roman@unito.it organization: Department of Mathematics, University of Turin, Italy – sequence: 5 givenname: Hendrik surname: Speleers fullname: Speleers, Hendrik email: speleers@mat.uniroma2.it organization: Department of Mathematics, University of Rome ‘Tor Vergata’, Italy |
| BookMark | eNp9kLFOwzAURS1UJErhA9j8Awl27dgOTFCgIFViKbPl2C_gKnEqO1SCr8dVGRBDpzs8nat3zzmahCEAQleUlJRQcb0pTW_LOaFVSVRJaH2CplRJVlSC1xM0JaQWBSOEnaHzlDaEECkonyK3hADRdP4bHE7bzgfIYSwkPOwg4nXRQ_qAdIMffA8h-SHgdoj9Z2ewCQ53gzVd94UjtBl1-P1P3X1xKEwX6LQ1XYLL35yht6fH9eK5WL0uXxZ3q8JySsZCVE3FKyYagLptuKplI7g0nDbcSclJI0w-80ZZVUnWMqbmilcOjKIgM8ZmiB56bRxSyi_pbfS9iV-aEr3XpDc6a9J7TZoonTVlRv5jrB_NmHeO0fjuKHl7ICFP2nmIOlkPwYLzEeyo3eCP0D_6AIUR |
| CitedBy_id | crossref_primary_10_1007_s10444_020_09830_x crossref_primary_10_1007_s11424_017_6026_7 crossref_primary_10_1007_s11075_018_0533_z crossref_primary_10_1016_j_cagd_2016_01_002 |
| Cites_doi | 10.1007/s00211-005-0613-6 10.1016/j.cma.2013.09.014 10.1016/j.cagd.2012.03.025 10.1090/S0002-9947-1988-0965757-9 10.1016/j.cma.2013.09.015 10.1016/j.cagd.2012.12.005 10.1016/j.cma.2010.10.010 10.1007/s00211-011-0390-3 10.1007/s10444-013-9315-2 10.1090/S0025-5718-2013-02738-X 10.1016/j.cam.2005.07.009 10.1016/j.cma.2011.09.004 10.1007/BF01890028 10.1145/1015706.1015715 10.1016/j.cagd.2003.10.002 10.1016/j.gmod.2008.03.001 10.1016/j.cam.2011.05.029 10.1007/s00365-002-0530-1 10.1016/S0167-8396(00)00010-8 10.1016/j.cagd.2011.08.001 10.1016/j.cma.2004.10.008 10.1016/j.cagd.2012.04.003 10.1016/j.cagd.2010.07.004 10.1142/S0218202513500796 10.1016/j.cma.2014.07.013 10.1016/S0377-0427(98)00265-9 10.1016/S0167-8396(01)00011-5 10.1145/882262.882295 10.1016/j.cam.2012.05.018 10.1016/j.cam.2007.05.031 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. |
| Copyright_xml | – notice: 2015 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2015.08.019 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 198 |
| ExternalDocumentID | 10_1016_j_amc_2015_08_019 S0096300315010747 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c410t-65b54536bee9fb4897b647a41b4d7740b6a4534b8c8573f3382845dea81e736b3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364538600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Tue Nov 18 22:18:52 EST 2025 Sat Nov 29 02:52:15 EST 2025 Fri Feb 23 02:30:49 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generalized splines T-meshes LR-meshes Dimension formula |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-65b54536bee9fb4897b647a41b4d7740b6a4534b8c8573f3382845dea81e736b3 |
| ORCID | 0000-0002-1519-4106 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0096300315010747 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_amc_2015_08_019 crossref_citationtrail_10_1016_j_amc_2015_08_019 elsevier_sciencedirect_doi_10_1016_j_amc_2015_08_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | de Boor (bib0002) 2001 Bracco, Cho (bib0004) 2014; 280 Manni, Pelosi, Sampoli (bib0025) 2011; 236 Giannelli, Jüttler, Speleers (bib0014) 2012; 29 Lyche (bib0022) 1985; 1 Mazure (bib0027) 2011; 119 Sederberg, Zheng, Bakenov, Nasri (bib0033) 2003; 22 Deng, Chen, Feng (bib0011) 2006; 194 Billera (bib0001) 1988; 310 Dokken, Lyche, Pettersen (bib0013) 2013; 30 Giannelli, Jüttler, Speleers (bib0015) 2014; 40 Sederberg, Cardon, Finnigan, Zheng, Lyche (bib0032) 2004; 23 Mainar, Peña, Sánchez-Reyes (bib0023) 2001; 18 Costantini (bib0007) 2000; 17 Johannessen, Kvamsdal, Dokken (bib0017) 2014; 269 Koch, Lyche (bib0018) 1993 Vuong, Giannelli, Jüttler, Simeon (bib0036) 2011; 200 Hughes, Cottrell, Bazilevs (bib0016) 2005; 194 Mourrain (bib0028) 2014; 83 Schumaker, Wang (bib0030) 2012; 29 Wang, Fang (bib0038) 2008; 216 Bracco, Berdinsky, Cho, Oh, Kim (bib0003) 2014; 268 Cottrell, Hughes, Bazilevs (bib0010) 2009 Li, Chen (bib0020) 2011; 28 Kvasov, Sattayatham (bib0019) 1999; 104 Costantini, Lyche, Manni (bib0008) 2005; 101 Costantini, Manni, Pelosi, Sampoli (bib0009) 2010; 27 Spanier (bib0034) 1966 Schumaker (bib0029) 2007 Bracco, Roman (bib0005) 2015 Carnicer, Mainar, Peña (bib0006) 2004; 20 Schumaker, Wang (bib0031) 2013; 240 Manni, Pelosi, Sampoli (bib0024) 2011; 200 Manni, Pelosi, Speleers (bib0026) 2014; 8177 Deng, Chen, Li, Hu, Tong, Yang, Feng (bib0012) 2008; 70 Li, Scott (bib0021) 2014; 24 Speleers, Manni (bib0035) 2015 Wang, Chen, Zhou (bib0037) 2004; 21 Manni (10.1016/j.amc.2015.08.019_bib0025) 2011; 236 Manni (10.1016/j.amc.2015.08.019_bib0026) 2014; 8177 Mainar (10.1016/j.amc.2015.08.019_bib0023) 2001; 18 Bracco (10.1016/j.amc.2015.08.019_bib0004) 2014; 280 Deng (10.1016/j.amc.2015.08.019_bib0011) 2006; 194 Bracco (10.1016/j.amc.2015.08.019_sbref0004a) 2015 de Boor (10.1016/j.amc.2015.08.019_bib0002) 2001 Kvasov (10.1016/j.amc.2015.08.019_bib0019) 1999; 104 Mazure (10.1016/j.amc.2015.08.019_bib0027) 2011; 119 Manni (10.1016/j.amc.2015.08.019_bib0024) 2011; 200 Sederberg (10.1016/j.amc.2015.08.019_bib0033) 2003; 22 Hughes (10.1016/j.amc.2015.08.019_bib0016) 2005; 194 Deng (10.1016/j.amc.2015.08.019_bib0012) 2008; 70 Li (10.1016/j.amc.2015.08.019_bib0021) 2014; 24 Billera (10.1016/j.amc.2015.08.019_bib0001) 1988; 310 Schumaker (10.1016/j.amc.2015.08.019_bib0031) 2013; 240 Lyche (10.1016/j.amc.2015.08.019_bib0022) 1985; 1 Bracco (10.1016/j.amc.2015.08.019_bib0003) 2014; 268 Li (10.1016/j.amc.2015.08.019_bib0020) 2011; 28 Wang (10.1016/j.amc.2015.08.019_bib0037) 2004; 21 Speleers (10.1016/j.amc.2015.08.019_sbref0034) 2015 Spanier (10.1016/j.amc.2015.08.019_bib0034) 1966 Costantini (10.1016/j.amc.2015.08.019_bib0008) 2005; 101 Johannessen (10.1016/j.amc.2015.08.019_bib0017) 2014; 269 Schumaker (10.1016/j.amc.2015.08.019_bib0030) 2012; 29 Dokken (10.1016/j.amc.2015.08.019_bib0013) 2013; 30 Wang (10.1016/j.amc.2015.08.019_bib0038) 2008; 216 Giannelli (10.1016/j.amc.2015.08.019_bib0014) 2012; 29 Sederberg (10.1016/j.amc.2015.08.019_bib0032) 2004; 23 Costantini (10.1016/j.amc.2015.08.019_bib0009) 2010; 27 Schumaker (10.1016/j.amc.2015.08.019_bib0029) 2007 Costantini (10.1016/j.amc.2015.08.019_bib0007) 2000; 17 Cottrell (10.1016/j.amc.2015.08.019_bib0010) 2009 Carnicer (10.1016/j.amc.2015.08.019_bib0006) 2004; 20 Vuong (10.1016/j.amc.2015.08.019_bib0036) 2011; 200 Giannelli (10.1016/j.amc.2015.08.019_bib0015) 2014; 40 Koch (10.1016/j.amc.2015.08.019_bib0018) 1993 Mourrain (10.1016/j.amc.2015.08.019_bib0028) 2014; 83 |
| References_xml | – volume: 1 start-page: 155 year: 1985 end-page: 173 ident: bib0022 article-title: A recurrence relation for Chebyshevian B-splines publication-title: Constr. Approx. – volume: 216 start-page: 498 year: 2008 end-page: 508 ident: bib0038 article-title: Unified and extended form of three types of splines publication-title: J. Comput. Appl. Math. – volume: 24 start-page: 1141 year: 2014 end-page: 1164 ident: bib0021 article-title: Analysis-suitable T-splines: Characterization, refineability, and approximation publication-title: Math. Mod. Meth. Appl. Sci. – volume: 23 start-page: 276 year: 2004 end-page: 283 ident: bib0032 article-title: T-spline simplification and local refinement publication-title: ACM Trans. Gr. – volume: 310 start-page: 325 year: 1988 end-page: 340 ident: bib0001 article-title: Homology of smooth splines: Generic triangulations and a conjecture of Strang publication-title: Trans. Am. Math. Soc. – volume: 28 start-page: 420 year: 2011 end-page: 426 ident: bib0020 article-title: On the instability in the dimension of spline spaces over T-meshes publication-title: Comput. Aided Geom. Des. – volume: 18 start-page: 37 year: 2001 end-page: 60 ident: bib0023 article-title: Shape preserving alternatives to the rational Bézier model publication-title: Comput. Aided Geom. Des. – volume: 29 start-page: 599 year: 2012 end-page: 612 ident: bib0030 article-title: Approximation power of polynomial splines on T-meshes publication-title: Comput. Aided Geom. Des. – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: bib0016 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Eng. – volume: 21 start-page: 193 year: 2004 end-page: 205 ident: bib0037 article-title: NUAT B-splines publication-title: Comput. Aided Geom. Des. – year: 2009 ident: bib0010 publication-title: Isogeometric Analysis: Toward Integration of CAD and FEA – volume: 70 start-page: 76 year: 2008 end-page: 86 ident: bib0012 article-title: Polynomial splines over hierarchical T-meshes publication-title: Graph. Models – year: 2015 ident: bib0005 article-title: Spaces of generalized splines over T-meshes publication-title: J. Comput. Appl. Math. – volume: 119 start-page: 517 year: 2011 end-page: 556 ident: bib0027 article-title: How to build all Chebyshevian spline spaces good for geometric design? publication-title: Numer. Math. – volume: 200 start-page: 3554 year: 2011 end-page: 3567 ident: bib0036 article-title: A hierarchical approach to adaptive local refinement in isogeometric analysis publication-title: Comput. Methods Appl. Mech. Eng. – volume: 269 start-page: 471 year: 2014 end-page: 514 ident: bib0017 article-title: Isogeometric analysis using LR B-splines publication-title: Comput. Methods Appl. Mech. Eng. – volume: 104 start-page: 63 year: 1999 end-page: 88 ident: bib0019 article-title: GB-splines of arbitrary order publication-title: J. Comput. Appl. Math. – volume: 17 start-page: 419 year: 2000 end-page: 446 ident: bib0007 article-title: Curve and surface construction using variable degree polynomial splines publication-title: Comput. Aided Geom. Des. – year: 2015 ident: bib0035 article-title: Effortless quasi-interpolation in hierarchical spaces publication-title: Numer. Math. – volume: 20 start-page: 55 year: 2004 end-page: 71 ident: bib0006 article-title: Critical length for design purposes and Extended Chebyshev spaces publication-title: Constr. Approx. – volume: 200 start-page: 867 year: 2011 end-page: 881 ident: bib0024 article-title: Generalized B-splines as a tool in isogeometric analysis publication-title: Comput. Methods Appl. Mech. Eng. – year: 2001 ident: bib0002 publication-title: A Practical Guide to Splines – year: 2007 ident: bib0029 article-title: Spline Functions: Basic Theory – volume: 236 start-page: 511 year: 2011 end-page: 528 ident: bib0025 article-title: Isogeometric analysis in advection-diffusion problems: Tension splines approximation publication-title: J. Comput. Appl. Math. – volume: 194 start-page: 267 year: 2006 end-page: 283 ident: bib0011 article-title: Dimensions of spline spaces over T-meshes publication-title: J. Comput. Appl. Math. – volume: 29 start-page: 485 year: 2012 end-page: 498 ident: bib0014 article-title: THB-splines: The truncated basis for hierarchical splines publication-title: Comput. Aided Geom. Des. – volume: 40 start-page: 459 year: 2014 end-page: 490 ident: bib0015 article-title: Strongly stable bases for adaptively refined multilevel spline spaces publication-title: Adv. Comp. Math. – volume: 101 start-page: 333 year: 2005 end-page: 354 ident: bib0008 article-title: On a class of weak Tchebycheff systems publication-title: Numer. Math. – volume: 83 start-page: 847 year: 2014 end-page: 871 ident: bib0028 article-title: On the dimension of spline spaces on planar T-meshes publication-title: Math. Comp. – volume: 280 start-page: 176 year: 2014 end-page: 196 ident: bib0004 article-title: Generalized T-splines and VMCR T-meshes publication-title: Comput. Methods Appl. Mech. Eng. – volume: 240 start-page: 42 year: 2013 end-page: 50 ident: bib0031 article-title: On Hermite interpolation with polynomial splines on T-meshes publication-title: J. Comput. Appl. Math. – volume: 268 start-page: 540 year: 2014 end-page: 556 ident: bib0003 article-title: Trigonometric generalized T-splines publication-title: Comput. Methods Appl. Mech. Eng. – volume: 30 start-page: 331 year: 2013 end-page: 356 ident: bib0013 article-title: Polynomial splines over locally refined box-partitions publication-title: Comput. Aided Geom. Des. – start-page: 173 year: 1993 end-page: 190 ident: bib0018 article-title: Interpolation with exponential B-splines in tension publication-title: Geometric Modelling – volume: 22 start-page: 477 year: 2003 end-page: 484 ident: bib0033 article-title: T-splines and T-NURCCs publication-title: ACM Trans. Gr. – volume: 27 start-page: 656 year: 2010 end-page: 668 ident: bib0009 article-title: Quasi-interpolation in isogeometric analysis based on generalized B-splines publication-title: Comput. Aided Geom. Des. – volume: 8177 start-page: 341 year: 2014 end-page: 363 ident: bib0026 article-title: Local hierarchical publication-title: Mathematical Methods for Curves and Surfaces 2012, LNCS – year: 1966 ident: bib0034 publication-title: Algebraic Topology – year: 2009 ident: 10.1016/j.amc.2015.08.019_bib0010 – volume: 101 start-page: 333 year: 2005 ident: 10.1016/j.amc.2015.08.019_bib0008 article-title: On a class of weak Tchebycheff systems publication-title: Numer. Math. doi: 10.1007/s00211-005-0613-6 – year: 2015 ident: 10.1016/j.amc.2015.08.019_sbref0034 article-title: Effortless quasi-interpolation in hierarchical spaces publication-title: Numer. Math. – volume: 269 start-page: 471 year: 2014 ident: 10.1016/j.amc.2015.08.019_bib0017 article-title: Isogeometric analysis using LR B-splines publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2013.09.014 – volume: 29 start-page: 485 year: 2012 ident: 10.1016/j.amc.2015.08.019_bib0014 article-title: THB-splines: The truncated basis for hierarchical splines publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2012.03.025 – volume: 310 start-page: 325 year: 1988 ident: 10.1016/j.amc.2015.08.019_bib0001 article-title: Homology of smooth splines: Generic triangulations and a conjecture of Strang publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1988-0965757-9 – volume: 268 start-page: 540 year: 2014 ident: 10.1016/j.amc.2015.08.019_bib0003 article-title: Trigonometric generalized T-splines publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2013.09.015 – volume: 30 start-page: 331 year: 2013 ident: 10.1016/j.amc.2015.08.019_bib0013 article-title: Polynomial splines over locally refined box-partitions publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2012.12.005 – volume: 200 start-page: 867 year: 2011 ident: 10.1016/j.amc.2015.08.019_bib0024 article-title: Generalized B-splines as a tool in isogeometric analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.10.010 – volume: 119 start-page: 517 year: 2011 ident: 10.1016/j.amc.2015.08.019_bib0027 article-title: How to build all Chebyshevian spline spaces good for geometric design? publication-title: Numer. Math. doi: 10.1007/s00211-011-0390-3 – volume: 40 start-page: 459 year: 2014 ident: 10.1016/j.amc.2015.08.019_bib0015 article-title: Strongly stable bases for adaptively refined multilevel spline spaces publication-title: Adv. Comp. Math. doi: 10.1007/s10444-013-9315-2 – start-page: 173 year: 1993 ident: 10.1016/j.amc.2015.08.019_bib0018 article-title: Interpolation with exponential B-splines in tension – volume: 83 start-page: 847 year: 2014 ident: 10.1016/j.amc.2015.08.019_bib0028 article-title: On the dimension of spline spaces on planar T-meshes publication-title: Math. Comp. doi: 10.1090/S0025-5718-2013-02738-X – year: 2007 ident: 10.1016/j.amc.2015.08.019_bib0029 – volume: 194 start-page: 267 year: 2006 ident: 10.1016/j.amc.2015.08.019_bib0011 article-title: Dimensions of spline spaces over T-meshes publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.07.009 – volume: 200 start-page: 3554 year: 2011 ident: 10.1016/j.amc.2015.08.019_bib0036 article-title: A hierarchical approach to adaptive local refinement in isogeometric analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.09.004 – volume: 1 start-page: 155 year: 1985 ident: 10.1016/j.amc.2015.08.019_bib0022 article-title: A recurrence relation for Chebyshevian B-splines publication-title: Constr. Approx. doi: 10.1007/BF01890028 – volume: 23 start-page: 276 year: 2004 ident: 10.1016/j.amc.2015.08.019_bib0032 article-title: T-spline simplification and local refinement publication-title: ACM Trans. Gr. doi: 10.1145/1015706.1015715 – volume: 21 start-page: 193 year: 2004 ident: 10.1016/j.amc.2015.08.019_bib0037 article-title: NUAT B-splines publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2003.10.002 – volume: 70 start-page: 76 year: 2008 ident: 10.1016/j.amc.2015.08.019_bib0012 article-title: Polynomial splines over hierarchical T-meshes publication-title: Graph. Models doi: 10.1016/j.gmod.2008.03.001 – volume: 236 start-page: 511 year: 2011 ident: 10.1016/j.amc.2015.08.019_bib0025 article-title: Isogeometric analysis in advection-diffusion problems: Tension splines approximation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2011.05.029 – volume: 8177 start-page: 341 year: 2014 ident: 10.1016/j.amc.2015.08.019_bib0026 article-title: Local hierarchical h-refinements in IgA based on generalized B-splines – volume: 20 start-page: 55 year: 2004 ident: 10.1016/j.amc.2015.08.019_bib0006 article-title: Critical length for design purposes and Extended Chebyshev spaces publication-title: Constr. Approx. doi: 10.1007/s00365-002-0530-1 – volume: 17 start-page: 419 year: 2000 ident: 10.1016/j.amc.2015.08.019_bib0007 article-title: Curve and surface construction using variable degree polynomial splines publication-title: Comput. Aided Geom. Des. doi: 10.1016/S0167-8396(00)00010-8 – volume: 28 start-page: 420 year: 2011 ident: 10.1016/j.amc.2015.08.019_bib0020 article-title: On the instability in the dimension of spline spaces over T-meshes publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2011.08.001 – volume: 194 start-page: 4135 year: 2005 ident: 10.1016/j.amc.2015.08.019_bib0016 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2004.10.008 – volume: 29 start-page: 599 year: 2012 ident: 10.1016/j.amc.2015.08.019_bib0030 article-title: Approximation power of polynomial splines on T-meshes publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2012.04.003 – year: 1966 ident: 10.1016/j.amc.2015.08.019_bib0034 – volume: 27 start-page: 656 year: 2010 ident: 10.1016/j.amc.2015.08.019_bib0009 article-title: Quasi-interpolation in isogeometric analysis based on generalized B-splines publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2010.07.004 – volume: 24 start-page: 1141 year: 2014 ident: 10.1016/j.amc.2015.08.019_bib0021 article-title: Analysis-suitable T-splines: Characterization, refineability, and approximation publication-title: Math. Mod. Meth. Appl. Sci. doi: 10.1142/S0218202513500796 – volume: 280 start-page: 176 year: 2014 ident: 10.1016/j.amc.2015.08.019_bib0004 article-title: Generalized T-splines and VMCR T-meshes publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.07.013 – year: 2015 ident: 10.1016/j.amc.2015.08.019_sbref0004a article-title: Spaces of generalized splines over T-meshes publication-title: J. Comput. Appl. Math. – volume: 104 start-page: 63 year: 1999 ident: 10.1016/j.amc.2015.08.019_bib0019 article-title: GB-splines of arbitrary order publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(98)00265-9 – volume: 18 start-page: 37 year: 2001 ident: 10.1016/j.amc.2015.08.019_bib0023 article-title: Shape preserving alternatives to the rational Bézier model publication-title: Comput. Aided Geom. Des. doi: 10.1016/S0167-8396(01)00011-5 – volume: 22 start-page: 477 year: 2003 ident: 10.1016/j.amc.2015.08.019_bib0033 article-title: T-splines and T-NURCCs publication-title: ACM Trans. Gr. doi: 10.1145/882262.882295 – volume: 240 start-page: 42 year: 2013 ident: 10.1016/j.amc.2015.08.019_bib0031 article-title: On Hermite interpolation with polynomial splines on T-meshes publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.05.018 – volume: 216 start-page: 498 year: 2008 ident: 10.1016/j.amc.2015.08.019_bib0038 article-title: Unified and extended form of three types of splines publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.05.031 – year: 2001 ident: 10.1016/j.amc.2015.08.019_bib0002 |
| SSID | ssj0007614 |
| Score | 2.2900605 |
| Snippet | Univariate generalized splines are smooth piecewise functions with sections in certain extended Tchebycheff spaces. They are a natural extension of univariate... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 187 |
| SubjectTerms | Dimension formula Generalized splines LR-meshes T-meshes |
| Title | Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines |
| URI | https://dx.doi.org/10.1016/j.amc.2015.08.019 |
| Volume | 272 |
| WOSCitedRecordID | wos000364538600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLaqjgMcEOOH2IDJB05URknjxM5uG2za0JgQKlJvke04YlOaVU07bfwZ_MU8xz-aDYbYgUsUpbHb5n167_PL8_cQestUynMeV4RJURJKlSZC5JpEklFR0jJVVacze8JOT_l0mn8ZDH76vTCXNWsafnWVz_-rqeEaGNtsnb2HucOkcAHOwehwBLPD8Z8M74Skz34AlWznHYsEr2EKr0y15mhCZrr9bivhPhpp_9YVG85Wdbc_a9SFt_p6BLETBpemyXKYcJ_YKds-qfVMdhYkYFu_XW6-uvmqf38hlLLZWd2KdeHtCbhhq_9rn4hNkjddvylTlFKH6PH1wuVsD4W0NWQ-aRH3kxbOEeem5C5K-o54bJv4OFcau0Bso3Jse1X_5vBt7uH8vZgZPco47fRYnRO-Ia59K-iFUkRf5XZewBSFmaIwfTmNkuzGmMFya4g29o4Ppp9CfGeZVYz3f8G_K--qBm_9jj-znR6DmTxBj93SA-9ZyGyigW6eokef10Z7hsoeeLC1NLbgwQY82INnFwfoYAcdDBbHDjrYQQf3oIMDdJ6jb4cHkw9HxPXhIIrG0ZJkqQSenWRS67ySlOdMZpQJGktawuohkpmAj6nkiqcsqZIEVvE0LbXgsWYwLHmBhs1Fo18inJVcSAakiIrKSE1KPq5Mz3OdKglEn2-hyD-vQjmRetMrpS7utNMWeheGzK1Cy99upt4IhaOYljoWAKi7h23f5zteoYdryL9Gw-Vipd-gB-pyedYudhyafgEodJ3W |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+spline+spaces+over+T-meshes%3A+Dimension+formula+and+locally+refined+generalized+B-splines&rft.jtitle=Applied+mathematics+and+computation&rft.au=Bracco%2C+Cesare&rft.au=Lyche%2C+Tom&rft.au=Manni%2C+Carla&rft.au=Roman%2C+Fabio&rft.date=2016-01-01&rft.issn=0096-3003&rft.volume=272&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1016%2Fj.amc.2015.08.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2015_08_019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |