What Can Quantum Optics Say about Computational Complexity Theory?

Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for c...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 114; no. 6; p. 060501
Main Authors: Rahimi-Keshari, Saleh, Lund, Austin P., Ralph, Timothy C.
Format: Journal Article
Language:English
Published: United States 13.02.2015
Subjects:
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPP^{NP} complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.
AbstractList Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPP^{NP} complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPP^{NP} complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.
Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPPNP complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.
Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPP^{NP} complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.
ArticleNumber 060501
Author Lund, Austin P.
Ralph, Timothy C.
Rahimi-Keshari, Saleh
Author_xml – sequence: 1
  givenname: Saleh
  surname: Rahimi-Keshari
  fullname: Rahimi-Keshari, Saleh
– sequence: 2
  givenname: Austin P.
  surname: Lund
  fullname: Lund, Austin P.
– sequence: 3
  givenname: Timothy C.
  surname: Ralph
  fullname: Ralph, Timothy C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25723196$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1LwzAUxYNM3If-C6OPvnTeNGnagCA6_ILB_Jj4GNI0ZZW2mU0q9r-3sxuIL3u65OR37oVzxmhQmUojNMUwwxjIxdO6tS_6a6Gd6wQ6AwYh4CM0whBxP-qkARoBEOxzgGiIxtZ-AAAOWHyChkEYBQRzNkI372vpvLmsvOdGVq4pveXG5cp6r7L1ZGKa7tOUm8ZJl5tKFr-vQn_nrvVWa23q9uoUHWeysPpsNyfo7e52NX_wF8v7x_n1wlcUg_NZkKZZrBImUx6lNINIhTFnXMaSJQQSylNCtJZUpiHJKFc8TkLGqIJUK6UpmaDzfu-mNp-Ntk6UuVW6KGSlTWMFjmKGeUwDOIwyts2GhKxDpzu0SUqdik2dl7JuxT6iDrjsAVUba2udCZX3abha5oXAILaNiD-NdAIVfSOdnf2z7y8cMP4A-hWTVA
CitedBy_id crossref_primary_10_1103_PhysRevA_111_042412
crossref_primary_10_1103_PhysRevLett_134_140601
crossref_primary_10_1007_s40766_023_00040_x
crossref_primary_10_3390_e25121584
crossref_primary_10_1038_s41598_018_24302_5
crossref_primary_10_1103_PhysRevApplied_20_054043
crossref_primary_10_1103_PhysRevA_111_012418
crossref_primary_10_1038_s41598_017_07770_z
crossref_primary_10_1103_PRXQuantum_5_040312
crossref_primary_10_1007_s00453_023_01169_1
crossref_primary_10_1103_PhysRevResearch_6_013004
crossref_primary_10_1103_PhysRevX_6_021039
crossref_primary_10_1038_s41534_023_00791_9
crossref_primary_10_1080_09500340_2015_1088096
crossref_primary_10_1088_1742_6596_1071_1_012009
crossref_primary_10_1103_PhysRevApplied_8_064008
crossref_primary_10_1117_1_APN_4_1_016011
crossref_primary_10_1126_science_abe8770
crossref_primary_10_1103_PhysRevResearch_3_043116
crossref_primary_10_1016_j_scib_2019_04_007
crossref_primary_10_1073_pnas_1815884116
crossref_primary_10_1007_s11128_019_2525_x
crossref_primary_10_1007_s12200_024_00133_3
crossref_primary_10_1103_PhysRevA_111_032622
crossref_primary_10_1088_2040_8986_aae74a
crossref_primary_10_1088_2058_9565_acf06c
crossref_primary_10_1088_1367_2630_ab0610
crossref_primary_10_1038_s41598_018_22086_2
crossref_primary_10_1088_1742_5468_2015_05_P05018
crossref_primary_10_1063_5_0129638
crossref_primary_10_1088_1751_8121_ab1cc7
crossref_primary_10_1088_1674_1056_ac01e3
crossref_primary_10_1088_1742_6596_2894_1_012002
crossref_primary_10_1038_s41598_017_15596_y
crossref_primary_10_1038_s41598_017_17506_8
crossref_primary_10_1088_1742_6596_2894_1_012003
crossref_primary_10_1088_1361_6455_aaf031
crossref_primary_10_1103_PhysRevResearch_5_013177
crossref_primary_10_1103_PRXQuantum_5_020337
crossref_primary_10_1088_1742_6596_1612_1_012015
Cites_doi 10.1098/rspa.2011.0232
10.4086/toc.2013.v009a004
10.1126/science.1231692
10.1145/1008731.1008738
10.1137/0220053
10.1016/0304-3975(79)90044-6
10.1038/nphoton.2013.102
10.1137/0214060
10.1103/PhysRevA.88.044301
10.1038/nphoton.2014.135
10.1017/CBO9781139644105
10.1103/PhysRevLett.10.84
10.1126/science.1231440
10.1038/nphoton.2013.112
10.1103/PhysRevLett.10.277
10.1103/PhysRevA.88.063822
10.1364/OE.21.013450
10.1103/PhysRevLett.113.020502
10.1103/PhysRevLett.113.100502
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevLett.114.060501
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE - Academic
Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 25723196
10_1103_PhysRevLett_114_060501
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7X8
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c410t-62ddf8cb6ad97d4f07c58969a8a6b30b49d33eea4ad53f49c98b5664c0decce43
IEDL.DBID 3MX
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349906600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Thu Jul 10 23:20:47 EDT 2025
Thu Oct 02 06:22:52 EDT 2025
Mon Jul 21 05:35:51 EDT 2025
Sat Nov 29 01:46:09 EST 2025
Tue Nov 18 22:27:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://link.aps.org/licenses/aps-default-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-62ddf8cb6ad97d4f07c58969a8a6b30b49d33eea4ad53f49c98b5664c0decce43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25723196
PQID 1660031356
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1786198420
proquest_miscellaneous_1660031356
pubmed_primary_25723196
crossref_citationtrail_10_1103_PhysRevLett_114_060501
crossref_primary_10_1103_PhysRevLett_114_060501
PublicationCentury 2000
PublicationDate 2015-Feb-13
PublicationDateYYYYMMDD 2015-02-13
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-Feb-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2015
References PhysRevLett.114.060501Cc8R1
PhysRevLett.114.060501Cc7R1
PhysRevLett.114.060501Cc6R1
PhysRevLett.114.060501Cc5R1
PhysRevLett.114.060501Cc4R1
PhysRevLett.114.060501Cc20R1
PhysRevLett.114.060501Cc3R1
PhysRevLett.114.060501Cc2R1
PhysRevLett.114.060501Cc10R1
PhysRevLett.114.060501Cc1R1
PhysRevLett.114.060501Cc11R1
PhysRevLett.114.060501Cc12R1
PhysRevLett.114.060501Cc13R1
PhysRevLett.114.060501Cc14R1
PhysRevLett.114.060501Cc15R1
PhysRevLett.114.060501Cc16R1
PhysRevLett.114.060501Cc17R1
PhysRevLett.114.060501Cc19R1
L. Mandel (PhysRevLett.114.060501Cc18R1) 1995
References_xml – ident: PhysRevLett.114.060501Cc11R1
  doi: 10.1098/rspa.2011.0232
– ident: PhysRevLett.114.060501Cc1R1
  doi: 10.4086/toc.2013.v009a004
– ident: PhysRevLett.114.060501Cc3R1
  doi: 10.1126/science.1231692
– ident: PhysRevLett.114.060501Cc15R1
  doi: 10.1145/1008731.1008738
– ident: PhysRevLett.114.060501Cc12R1
  doi: 10.1137/0220053
– ident: PhysRevLett.114.060501Cc10R1
  doi: 10.1016/0304-3975(79)90044-6
– ident: PhysRevLett.114.060501Cc4R1
  doi: 10.1038/nphoton.2013.102
– ident: PhysRevLett.114.060501Cc13R1
  doi: 10.1137/0214060
– ident: PhysRevLett.114.060501Cc17R1
  doi: 10.1103/PhysRevA.88.044301
– ident: PhysRevLett.114.060501Cc6R1
  doi: 10.1038/nphoton.2014.135
– volume-title: Optical Coherence and Quantum Optics
  year: 1995
  ident: PhysRevLett.114.060501Cc18R1
  doi: 10.1017/CBO9781139644105
– ident: PhysRevLett.114.060501Cc19R1
  doi: 10.1103/PhysRevLett.10.84
– ident: PhysRevLett.114.060501Cc2R1
  doi: 10.1126/science.1231440
– ident: PhysRevLett.114.060501Cc5R1
  doi: 10.1038/nphoton.2013.112
– ident: PhysRevLett.114.060501Cc20R1
  doi: 10.1103/PhysRevLett.10.277
– ident: PhysRevLett.114.060501Cc8R1
  doi: 10.1103/PhysRevA.88.063822
– ident: PhysRevLett.114.060501Cc16R1
  doi: 10.1364/OE.21.013450
– ident: PhysRevLett.114.060501Cc7R1
  doi: 10.1103/PhysRevLett.113.020502
– ident: PhysRevLett.114.060501Cc14R1
  doi: 10.1103/PhysRevLett.113.100502
SSID ssj0001268
Score 2.5122967
Snippet Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 060501
SubjectTerms Algorithms
Approximation
Complexity
Complexity theory
Computation
Gaussian
Probability distribution
Sampling
Title What Can Quantum Optics Say about Computational Complexity Theory?
URI https://www.ncbi.nlm.nih.gov/pubmed/25723196
https://www.proquest.com/docview/1660031356
https://www.proquest.com/docview/1786198420
Volume 114
WOSCitedRecordID wos000349906600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society (APS)
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za8MwDDalbLCX3Ud34cFeszqx4-NpbGVlL-tu6FtwbAcGW1ratNB_Px9p2WBl9CUQiBMhKZJsSZ8AuDS4UIT4kkacRMQ4O0ilipTEhCGdWK8Whk2wXo_3--KpAdDfGfwY4barhHwxU9fd4oBtr5ANwEPDFiduZAF-6C9Mb5zQYHqxqztArG4JXv6a395oSYjpXU13a3Uit8FmHVbCm6AHO6Bhyl2w7ss71XgP3DqEbtiRJXyeWFZOvuDj0OEzw1c5g742GYbxDvXRoL9zUJnVDIbu_et98N69e-vcR_X0hEiRGFURTbQuuMqp1IJpUiCmUi6okFzSHKOcCI2xMZJIneKCCCV4bmM7opC2YjUEH4BmOSjNEYB5gQxPlRDaMJK61KENC2lBmLY2yqS0BdI5FzNVQ4u7CRefmd9iIJz94I_rg84Cf1qgvVg3DOAa_664mAsps_-BS27I0gwm4yym1ONQOmqWPsO43S9atUEtcBgkvPiuNV2JM0fHK9N0AjZsFOX73GN8CprVaGLOwJqaVh_j0blXUHtlff4NqpjjHQ
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Can+Quantum+Optics+Say+about+Computational+Complexity+Theory%3F&rft.jtitle=Physical+review+letters&rft.au=Rahimi-Keshari%2C+Saleh&rft.au=Lund%2C+Austin+P&rft.au=Ralph%2C+Timothy+C&rft.date=2015-02-13&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=114&rft.issue=6&rft_id=info:doi/10.1103%2FPhysRevLett.114.060501&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon