An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions

This paper presents a compact and efficient 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions (RBFs), which is applied to minimize the compliance of a two-dimensional linear elastic structure. This parameterized level set method using...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Structural and multidisciplinary optimization Ročník 58; číslo 2; s. 831 - 849
Hlavní autori: Wei, Peng, Li, Zuyu, Li, Xueping, Wang, Michael Yu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
Springer Nature B.V
Predmet:
ISSN:1615-147X, 1615-1488
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents a compact and efficient 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions (RBFs), which is applied to minimize the compliance of a two-dimensional linear elastic structure. This parameterized level set method using radial basis functions can maintain a relatively smooth level set function with an approximate re-initialization scheme during the optimization process. It also has less dependency on initial designs due to its capability in nucleation of new holes inside the material domain. The MATLAB code and simple modifications are explained in detail with numerical examples. The 88-line code included in the appendix is intended for educational purposes.
AbstractList This paper presents a compact and efficient 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions (RBFs), which is applied to minimize the compliance of a two-dimensional linear elastic structure. This parameterized level set method using radial basis functions can maintain a relatively smooth level set function with an approximate re-initialization scheme during the optimization process. It also has less dependency on initial designs due to its capability in nucleation of new holes inside the material domain. The MATLAB code and simple modifications are explained in detail with numerical examples. The 88-line code included in the appendix is intended for educational purposes.
This paper presents a compact and efficient 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions (RBFs), which is applied to minimize the compliance of a two-dimensional linear elastic structure. This parameterized level set method using radial basis functions can maintain a relatively smooth level set function with an approximate re-initialization scheme during the optimization process. It also has less dependency on initial designs due to its capability in nucleation of new holes inside the material domain. The MATLAB code and simple modifications are explained in detail with numerical examples. The 88-line code included in the appendix is intended for educational purposes.
Author Wang, Michael Yu
Wei, Peng
Li, Zuyu
Li, Xueping
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-5826-1527
  surname: Wei
  fullname: Wei, Peng
  email: ctpwei@scut.edu.cn
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 2
  givenname: Zuyu
  surname: Li
  fullname: Li, Zuyu
  organization: Architecture and Civil Engineering Institute, Guangdong University of Petrochemical Technology
– sequence: 3
  givenname: Xueping
  surname: Li
  fullname: Li, Xueping
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 4
  givenname: Michael Yu
  surname: Wang
  fullname: Wang, Michael Yu
  organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology
BookMark eNp9kU1LAzEQhoNUsH78AG8Bz6uTbHaTPdbiF1S8KHgL6e5sjWyTNUkF--vdWlEQ7CnDzPMkGd5DMnLeISGnDM4ZgLyIAKxQGTCVsQpEpvbImJWsyJhQavRTy-cDchjjKwAoENWYvE8cVSrrrEN6P3mcTS5p7RukrQ80vSDtTTBLTBjsGhva4Tt2NGKiQ-_FN3Ru4tBOvvedX3xQ3ye7tGuTrHd0Fa1b0GAaa7oNaCNtV67ezOIx2W9NF_Hk-zwiT9dXj9PbbPZwczedzLJaMEiZaKqi4KouGUMuCmmEZEbUHAyft2U-r4YRlGUuWuSlyE0jBRe5QNUwFKqs8yNytr23D_5thTHpV78KbnhSc17yQgoQfCcFUhZM5hUMlNxSdfAxBmx1bdPXqikY22kGehOF3kahhyj0JgqtBpP9MftglyZ87HT41okD6xYYfv_0v_QJqo6cDA
CitedBy_id crossref_primary_10_3390_ma14195726
crossref_primary_10_1016_j_cma_2022_115444
crossref_primary_10_1016_j_ijmecsci_2025_110500
crossref_primary_10_1007_s00158_018_2138_5
crossref_primary_10_1016_j_mtcomm_2025_113250
crossref_primary_10_32604_cmes_2023_027603
crossref_primary_10_1080_15397734_2025_2458101
crossref_primary_10_1007_s00158_022_03291_0
crossref_primary_10_1007_s00158_019_02444_y
crossref_primary_10_1016_j_compstruct_2023_117455
crossref_primary_10_1109_TMECH_2023_3333523
crossref_primary_10_1016_j_compstruct_2021_114065
crossref_primary_10_1016_j_jobe_2025_113254
crossref_primary_10_1016_j_compstruc_2024_107364
crossref_primary_10_1016_j_compstruc_2025_107882
crossref_primary_10_1016_j_mtcomm_2025_112965
crossref_primary_10_32604_cmes_2023_031538
crossref_primary_10_1007_s00366_019_00860_8
crossref_primary_10_1016_j_mser_2021_100648
crossref_primary_10_1016_j_cma_2025_118326
crossref_primary_10_1016_j_enganabound_2020_01_008
crossref_primary_10_1007_s40430_022_03382_5
crossref_primary_10_1016_j_apm_2024_115787
crossref_primary_10_1016_j_applthermaleng_2021_117159
crossref_primary_10_1007_s00158_020_02504_8
crossref_primary_10_1016_j_cma_2024_117292
crossref_primary_10_1007_s40430_025_05439_7
crossref_primary_10_1007_s00158_019_02209_7
crossref_primary_10_1007_s00158_020_02816_9
crossref_primary_10_1007_s10338_024_00542_z
crossref_primary_10_1007_s12206_022_0928_6
crossref_primary_10_3390_su13063435
crossref_primary_10_1007_s00158_022_03239_4
crossref_primary_10_1016_j_ress_2025_111075
crossref_primary_10_3390_app132413005
crossref_primary_10_1007_s40314_022_01831_4
crossref_primary_10_1016_j_compscitech_2025_111227
crossref_primary_10_1007_s00158_022_03313_x
crossref_primary_10_1007_s00158_025_04081_0
crossref_primary_10_1016_j_engstruct_2022_115338
crossref_primary_10_1016_j_compstruct_2022_116067
crossref_primary_10_1016_j_cma_2020_113235
crossref_primary_10_1016_j_jbiomech_2021_110233
crossref_primary_10_1007_s11433_024_2576_7
crossref_primary_10_1016_j_advengsoft_2022_103389
crossref_primary_10_1016_j_aca_2023_341127
crossref_primary_10_1007_s00158_020_02733_x
crossref_primary_10_1007_s00158_022_03168_2
crossref_primary_10_1016_j_enganabound_2024_105853
crossref_primary_10_1007_s11465_021_0637_3
crossref_primary_10_1002_nme_7250
crossref_primary_10_3390_app11052112
crossref_primary_10_3390_ma12071152
crossref_primary_10_1007_s00158_021_02858_7
crossref_primary_10_1016_j_advengsoft_2020_102942
crossref_primary_10_1007_s11081_022_09752_1
crossref_primary_10_1007_s00158_022_03420_9
crossref_primary_10_1080_0305215X_2020_1759579
crossref_primary_10_1016_j_cma_2020_113187
crossref_primary_10_1007_s00158_021_03045_4
crossref_primary_10_1016_j_matdes_2022_110727
crossref_primary_10_1016_j_cma_2023_116052
crossref_primary_10_1007_s00158_024_03927_3
crossref_primary_10_1108_WJE_03_2021_0191
crossref_primary_10_1007_s00158_019_02396_3
crossref_primary_10_1007_s00158_024_03953_1
crossref_primary_10_1016_j_istruc_2020_12_090
crossref_primary_10_1016_j_compstruc_2021_106515
crossref_primary_10_1016_j_mtcomm_2024_110900
crossref_primary_10_1016_j_cma_2022_115350
crossref_primary_10_1016_j_cma_2019_05_029
crossref_primary_10_1016_j_cma_2024_116962
crossref_primary_10_1016_j_engstruct_2025_121025
crossref_primary_10_3390_app15179242
crossref_primary_10_1016_j_cma_2024_116963
crossref_primary_10_1080_0305215X_2020_1843162
crossref_primary_10_1007_s00158_022_03184_2
crossref_primary_10_32604_cmes_2024_054059
crossref_primary_10_1016_j_cma_2022_115112
crossref_primary_10_3390_ma14092119
crossref_primary_10_1016_j_cma_2022_115114
crossref_primary_10_1007_s11465_020_0614_2
crossref_primary_10_1016_j_cma_2024_117374
crossref_primary_10_1016_j_cma_2025_118087
crossref_primary_10_1121_10_0002965
crossref_primary_10_1016_j_cma_2025_118086
crossref_primary_10_1007_s10999_025_09768_2
crossref_primary_10_1007_s10338_023_00379_y
crossref_primary_10_1007_s11465_020_0588_0
crossref_primary_10_1016_j_istruc_2023_06_140
crossref_primary_10_1007_s00158_019_02226_6
crossref_primary_10_1016_j_ijmecsci_2024_108967
crossref_primary_10_1016_j_cma_2024_116839
crossref_primary_10_1016_j_cma_2024_117009
crossref_primary_10_1016_j_cma_2019_112778
crossref_primary_10_1007_s00158_021_02917_z
crossref_primary_10_3390_ma12193225
crossref_primary_10_1016_j_cma_2021_113674
crossref_primary_10_1007_s11081_022_09715_6
crossref_primary_10_1016_j_cad_2022_103407
crossref_primary_10_1016_j_cma_2024_116948
crossref_primary_10_1007_s00158_020_02544_0
crossref_primary_10_1007_s12206_025_0525_6
crossref_primary_10_1007_s12289_023_01768_x
crossref_primary_10_1080_15376494_2021_1938302
crossref_primary_10_3390_app14135695
crossref_primary_10_1016_j_cma_2022_115252
crossref_primary_10_1016_j_cma_2025_117892
crossref_primary_10_1016_j_tws_2025_112907
crossref_primary_10_1103_PhysRevApplied_21_024055
crossref_primary_10_1007_s11081_023_09808_w
crossref_primary_10_1080_10407782_2022_2079332
crossref_primary_10_1016_j_compstruct_2022_116546
crossref_primary_10_32604_cmes_2023_023978
crossref_primary_10_1016_j_mechmachtheory_2022_104750
crossref_primary_10_1002_adem_202402567
crossref_primary_10_1007_s10846_022_01731_z
crossref_primary_10_1016_j_asoc_2021_108031
crossref_primary_10_1007_s12206_024_1123_8
crossref_primary_10_1007_s00158_022_03355_1
crossref_primary_10_1016_j_compstruct_2018_10_034
crossref_primary_10_3390_ma15144972
crossref_primary_10_1016_j_tws_2025_113680
crossref_primary_10_1109_ACCESS_2022_3206368
crossref_primary_10_1002_nme_70044
crossref_primary_10_1016_j_cma_2019_02_026
crossref_primary_10_1016_j_apm_2022_06_026
crossref_primary_10_1016_j_cma_2025_118032
crossref_primary_10_1016_j_cma_2018_04_034
crossref_primary_10_1007_s00158_024_03798_8
crossref_primary_10_3390_app13074627
crossref_primary_10_3390_ma16114061
crossref_primary_10_1007_s10409_020_01045_z
crossref_primary_10_1051_smdo_2019019
crossref_primary_10_3390_app11167409
crossref_primary_10_1016_j_tws_2025_113013
crossref_primary_10_1007_s00158_023_03603_y
crossref_primary_10_1016_j_cma_2020_113658
crossref_primary_10_1016_j_ress_2025_111440
crossref_primary_10_3390_app10217449
crossref_primary_10_1016_j_cma_2024_117698
crossref_primary_10_1016_j_cma_2025_117995
crossref_primary_10_1016_j_cma_2024_117697
crossref_primary_10_1016_j_matdes_2022_111448
crossref_primary_10_1007_s00158_021_03050_7
crossref_primary_10_1007_s00158_023_03539_3
crossref_primary_10_1016_j_apm_2022_09_005
crossref_primary_10_1007_s00158_022_03306_w
crossref_primary_10_1007_s10999_025_09747_7
crossref_primary_10_1007_s00158_022_03339_1
crossref_primary_10_3390_app14020657
crossref_primary_10_1016_j_enganabound_2023_01_026
crossref_primary_10_1007_s00158_021_03009_8
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122526
crossref_primary_10_1016_j_cma_2021_113829
crossref_primary_10_1016_j_cma_2021_114236
crossref_primary_10_1016_j_compstruc_2020_106324
crossref_primary_10_1016_j_advengsoft_2024_103778
crossref_primary_10_1007_s00158_020_02726_w
crossref_primary_10_1016_j_finel_2024_104167
crossref_primary_10_1080_0305215X_2024_2350648
crossref_primary_10_1007_s00158_022_03464_x
crossref_primary_10_1007_s00158_020_02682_5
crossref_primary_10_32604_cmes_2021_016894
crossref_primary_10_1007_s11709_023_0963_0
crossref_primary_10_1016_j_apm_2022_02_032
crossref_primary_10_1016_j_tws_2025_112942
crossref_primary_10_3390_app122110902
crossref_primary_10_1093_jcde_qwaf048
crossref_primary_10_12688_f1000research_150945_2
crossref_primary_10_12688_f1000research_150945_1
crossref_primary_10_1016_j_advengsoft_2022_103303
crossref_primary_10_1007_s00158_023_03517_9
crossref_primary_10_1007_s00158_019_02355_y
crossref_primary_10_1016_j_cma_2025_118028
crossref_primary_10_1142_S0219876225500197
crossref_primary_10_1007_s00158_020_02610_7
crossref_primary_10_1007_s00158_025_03997_x
crossref_primary_10_1007_s10409_023_23185_x
crossref_primary_10_1016_j_euromechsol_2024_105499
crossref_primary_10_1155_2021_6839627
crossref_primary_10_1007_s11465_024_0798_y
crossref_primary_10_1007_s10409_024_24119_x
crossref_primary_10_1016_j_mechmachtheory_2019_103622
crossref_primary_10_3390_app14020878
crossref_primary_10_1007_s10338_025_00587_8
crossref_primary_10_1016_j_compstruct_2022_115385
crossref_primary_10_1007_s00158_019_02268_w
crossref_primary_10_1007_s00158_022_03403_w
crossref_primary_10_1007_s12273_024_1197_3
crossref_primary_10_1080_15376494_2025_2526015
crossref_primary_10_1007_s11081_021_09675_3
crossref_primary_10_1088_1361_665X_ab8b2d
crossref_primary_10_1155_2023_7939516
crossref_primary_10_1016_j_addma_2021_101952
crossref_primary_10_1007_s00158_022_03236_7
crossref_primary_10_1016_j_amf_2024_200143
crossref_primary_10_1016_j_cma_2025_118114
crossref_primary_10_1016_j_compstruc_2019_05_010
crossref_primary_10_3934_math_2025648
crossref_primary_10_1007_s10409_023_22445_x
crossref_primary_10_1080_15397734_2024_2411275
crossref_primary_10_1007_s10409_020_00942_7
crossref_primary_10_1088_1757_899X_671_1_012011
crossref_primary_10_1016_j_compstruct_2023_117532
crossref_primary_10_3390_ma17143591
crossref_primary_10_1016_j_cma_2020_113574
crossref_primary_10_1016_j_apm_2022_03_008
crossref_primary_10_1007_s00158_025_04083_y
crossref_primary_10_1016_j_advengsoft_2024_103688
crossref_primary_10_1007_s00158_023_03702_w
crossref_primary_10_1016_j_cma_2023_116589
crossref_primary_10_1016_j_engstruct_2025_120692
crossref_primary_10_1016_j_cma_2023_116587
crossref_primary_10_1002_nme_6976
crossref_primary_10_1007_s00158_021_03052_5
crossref_primary_10_1007_s00158_021_03098_5
crossref_primary_10_1016_j_cma_2024_117096
crossref_primary_10_1155_2020_5084167
crossref_primary_10_1007_s00158_021_02972_6
crossref_primary_10_1016_j_applthermaleng_2022_118707
crossref_primary_10_1016_j_advengsoft_2025_104001
crossref_primary_10_1016_j_cma_2021_114159
crossref_primary_10_1016_j_cja_2023_02_012
crossref_primary_10_1002_nme_6185
crossref_primary_10_1007_s00158_021_02958_4
crossref_primary_10_1016_j_cma_2025_118214
crossref_primary_10_1007_s00158_021_03086_9
crossref_primary_10_1016_j_ijmecsci_2024_109735
crossref_primary_10_3390_axioms11060294
crossref_primary_10_1016_j_engappai_2024_109732
crossref_primary_10_1016_j_jmapro_2021_02_050
crossref_primary_10_1016_j_compstruct_2023_117310
crossref_primary_10_1007_s00158_024_03877_w
crossref_primary_10_32604_cmes_2024_045411
crossref_primary_10_1080_0305215X_2018_1562550
crossref_primary_10_1007_s00158_020_02540_4
crossref_primary_10_1016_j_cma_2022_115658
crossref_primary_10_1007_s00158_023_03590_0
crossref_primary_10_1007_s00158_019_02318_3
crossref_primary_10_1007_s00158_023_03701_x
crossref_primary_10_1007_s00158_024_03891_y
crossref_primary_10_1016_j_apm_2025_116119
crossref_primary_10_1007_s00158_021_03097_6
crossref_primary_10_1007_s11465_023_0780_0
crossref_primary_10_1002_ceat_202000555
crossref_primary_10_1007_s12206_024_0625_8
crossref_primary_10_1007_s00158_020_02719_9
crossref_primary_10_1089_soro_2021_0169
crossref_primary_10_1155_2022_2752678
crossref_primary_10_1002_nme_6642
crossref_primary_10_1007_s00158_020_02722_0
crossref_primary_10_1007_s00158_025_04095_8
crossref_primary_10_32604_cmes_2023_026043
Cites_doi 10.1016/j.ijheatmasstransfer.2012.08.028
10.1016/j.jcp.2003.09.033
10.1006/jcph.2001.6789
10.1017/S0956792505006182
10.1007/s00158-015-1372-3
10.1002/nme.1536
10.1016/S0045-7825(02)00559-5
10.1007/s00158-014-1107-x
10.1007/s00158-014-1190-z
10.1006/jcph.1996.0167
10.1137/S0363012997323230
10.1007/s00158-013-0999-1
10.1007/BF02123482
10.1007/s00158-015-1284-2
10.1007/s00158-013-0956-z
10.1007/s00158-013-0912-y
10.1016/j.imavis.2010.08.011
10.1002/nme.2478
10.1016/j.jcp.2003.09.032
10.1007/s00158-003-0322-7
10.1016/j.cma.2010.05.013
10.1016/0021-9991(88)90002-2
10.1007/s00791-012-0180-1
10.1007/s00158-011-0696-x
10.1016/j.advengsoft.2004.06.004
10.1007/s00158-010-0534-6
10.1006/jcph.2000.6581
10.1115/DETC2006-99294
10.1007/s00158-013-0978-6
10.1016/j.enganabound.2004.01.004
10.1109/83.902291
10.1007/s00158-013-0935-4
10.1007/s00158-010-0594-7
10.1007/BF00934777
10.1016/j.advengsoft.2015.02.006
10.1007/s00158-009-0430-0
10.1002/9780470689486
10.1371/journal.pone.0145041
10.1002/nme.1468
10.1006/jcph.1999.6345
10.1016/j.jcp.2006.06.029
10.1109/SMA.2001.923379
10.1007/s00158-015-1294-0
10.1016/j.jcp.2003.11.010
10.1007/s001580050176
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Structural and Multidisciplinary Optimization is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: Structural and Multidisciplinary Optimization is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-018-1904-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 849
ExternalDocumentID 10_1007_s00158_018_1904_8
GrantInformation_xml – fundername: State Key Laboratory of Subtropical Building Science, South China University of Technology
  grantid: 2016KB13
– fundername: National Natural Science Foundation of China
  grantid: 11002058; 11002056
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (CN)
  grantid: 11372004
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c410t-4d95528c611e2457a471a4c20a2bf63b98c606634fe2643ad742434e8d1e486c3
IEDL.DBID RSV
ISICitedReferencesCount 291
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440107200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-147X
IngestDate Tue Nov 04 23:18:06 EST 2025
Tue Nov 04 16:25:49 EST 2025
Sat Nov 29 02:50:11 EST 2025
Tue Nov 18 21:18:11 EST 2025
Fri Feb 21 02:35:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Topology optimization
Radial basis functions
MATLAB code
Level set method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-4d95528c611e2457a471a4c20a2bf63b98c606634fe2643ad742434e8d1e486c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5826-1527
PQID 2262574042
PQPubID 2043658
PageCount 19
ParticipantIDs proquest_journals_2262574042
proquest_journals_2077517390
crossref_citationtrail_10_1007_s00158_018_1904_8
crossref_primary_10_1007_s00158_018_1904_8
springer_journals_10_1007_s00158_018_1904_8
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SethianJALevel set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science1999CambridgeCambridge University Press0973.76003
Van DijkNPMauteKLangelaarMVan KeulenFLevel-set methods for structural topology optimization: a reviewStruct Multidiscip Optim2013483437472310758310.1007/s00158-013-0912-y
TavakoliRMohseniSMAlternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementationStruct Multidiscip Optim2014494621642318339710.1007/s00158-013-0999-1
OtomoriMYamadaTIzuiKNishiwakiSMATLAB code for a level set-based topology optimization method using a reaction diffusion equationStruct Multidiscip Optim201451511591172335386810.1007/s00158-014-1190-z
Wei P, Wang MY (2006) The augmented Lagrangian method in structural shape and topology optimization with RBF based level set method, The 4th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Kunming, China
OsherSFedkiwRLevel set methods and dynamic implicit surfaces2002New YorkSpringer1026.76001
DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim2014491138318245010.1007/s00158-013-0956-z
OlesenLHOkkelsFBruusHA high-level programming-language implementation of topology optimization applied to steady-state navier-stokes flowInt J Numer Methods Eng20066579751001220169110.1002/nme.14681111.76017
GainALPaulinoGHA critical comparative assessment of differential equation-driven methods for structural topology optimizationStruct Multidiscip Optim2013484685710310759710.1007/s00158-013-0935-4
SigmundOA 99 line topology optimization code written in MATLABStruct Multidiscip Optim2001212112012710.1007/s001580050176
XieXMirmehdiMRadial basis function based level set interpolation and evolution for deformable modellingImage Vis Comput2011292–316717710.1016/j.imavis.2010.08.011
MeiYWangXA level set method for structural topology optimization and its applicationsAdv Eng Softw200435741544110.1016/j.advengsoft.2004.06.0041067.90153
EmreBToACProportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLABPLoS One20151012e014504110.1371/journal.pone.0145041
ZuoZHXieYMA simple and compact python code for complex 3D topology optimizationAdv Eng Softw20158511110.1016/j.advengsoft.2015.02.006
SokołowskiJZolésioJPIntroduction to shape optimization: shape Sensitity analysis. Introduction to shape optimization : shape sensitivity analysis1992BerlinSpringer-Verlag0761.73003
BurgerMOsherSJA survey on level set methods for inverse problems and optimal designEur J Appl Math2005162263301215529310.1017/S09567925050061821091.49001
KharmandaGOlhoffNMohamedALemaireMReliability-based topology optimizationStruct Multidiscip Optim200426529530710.1007/s00158-003-0322-7
WangSYLimKMKhooBCWangMYAn extended level set method for shape and topology optimizationJ Comput Phys20072211395421229057710.1016/j.jcp.2006.06.0291110.65058
ZhaoHKChanTMerrimanBOsherSA variational level set approach to multiphase motionJ Comput Phys1996127179195140806910.1006/jcph.1996.01670860.65050
Wang MY, Chen SK, Xia Q (2004) TOPLSM, 199-line version. http://ihome.ust.hk/~mywang/download/TOPLSM_199.m
XiaLBreitkopfPDesign of materials using topology optimization and energy-based homogenization approach in MATLABStruct Multidiscip Optim201552612291241343333110.1007/s00158-015-1294-0
AndreassenEClausenASchevenelsMLazarovBSSigmundOEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscip Optim201143111610.1007/s00158-010-0594-71274.74310
WeiPWangMYPiecewise constant level set method for structural topology optimizationInt J Numer Methods Eng2009784379402250947110.1002/nme.24781183.74222
CecilTQianJOsherSNumerical methods for high dimensional Hamilton-Jacobi equations using radial basis functionsJ Comput Phys20041961327347205434610.1016/j.jcp.2003.11.0101053.65086
ChanTFVeseLAActive contours without edgesIEEE Trans Image Process200110226627710.1109/83.9022911039.68779
HuangXXieYMEvolutionary Topology Optimization of Continuum Structures: Methods and Applications2010New YorkWiley10.1002/97804706894861279.90001
WangSYWangMYRadial basis functions and level set method for structural topology optimizationInt J Numer Meth Engng20066520602090220894010.1002/nme.15361174.74331
RochafellarRTThe multiplier method of Hestenes and Powell applied to convex programmingJ Optim Theory Appl19731255556233495310.1007/BF00934777
SethianJAWiegmannAStructural boundary design via level set and immersed interface methodsJ Comput Phys20001632489528178355910.1006/jcph.2000.65810994.74082
TalischiCPaulinoGHPereiraAMenezesIFMPolytop: a MATLAB implementation of a general topology optimization framework using unstructured polygonal finite element meshesStruct Multidiscip Optim2012453329357289711610.1007/s00158-011-0696-x1274.74402
AllaireGJouveFToaderAMStructural optimization using sensitivity analysis and a level-set methodJ Comput Phys20041941363393203339010.1016/j.jcp.2003.09.0321136.74368
ChoiKKKimNHStructural sensitivity analysis and optimization 12005BerlinSpringer
SchmidtSSchulzVA 2589 line topology optimization code written for the graphics cardComput Vis Sci2011146249256297225010.1007/s00791-012-0180-11380.74100
WendlandHPiecewise polynomial, positive definite and compactly supported radial functions of minimal degreeAdv Comput Math199541389396136651010.1007/BF021234820838.41014
WangSYWangMYStructural shape and topology optimization using an implicit free boundary parameterization methodComput Model Eng Sci200613211914722261351232.74084
ZhangWYuanJZhangJGuoXA new topology optimization approach based on moving Morphable components (MMC) and the ersatz material modelStruct Multidiscip Optim201653612431260349888510.1007/s00158-015-1372-3
WangMYWangXGuoDA level set method for structural topology optimizationComput Methods Appl Mech Eng20031921–2227246195140810.1016/S0045-7825(02)00559-51083.74573
SureshKA 199-line MATLAB code for Pareto-optimal tracing in topology optimizationStruct Multidiscip Optim2010425665679272027410.1007/s00158-010-0534-61274.74005
OsherSSantosaFLevel set methods for optimization problems involving geometry and constraints: i. Frequencies of a two-density inhomogeneous drumJ Comput Phys20011711272288184364810.1006/jcph.2001.67891056.74061
ZegardTPaulinoGHGRAND3 - ground structure based topology optimization for arbitrary 3D domains using MATLABStruct Multidiscip Optim20155261161118410.1007/s00158-015-1284-2
DijkNPVMauteKLangelaarMvan KeulenFLevel-set methods for structural topology optimization: a reviewStruct Multidiscip Optim2013483437472310758310.1007/s00158-013-0912-y
BendsøeMSigmundOTopology optimization. Theory, methods and applications2003BerlinSpringer1059.74001
MorseBSYooTSChenDTRheingansPSubramanianKRInterpolating implicit surfaces from scattered surface data using compactly supported radial basis functionsInt Conf Shape Model Appl2001152899810.1109/SMA.2001.923379
OsherSSethianJAFronts propagating with curvature-dependent speed: algorithms based on HamiltonJacobi formulationsJ Comput Phys1988791124996586010.1016/0021-9991(88)90002-20659.65132
Allaire G (2009) A 2-d Scilab Code for shape and topology optimization by the level set method. http://www.cmap.polytechnique.fr/∼allaire/levelset_en.html
YamadaTIzuiKNishiwakiSTakezawaAA topology optimization method based on the level set method incorporating a fictitious interface energyComput Methods Appl Mech Eng201019945–4828762891274076510.1016/j.cma.2010.05.0131231.74365
ZhouSCadmanJChenYLiWXieYMHuangXDesign and fabrication of biphasic cellular materials with transport properties – a modified bidirectional evolutionary structural optimization procedure and MATLAB programInt J Heat Mass Transf20125525–268149816210.1016/j.ijheatmasstransfer.2012.08.028
KansaEJPowerHFasshauerGELingLA volumetric integral radial basis function method for time-dependent partial differential equations. I. FormulationEng Anal Bound Elem200428101191120610.1016/j.enganabound.2004.01.0041159.76363
LiuKTovarAAn efficient 3d topology optimization code written in MATLABStruct Multidiscip Optim201450611751196331242510.1007/s00158-014-1107-x
PengDMerrimanBOsherSZhao H.& Kang M.A PDE-based fast local level set methodJ Comput Phys19991552410438172332110.1006/jcph.1999.63450964.76069
SigmundOMauteKTopology optimization approachesStruct Multidiscip Optim201348610311055313812410.1007/s00158-013-0978-6
AllaireGDe GournayFJouveFToaderAMStructural optimization using topological and shape sensitivity via a level set methodControl Cybern2005341598022110631167.49324
Wang MY, Wei P (2005) Topology optimization with level set method incorporating topological derivative. 6th World Congress on Structural & Multidisciplinary Optimization, Rio de Janeiro, Brazil
BurgerMHacklBRingWIncorporating topological derivatives into level set methodsJ Comput Phys20041941344362203338910.1016/j.jcp.2003.09.0331044.65053
ChallisVJA discrete level-set topology optimization code written in MATLABStruct Multidiscip Optim2010413453464260213610.1007/s00158-009-0430-01274.74322
SokołowskiJŻochowskiAOn the topological derivative in shape optimizationSIAM J Control Optim199937412511272169194010.1137/S03630129973232300940.49026
X Huang (1904_CR16) 2010
JA Sethian (1904_CR30) 1999
ZH Zuo (1904_CR56) 2015; 85
C Talischi (1904_CR37) 2012; 45
NP Dijk Van (1904_CR39) 2013; 48
BS Morse (1904_CR21) 2001; 15
1904_CR46
S Osher (1904_CR24) 2001; 171
1904_CR42
X Xie (1904_CR50) 2011; 29
1904_CR44
M Burger (1904_CR6) 2005; 16
O Sigmund (1904_CR32) 2001; 21
G Allaire (1904_CR3) 2005; 34
MY Wang (1904_CR43) 2003; 192
E Andreassen (1904_CR4) 2011; 43
EJ Kansa (1904_CR17) 2004; 28
J Sokołowski (1904_CR35) 1992
H Wendland (1904_CR48) 1995; 4
S Osher (1904_CR25) 1988; 79
RT Rochafellar (1904_CR28) 1973; 12
R Tavakoli (1904_CR38) 2014; 49
M Burger (1904_CR7) 2004; 194
NPV Dijk (1904_CR13) 2013; 48
T Cecil (1904_CR8) 2004; 196
L Xia (1904_CR49) 2015; 52
TF Chan (1904_CR10) 2001; 10
1904_CR1
M Bendsøe (1904_CR5) 2003
SY Wang (1904_CR45) 2007; 221
D Peng (1904_CR27) 1999; 155
T Yamada (1904_CR51) 2010; 199
O Sigmund (1904_CR33) 2013; 48
AL Gain (1904_CR15) 2013; 48
K Liu (1904_CR19) 2014; 50
LH Olesen (1904_CR22) 2006; 65
K Suresh (1904_CR36) 2010; 42
M Otomori (1904_CR26) 2014; 51
JD Deaton (1904_CR12) 2014; 49
J Sokołowski (1904_CR34) 1999; 37
W Zhang (1904_CR53) 2016; 53
G Allaire (1904_CR2) 2004; 194
SY Wang (1904_CR41) 2006; 13
T Zegard (1904_CR52) 2015; 52
KK Choi (1904_CR11) 2005
SY Wang (1904_CR40) 2006; 65
P Wei (1904_CR47) 2009; 78
B Emre (1904_CR14) 2015; 10
S Osher (1904_CR23) 2002
JA Sethian (1904_CR31) 2000; 163
G Kharmanda (1904_CR18) 2004; 26
VJ Challis (1904_CR9) 2010; 41
S Schmidt (1904_CR29) 2011; 14
Y Mei (1904_CR20) 2004; 35
HK Zhao (1904_CR54) 1996; 127
S Zhou (1904_CR55) 2012; 55
References_xml – reference: GainALPaulinoGHA critical comparative assessment of differential equation-driven methods for structural topology optimizationStruct Multidiscip Optim2013484685710310759710.1007/s00158-013-0935-4
– reference: LiuKTovarAAn efficient 3d topology optimization code written in MATLABStruct Multidiscip Optim201450611751196331242510.1007/s00158-014-1107-x
– reference: OlesenLHOkkelsFBruusHA high-level programming-language implementation of topology optimization applied to steady-state navier-stokes flowInt J Numer Methods Eng20066579751001220169110.1002/nme.14681111.76017
– reference: DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim2014491138318245010.1007/s00158-013-0956-z
– reference: BurgerMOsherSJA survey on level set methods for inverse problems and optimal designEur J Appl Math2005162263301215529310.1017/S09567925050061821091.49001
– reference: MorseBSYooTSChenDTRheingansPSubramanianKRInterpolating implicit surfaces from scattered surface data using compactly supported radial basis functionsInt Conf Shape Model Appl2001152899810.1109/SMA.2001.923379
– reference: BurgerMHacklBRingWIncorporating topological derivatives into level set methodsJ Comput Phys20041941344362203338910.1016/j.jcp.2003.09.0331044.65053
– reference: ZhangWYuanJZhangJGuoXA new topology optimization approach based on moving Morphable components (MMC) and the ersatz material modelStruct Multidiscip Optim201653612431260349888510.1007/s00158-015-1372-3
– reference: SigmundOA 99 line topology optimization code written in MATLABStruct Multidiscip Optim2001212112012710.1007/s001580050176
– reference: TalischiCPaulinoGHPereiraAMenezesIFMPolytop: a MATLAB implementation of a general topology optimization framework using unstructured polygonal finite element meshesStruct Multidiscip Optim2012453329357289711610.1007/s00158-011-0696-x1274.74402
– reference: OtomoriMYamadaTIzuiKNishiwakiSMATLAB code for a level set-based topology optimization method using a reaction diffusion equationStruct Multidiscip Optim201451511591172335386810.1007/s00158-014-1190-z
– reference: ZhouSCadmanJChenYLiWXieYMHuangXDesign and fabrication of biphasic cellular materials with transport properties – a modified bidirectional evolutionary structural optimization procedure and MATLAB programInt J Heat Mass Transf20125525–268149816210.1016/j.ijheatmasstransfer.2012.08.028
– reference: SethianJAWiegmannAStructural boundary design via level set and immersed interface methodsJ Comput Phys20001632489528178355910.1006/jcph.2000.65810994.74082
– reference: OsherSSantosaFLevel set methods for optimization problems involving geometry and constraints: i. Frequencies of a two-density inhomogeneous drumJ Comput Phys20011711272288184364810.1006/jcph.2001.67891056.74061
– reference: RochafellarRTThe multiplier method of Hestenes and Powell applied to convex programmingJ Optim Theory Appl19731255556233495310.1007/BF00934777
– reference: AndreassenEClausenASchevenelsMLazarovBSSigmundOEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscip Optim201143111610.1007/s00158-010-0594-71274.74310
– reference: Wang MY, Chen SK, Xia Q (2004) TOPLSM, 199-line version. http://ihome.ust.hk/~mywang/download/TOPLSM_199.m
– reference: XiaLBreitkopfPDesign of materials using topology optimization and energy-based homogenization approach in MATLABStruct Multidiscip Optim201552612291241343333110.1007/s00158-015-1294-0
– reference: WangSYLimKMKhooBCWangMYAn extended level set method for shape and topology optimizationJ Comput Phys20072211395421229057710.1016/j.jcp.2006.06.0291110.65058
– reference: WangSYWangMYStructural shape and topology optimization using an implicit free boundary parameterization methodComput Model Eng Sci200613211914722261351232.74084
– reference: AllaireGDe GournayFJouveFToaderAMStructural optimization using topological and shape sensitivity via a level set methodControl Cybern2005341598022110631167.49324
– reference: Wang MY, Wei P (2005) Topology optimization with level set method incorporating topological derivative. 6th World Congress on Structural & Multidisciplinary Optimization, Rio de Janeiro, Brazil
– reference: HuangXXieYMEvolutionary Topology Optimization of Continuum Structures: Methods and Applications2010New YorkWiley10.1002/97804706894861279.90001
– reference: MeiYWangXA level set method for structural topology optimization and its applicationsAdv Eng Softw200435741544110.1016/j.advengsoft.2004.06.0041067.90153
– reference: ZhaoHKChanTMerrimanBOsherSA variational level set approach to multiphase motionJ Comput Phys1996127179195140806910.1006/jcph.1996.01670860.65050
– reference: SokołowskiJŻochowskiAOn the topological derivative in shape optimizationSIAM J Control Optim199937412511272169194010.1137/S03630129973232300940.49026
– reference: OsherSSethianJAFronts propagating with curvature-dependent speed: algorithms based on HamiltonJacobi formulationsJ Comput Phys1988791124996586010.1016/0021-9991(88)90002-20659.65132
– reference: SchmidtSSchulzVA 2589 line topology optimization code written for the graphics cardComput Vis Sci2011146249256297225010.1007/s00791-012-0180-11380.74100
– reference: SigmundOMauteKTopology optimization approachesStruct Multidiscip Optim201348610311055313812410.1007/s00158-013-0978-6
– reference: ZegardTPaulinoGHGRAND3 - ground structure based topology optimization for arbitrary 3D domains using MATLABStruct Multidiscip Optim20155261161118410.1007/s00158-015-1284-2
– reference: CecilTQianJOsherSNumerical methods for high dimensional Hamilton-Jacobi equations using radial basis functionsJ Comput Phys20041961327347205434610.1016/j.jcp.2003.11.0101053.65086
– reference: WeiPWangMYPiecewise constant level set method for structural topology optimizationInt J Numer Methods Eng2009784379402250947110.1002/nme.24781183.74222
– reference: DijkNPVMauteKLangelaarMvan KeulenFLevel-set methods for structural topology optimization: a reviewStruct Multidiscip Optim2013483437472310758310.1007/s00158-013-0912-y
– reference: ChallisVJA discrete level-set topology optimization code written in MATLABStruct Multidiscip Optim2010413453464260213610.1007/s00158-009-0430-01274.74322
– reference: SethianJALevel set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science1999CambridgeCambridge University Press0973.76003
– reference: SureshKA 199-line MATLAB code for Pareto-optimal tracing in topology optimizationStruct Multidiscip Optim2010425665679272027410.1007/s00158-010-0534-61274.74005
– reference: KansaEJPowerHFasshauerGELingLA volumetric integral radial basis function method for time-dependent partial differential equations. I. FormulationEng Anal Bound Elem200428101191120610.1016/j.enganabound.2004.01.0041159.76363
– reference: TavakoliRMohseniSMAlternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementationStruct Multidiscip Optim2014494621642318339710.1007/s00158-013-0999-1
– reference: Allaire G (2009) A 2-d Scilab Code for shape and topology optimization by the level set method. http://www.cmap.polytechnique.fr/∼allaire/levelset_en.html
– reference: XieXMirmehdiMRadial basis function based level set interpolation and evolution for deformable modellingImage Vis Comput2011292–316717710.1016/j.imavis.2010.08.011
– reference: ChoiKKKimNHStructural sensitivity analysis and optimization 12005BerlinSpringer
– reference: ChanTFVeseLAActive contours without edgesIEEE Trans Image Process200110226627710.1109/83.9022911039.68779
– reference: AllaireGJouveFToaderAMStructural optimization using sensitivity analysis and a level-set methodJ Comput Phys20041941363393203339010.1016/j.jcp.2003.09.0321136.74368
– reference: WangMYWangXGuoDA level set method for structural topology optimizationComput Methods Appl Mech Eng20031921–2227246195140810.1016/S0045-7825(02)00559-51083.74573
– reference: WendlandHPiecewise polynomial, positive definite and compactly supported radial functions of minimal degreeAdv Comput Math199541389396136651010.1007/BF021234820838.41014
– reference: ZuoZHXieYMA simple and compact python code for complex 3D topology optimizationAdv Eng Softw20158511110.1016/j.advengsoft.2015.02.006
– reference: KharmandaGOlhoffNMohamedALemaireMReliability-based topology optimizationStruct Multidiscip Optim200426529530710.1007/s00158-003-0322-7
– reference: YamadaTIzuiKNishiwakiSTakezawaAA topology optimization method based on the level set method incorporating a fictitious interface energyComput Methods Appl Mech Eng201019945–4828762891274076510.1016/j.cma.2010.05.0131231.74365
– reference: BendsøeMSigmundOTopology optimization. Theory, methods and applications2003BerlinSpringer1059.74001
– reference: WangSYWangMYRadial basis functions and level set method for structural topology optimizationInt J Numer Meth Engng20066520602090220894010.1002/nme.15361174.74331
– reference: OsherSFedkiwRLevel set methods and dynamic implicit surfaces2002New YorkSpringer1026.76001
– reference: PengDMerrimanBOsherSZhao H.& Kang M.A PDE-based fast local level set methodJ Comput Phys19991552410438172332110.1006/jcph.1999.63450964.76069
– reference: Van DijkNPMauteKLangelaarMVan KeulenFLevel-set methods for structural topology optimization: a reviewStruct Multidiscip Optim2013483437472310758310.1007/s00158-013-0912-y
– reference: EmreBToACProportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLABPLoS One20151012e014504110.1371/journal.pone.0145041
– reference: SokołowskiJZolésioJPIntroduction to shape optimization: shape Sensitity analysis. Introduction to shape optimization : shape sensitivity analysis1992BerlinSpringer-Verlag0761.73003
– reference: Wei P, Wang MY (2006) The augmented Lagrangian method in structural shape and topology optimization with RBF based level set method, The 4th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Kunming, China
– ident: 1904_CR44
– volume: 55
  start-page: 8149
  issue: 25–26
  year: 2012
  ident: 1904_CR55
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.08.028
– volume: 194
  start-page: 344
  issue: 1
  year: 2004
  ident: 1904_CR7
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.033
– volume-title: Level set methods and dynamic implicit surfaces
  year: 2002
  ident: 1904_CR23
– volume: 171
  start-page: 272
  issue: 1
  year: 2001
  ident: 1904_CR24
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2001.6789
– volume: 16
  start-page: 263
  issue: 2
  year: 2005
  ident: 1904_CR6
  publication-title: Eur J Appl Math
  doi: 10.1017/S0956792505006182
– volume: 53
  start-page: 1243
  issue: 6
  year: 2016
  ident: 1904_CR53
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1372-3
– volume: 65
  start-page: 2060
  year: 2006
  ident: 1904_CR40
  publication-title: Int J Numer Meth Engng
  doi: 10.1002/nme.1536
– volume: 192
  start-page: 227
  issue: 1–2
  year: 2003
  ident: 1904_CR43
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 50
  start-page: 1175
  issue: 6
  year: 2014
  ident: 1904_CR19
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1107-x
– volume: 51
  start-page: 1159
  issue: 5
  year: 2014
  ident: 1904_CR26
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1190-z
– volume: 127
  start-page: 179
  year: 1996
  ident: 1904_CR54
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1996.0167
– volume: 37
  start-page: 1251
  issue: 4
  year: 1999
  ident: 1904_CR34
  publication-title: SIAM J Control Optim
  doi: 10.1137/S0363012997323230
– volume-title: Introduction to shape optimization: shape Sensitity analysis. Introduction to shape optimization : shape sensitivity analysis
  year: 1992
  ident: 1904_CR35
– volume: 49
  start-page: 621
  issue: 4
  year: 2014
  ident: 1904_CR38
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0999-1
– volume: 4
  start-page: 389
  issue: 1
  year: 1995
  ident: 1904_CR48
  publication-title: Adv Comput Math
  doi: 10.1007/BF02123482
– volume: 52
  start-page: 1161
  issue: 6
  year: 2015
  ident: 1904_CR52
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1284-2
– volume: 49
  start-page: 1
  issue: 1
  year: 2014
  ident: 1904_CR12
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0956-z
– volume: 48
  start-page: 437
  issue: 3
  year: 2013
  ident: 1904_CR13
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0912-y
– volume: 29
  start-page: 167
  issue: 2–3
  year: 2011
  ident: 1904_CR50
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2010.08.011
– volume: 78
  start-page: 379
  issue: 4
  year: 2009
  ident: 1904_CR47
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2478
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  ident: 1904_CR2
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.032
– volume: 26
  start-page: 295
  issue: 5
  year: 2004
  ident: 1904_CR18
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-003-0322-7
– volume: 199
  start-page: 2876
  issue: 45–48
  year: 2010
  ident: 1904_CR51
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.05.013
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 1904_CR25
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– volume: 14
  start-page: 249
  issue: 6
  year: 2011
  ident: 1904_CR29
  publication-title: Comput Vis Sci
  doi: 10.1007/s00791-012-0180-1
– volume: 45
  start-page: 329
  issue: 3
  year: 2012
  ident: 1904_CR37
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0696-x
– volume: 35
  start-page: 415
  issue: 7
  year: 2004
  ident: 1904_CR20
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2004.06.004
– volume: 13
  start-page: 119
  issue: 2
  year: 2006
  ident: 1904_CR41
  publication-title: Comput Model Eng Sci
– volume-title: Topology optimization. Theory, methods and applications
  year: 2003
  ident: 1904_CR5
– volume: 42
  start-page: 665
  issue: 5
  year: 2010
  ident: 1904_CR36
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0534-6
– volume: 163
  start-page: 489
  issue: 2
  year: 2000
  ident: 1904_CR31
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6581
– ident: 1904_CR46
  doi: 10.1115/DETC2006-99294
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  ident: 1904_CR33
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0978-6
– volume: 28
  start-page: 1191
  issue: 10
  year: 2004
  ident: 1904_CR17
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2004.01.004
– volume: 48
  start-page: 437
  issue: 3
  year: 2013
  ident: 1904_CR39
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0912-y
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  ident: 1904_CR10
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.902291
– volume: 48
  start-page: 685
  issue: 4
  year: 2013
  ident: 1904_CR15
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0935-4
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: 1904_CR4
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0594-7
– volume: 12
  start-page: 555
  year: 1973
  ident: 1904_CR28
  publication-title: J Optim Theory Appl
  doi: 10.1007/BF00934777
– volume-title: Structural sensitivity analysis and optimization 1
  year: 2005
  ident: 1904_CR11
– volume: 85
  start-page: 1
  year: 2015
  ident: 1904_CR56
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.02.006
– volume: 34
  start-page: 59
  issue: 1
  year: 2005
  ident: 1904_CR3
  publication-title: Control Cybern
– volume: 41
  start-page: 453
  issue: 3
  year: 2010
  ident: 1904_CR9
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0430-0
– ident: 1904_CR42
– volume-title: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
  year: 2010
  ident: 1904_CR16
  doi: 10.1002/9780470689486
– ident: 1904_CR1
– volume: 10
  start-page: e0145041
  issue: 12
  year: 2015
  ident: 1904_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0145041
– volume: 65
  start-page: 975
  issue: 7
  year: 2006
  ident: 1904_CR22
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1468
– volume: 155
  start-page: 410
  issue: 2
  year: 1999
  ident: 1904_CR27
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1999.6345
– volume: 221
  start-page: 395
  issue: 1
  year: 2007
  ident: 1904_CR45
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.06.029
– volume-title: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science
  year: 1999
  ident: 1904_CR30
– volume: 15
  start-page: 89
  issue: 2
  year: 2001
  ident: 1904_CR21
  publication-title: Int Conf Shape Model Appl
  doi: 10.1109/SMA.2001.923379
– volume: 52
  start-page: 1229
  issue: 6
  year: 2015
  ident: 1904_CR49
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1294-0
– volume: 196
  start-page: 327
  issue: 1
  year: 2004
  ident: 1904_CR8
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.11.010
– volume: 21
  start-page: 120
  issue: 21
  year: 2001
  ident: 1904_CR32
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580050176
SSID ssj0008049
Score 2.6423442
Snippet This paper presents a compact and efficient 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 831
SubjectTerms Basis functions
Computational Mathematics and Numerical Analysis
Dependence
Educational Article
Engineering
Engineering Design
Matlab
Modulus of elasticity
Neural networks
Nucleation
Parameterization
Radial basis function
Theoretical and Applied Mechanics
Topology optimization
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVo4QCHQgsVS7doDj2BLBzHSZxTta2oOCyrSl3Q3qLEdtBK-8UmVIJfz4yT7LaI7qXX2PmQ5sXzbD-_YexM2hJpsCq5VLHiKhSOF3FScJFqi5e1CL0Y8_swGY30ZJJetwtuVSur7MZEP1DbpaE18k9IExBdCjF2vvrJqWoU7a62JTT22FNySZBeunezGYl1Q3-J1PBAJZNuV1N4E9EgIhkXzqFSobi-n5e2ZPOf_VGfdq5ePvaDX7GDlnDCoEHIIXviFkfsxR0bwtfsdrAARDIRTvg6GA8HF0An3QH5LCA_BLIHn5NsZvrHWZiRzAgqV0NTfRooEVqom2oLv2GJg9C8Pd0JJKv_AWsyQJhRx2kFlEk92N-wb1efx5dfeFuPgRsViJorm0aR1CYOAidVlOSY2HJlpMhlUcZhkWITMRhVOqRZYY7BlipUTtvAKR2b8JjtL5YL95aBEcY6J0yOBA6naFGRRGWcSKGL1AoTpD0mumhkpjUrp5oZs2xjs-wDmGEAMwpgpnvsw-aWVePUsatzvwta1v60VSbJDjBIwlT8v3kT0B772KFi2_zgu97tftgJey4Jhl5U2Gf79fqXO2XPzG09rdbvPaD_As0Q-TI
  priority: 102
  providerName: ProQuest
Title An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions
URI https://link.springer.com/article/10.1007/s00158-018-1904-8
https://www.proquest.com/docview/2077517390
https://www.proquest.com/docview/2262574042
Volume 58
WOSCitedRecordID wos000440107200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: RSV
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6IEeeLQglsdqDpxaWXIcJ3GOCwJxgBUCivYWJY6DVloWtEmR2l_PTB7LQ7QSXGPnIc9k5rP8zTcAByovCAbrQigdaqF96UQWRpmQscnpspF-Tca8OYuGQzMaxRdtHXfZsd27I8k6Us-L3Ti9M_GKdj2x1MIswjJlO8N_4-XVzTz8mgbzMpIRno5G3VHme494nYyeEeabQ9E615ysfeor12G1hZY4aHxhAxbc9Bt8fSE4-B0eB1Mkn2VoieeD67PBIXJNOxJyRUKCyELgd0yQGf91OU6YUISlq7DpM42c8nKsmr4Kf_Cews1dW8eJTKC_xRlLHUx44rhEzpm1W2_Cr5Pj66NT0XZeEFZ7shI6j4NAGRt6nlM6iFJKYam2SqYqK0I_i2mIsYouHAEqPyWzKu1rZ3LPaRNafwuWpvdTtw1opc2dkzYlqEabsSCLgiKMlDRZnEvrxT2QnQkS28qSc3eMSTIXVK6XNKElTXhJE9ODH_NbHhpNjv9N3uvsmrS_Z5koFv7zIj-W7w8r2hVGmuJZD352Zn4e_ue7dj40exdWFPtJzSbcg6Vq9tvtwxf7WI3LWR-WD4-HF5d9JqNe9WsXfwIg4fFC
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCswBLiALx3ES54DQ8qhadbtCYkF7SxPHQSttd8smFJUfxW9kxkm2gKC3HrjGifPwN-PP8cw3AE9UWREN1pVQOtZCh9KJIk4KIVNT0mEjQx-M-WmUjMdmOk3fb8CPPheGwyp7n-gddbm0_I_8BdEEQpcmjL06-iK4ahTvrvYlNFpY7LmTb7Rkq1_uvqXxfarU9rvJmx3RVRUQVgeyEbpMo0gZGweBUzpKcnLPubZK5qqo4rBIqYnnYV05IgthTo-sdKidKQOnTWxD6vcCXNTs_X2o4Ie15zct3WYSJQKdTPtdVOlFS4OIw8ZozZZKLczv8-Apuf1jP9ZPc9vX_7cPdAOudYQah60F3IQNt7gFV3-RWbwNx8MFkqUyocb94WQ0fI2cyY_E15H4L7L8-SGHBc2-uxLnHEaFtWuwra6NPNGX2LTVJE5wSU72sMteRU4b-IwrFniY84mzGpkpeGO-Ax_P5cXvwuZiuXD3AK20pXPS5kRQaQkaFUlUxYmSpkhLaYN0ALIf_cx2YuxcE2SerWWkPWAyAkzGgMnMAJ6tLzlqlUjOOnmrB0nWOaU6Uyx3GCRhKv_evAbQAJ73KDxt_ue97p_d2WO4vDPZH2Wj3fHeA7ii2AR8AOUWbDarr-4hXLLHzaxePfLGhHBw3uD8CZ_kUvM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZKQYgeeKNuKeADJ9Cok8kkmRy3wKqIZVWJUu0tSmYmaKVtWm3SSu2vr53HFlBBQlwzk4dsZ_xZtj8DvFWuJBisS6F0rIUOpRdFnBRCpsbRZSPDthjzeJrMZmY-Tw_7Oaf1UO0-pCS7ngZmaaqavTNX7q0b39jVcxEWRUCp1MLcgbuaZwZxuP7teH0Umw7_MqoRgU7mQ1rztkf86phu0OZvCdLW70we_fcXP4aHPeTEcWcjT2DDV09h6yciwmdwMa6QbJkhJ34dH03H-8i97kiIFgkhIhOEn3DhzOLKO1xyoRHWvsFu_jSyK3TYdPMWLvGUjqGTvr8TubD-B66YAmHJGxc1si9tzf05fJ98OvpwIPqJDMKSeBuhXRpFytg4CLzSUZKTa8u1VTJXRRmHRUpLjGF06QlohTmpW-lQe-MCr01swxewWZ1WfhvQSuu8lzYnCEdBWlQkURknSpoiddIG6QjkoI7M9nTlPDVjma2JlluRZiTSjEWamRG8W99y1nF1_G3z7qDjrP9t60wxIWCQhKm8fVlRtJhoOudG8H5Q-c3yH9-180-738D9w4-TbPp59uUlPFBsMm3B4S5sNqtz_wru2YtmUa9et7Z-DZaP-ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+88-line+MATLAB+code+for+the+parameterized+level+set+method+based+topology+optimization+using+radial+basis+functions&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Wei%2C+Peng&rft.au=Li%2C+Zuyu&rft.au=Li%2C+Xueping&rft.au=Wang%2C+Michael+Yu&rft.date=2018-08-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=58&rft.issue=2&rft.spage=831&rft.epage=849&rft_id=info:doi/10.1007%2Fs00158-018-1904-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_018_1904_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon