Stand-alone gas turbine and hybrid MCFC and SOFC-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments
The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hy...
Uložené v:
| Vydané v: | Energy reports Ročník 7; s. 4659 - 4680 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2021
Elsevier |
| Predmet: | |
| ISSN: | 2352-4847, 2352-4847 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hybridization based on a throughout comparative investigation between 10-MW GT, MCFC-GT, and SOFC-GT systems in their optimum conditions. A model for SOFC, MCFC, and combustion processes was developed using the Gibbs minimization method through Lagrange multipliers. This model calculates unreformed methane during the methane reforming process occurring within the fuel cells. In addition, it calculates pollutant gases emission rates caused by combustion (i.e. NO, NO2, CO2). The economic analysis of the systems was based on the life cycle-costing P1-P2 method which considers fuel and investment costs. The Genetic algorithm was utilized for single- and multi-objective optimization purposes in different cases. Also, a comprehensive sensitivity analysis was conducted to compare the three systems in their optimum conditions to guarantee results obtained from the optimization scenario. The findings revealed that the SOFC was the best candidate for the GT system hybridization. This hybridization reduced the system investment and fuel costs, and CO2 and NO emissions in the fixed power conditions. The maximum energy efficiency of the GT, MCFC-GT, and SOFC-GT systems was obtained to be 43.8%, 53.8%, and 70.3%, respectively. The minimum values for the CO2 emission of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems were 460.8 kg/MWh, 367.9 kg/MWh, and 280.4 kg/MWh, besides NO emission was calculated 13.9 kg/MWh, 1.3 kg/MWh, and 1.2 kg/MWh, respectively. The least life cycle cost of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems was 163.6, 160.7, and 106 million dollars, respectively.
•Fixed 10 MW power of GT, MCFC-GT, and SOFC-GT were compared at optimum conditions.•Life cycle cost of the systems is calculated to predict their economic performance.•SOFC-GT system is 26% and 16% more efficient than GT and MCFC-GT, respectively.•SOFC-GT emits CO2 39% and 24% lower than GT and MCFC-GT, respectively.•SOFC-GT life cycle cost is 35% and 34% lower than GT and MCFC-GT, respectively. |
|---|---|
| AbstractList | The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hybridization based on a throughout comparative investigation between 10-MW GT, MCFC-GT, and SOFC-GT systems in their optimum conditions. A model for SOFC, MCFC, and combustion processes was developed using the Gibbs minimization method through Lagrange multipliers. This model calculates unreformed methane during the methane reforming process occurring within the fuel cells. In addition, it calculates pollutant gases emission rates caused by combustion (i.e. NO, NO2, CO2). The economic analysis of the systems was based on the life cycle-costing P1-P2 method which considers fuel and investment costs. The Genetic algorithm was utilized for single- and multi-objective optimization purposes in different cases. Also, a comprehensive sensitivity analysis was conducted to compare the three systems in their optimum conditions to guarantee results obtained from the optimization scenario. The findings revealed that the SOFC was the best candidate for the GT system hybridization. This hybridization reduced the system investment and fuel costs, and CO2 and NO emissions in the fixed power conditions. The maximum energy efficiency of the GT, MCFC-GT, and SOFC-GT systems was obtained to be 43.8%, 53.8%, and 70.3%, respectively. The minimum values for the CO2 emission of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems were 460.8 kg/MWh, 367.9 kg/MWh, and 280.4 kg/MWh, besides NO emission was calculated 13.9 kg/MWh, 1.3 kg/MWh, and 1.2 kg/MWh, respectively. The least life cycle cost of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems was 163.6, 160.7, and 106 million dollars, respectively.
•Fixed 10 MW power of GT, MCFC-GT, and SOFC-GT were compared at optimum conditions.•Life cycle cost of the systems is calculated to predict their economic performance.•SOFC-GT system is 26% and 16% more efficient than GT and MCFC-GT, respectively.•SOFC-GT emits CO2 39% and 24% lower than GT and MCFC-GT, respectively.•SOFC-GT life cycle cost is 35% and 34% lower than GT and MCFC-GT, respectively. The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hybridization based on a throughout comparative investigation between 10-MW GT, MCFC-GT, and SOFC-GT systems in their optimum conditions. A model for SOFC, MCFC, and combustion processes was developed using the Gibbs minimization method through Lagrange multipliers. This model calculates unreformed methane during the methane reforming process occurring within the fuel cells. In addition, it calculates pollutant gases emission rates caused by combustion (i.e. NO, NO2, CO2). The economic analysis of the systems was based on the life cycle-costing P1-P2 method which considers fuel and investment costs. The Genetic algorithm was utilized for single- and multi-objective optimization purposes in different cases. Also, a comprehensive sensitivity analysis was conducted to compare the three systems in their optimum conditions to guarantee results obtained from the optimization scenario. The findings revealed that the SOFC was the best candidate for the GT system hybridization. This hybridization reduced the system investment and fuel costs, and CO2 and NO emissions in the fixed power conditions. The maximum energy efficiency of the GT, MCFC-GT, and SOFC-GT systems was obtained to be 43.8%, 53.8%, and 70.3%, respectively. The minimum values for the CO2 emission of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems were 460.8 kg/MWh, 367.9 kg/MWh, and 280.4 kg/MWh, besides NO emission was calculated 13.9 kg/MWh, 1.3 kg/MWh, and 1.2 kg/MWh, respectively. The least life cycle cost of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems was 163.6, 160.7, and 106 million dollars, respectively. |
| Author | Hasanzadeh, Amirhossein Chitsaz, Ata Ghasemi, Amir Mojaver, Parisa |
| Author_xml | – sequence: 1 givenname: Amirhossein orcidid: 0000-0001-7815-3988 surname: Hasanzadeh fullname: Hasanzadeh, Amirhossein organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran – sequence: 2 givenname: Ata surname: Chitsaz fullname: Chitsaz, Ata organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran – sequence: 3 givenname: Parisa surname: Mojaver fullname: Mojaver, Parisa organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran – sequence: 4 givenname: Amir orcidid: 0000-0002-3910-6828 surname: Ghasemi fullname: Ghasemi, Amir email: amir_ghasemi@ut.ir organization: School of Environment, College of Engineering, University of Tehran, Tehran, Iran |
| BookMark | eNp9kcFu3CAQhlGUSk22eYGeeIDYBWyDHeUSWdk2UqockpwRhvGGlRciICv5DfLYxbtVFfWQC8wM_B_M_Ofo1HkHCH2npKSE8h_bEjZzKBlhtCSiJA05QWesalhRt7U4_RB_RRcxbgkhtGOk5tUZen9MyplCTRmJNyri9BYGm-NcxS_zEKzBv_t1f8gfH9Z98fFSnGOCXbzCvd-9qqCS3QOe7AhYz3rKq4_pEoPb2-DdDlxS0-WBBA7CZsYqRohxOYjf0JdRTREu_u4r9Ly-fep_FfcPP-_6m_tC15SkouYk9yGMpkNFq4GOdKzooKgAoYGPzIgOFDUcgBlDB6JZwxTplsy0NRfVCt0ducarrXwNdqfCLL2y8lDwYSNVSDb_XjYaWmIUN6bRtQDouuUN3nSmom1T8cxiR5YOPsYA4z8eJXKxRm7lYo1crJFEyGxNFrX_ibRNeXLepaDs9Ln0-iiFPKC9hSCjtuA0GBtAp9yB_Uz-B5FfrgY |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2024_01_055 crossref_primary_10_1016_j_applthermaleng_2022_118438 crossref_primary_10_1016_j_spc_2022_07_011 crossref_primary_10_1016_j_ijhydene_2022_03_187 crossref_primary_10_3390_su132313187 crossref_primary_10_1016_j_enconman_2024_118611 crossref_primary_10_1016_j_rser_2023_113278 crossref_primary_10_2514_1_C038174 crossref_primary_10_1016_j_apenergy_2023_122463 crossref_primary_10_1016_j_fuel_2022_125003 crossref_primary_10_1016_j_jclepro_2023_137907 crossref_primary_10_1016_j_rineng_2025_106750 crossref_primary_10_1016_j_fuel_2022_124752 crossref_primary_10_1016_j_fuel_2022_125527 crossref_primary_10_1016_j_renene_2025_123703 crossref_primary_10_1007_s10644_024_09706_w crossref_primary_10_1016_j_jcou_2025_103097 crossref_primary_10_1016_j_chemosphere_2023_138454 crossref_primary_10_1016_j_fuel_2022_125969 crossref_primary_10_1016_j_ijhydene_2025_03_238 crossref_primary_10_1016_j_cjche_2021_05_038 crossref_primary_10_1016_j_tsep_2024_102407 crossref_primary_10_1016_j_apenergy_2022_120449 crossref_primary_10_1007_s11367_023_02224_3 crossref_primary_10_1016_j_est_2022_105274 crossref_primary_10_1016_j_applthermaleng_2022_119871 crossref_primary_10_1016_j_applthermaleng_2021_117593 crossref_primary_10_1080_15567036_2022_2108167 crossref_primary_10_1016_j_chemosphere_2023_139818 crossref_primary_10_1016_j_ijhydene_2022_04_284 crossref_primary_10_1016_j_fuel_2022_126825 crossref_primary_10_1016_j_energy_2024_133043 crossref_primary_10_1016_j_ijhydene_2021_12_044 crossref_primary_10_1016_j_psep_2023_06_052 crossref_primary_10_1016_j_ijhydene_2023_05_097 crossref_primary_10_1016_j_ijhydene_2024_07_101 crossref_primary_10_1016_j_energy_2024_133145 crossref_primary_10_1016_j_icheatmasstransfer_2021_105624 crossref_primary_10_1016_j_fuel_2022_125182 crossref_primary_10_1016_j_egyr_2022_08_185 crossref_primary_10_1016_j_applthermaleng_2022_119585 crossref_primary_10_1016_j_renene_2025_122881 crossref_primary_10_1016_j_fuel_2022_125300 crossref_primary_10_1016_j_fuel_2022_124498 crossref_primary_10_1016_j_tsep_2023_102226 crossref_primary_10_1016_j_ijhydene_2022_12_093 crossref_primary_10_1016_j_energy_2022_126489 crossref_primary_10_1016_j_ijhydene_2022_06_102 crossref_primary_10_1016_j_energy_2025_134683 crossref_primary_10_1016_j_egyr_2022_05_281 crossref_primary_10_3390_su141912380 crossref_primary_10_3390_en17112694 crossref_primary_10_1016_j_cles_2022_100003 crossref_primary_10_1016_j_enconman_2023_117730 crossref_primary_10_1016_j_energy_2024_132408 crossref_primary_10_1016_j_applthermaleng_2024_122867 crossref_primary_10_1038_s41598_021_96733_6 crossref_primary_10_1016_j_fuel_2022_125593 crossref_primary_10_1016_j_fuel_2022_126442 crossref_primary_10_1016_j_apenergy_2023_121486 crossref_primary_10_1093_ijlct_ctae008 crossref_primary_10_1002_aesr_202400132 |
| Cites_doi | 10.1016/j.ijhydene.2017.08.216 10.1016/j.energy.2017.12.008 10.1016/j.enconman.2019.112195 10.1016/j.scs.2019.101575 10.1016/j.apenergy.2020.114630 10.1016/j.tsep.2018.01.013 10.1016/j.jpowsour.2017.03.113 10.1016/j.ijhydene.2012.03.005 10.1016/j.apenergy.2018.09.027 10.1016/S0378-7753(01)00842-4 10.1016/j.scs.2020.102667 10.1007/s12555-016-0234-0 10.1016/j.scs.2018.10.021 10.1016/j.ijhydene.2017.02.178 10.1016/j.ijhydene.2019.05.156 10.1016/j.energy.2017.03.105 10.1016/j.ijhydene.2009.10.104 10.1016/j.energy.2015.07.137 10.1016/j.enconman.2018.04.088 10.1016/j.applthermaleng.2014.12.016 10.1016/j.energy.2018.03.178 10.1016/j.jelechem.2016.07.005 10.1016/j.ces.2017.08.033 10.1115/1.2930068 10.1016/j.ijhydene.2017.04.277 10.1016/j.jpowsour.2018.07.035 10.1016/j.scs.2019.101650 10.1016/j.desal.2013.11.039 10.1016/j.enconman.2018.03.067 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.egyr.2021.07.050 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4847 |
| EndPage | 4680 |
| ExternalDocumentID | oai_doaj_org_article_5ce80da6dd5c47ee997ce6659d318536 10_1016_j_egyr_2021_07_050 S2352484721005151 |
| GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E O9- OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c410t-4608477dc1b313b1f1f31ba17e7ce6f2d79ea1d6ee2dd1b0c252a09e2ddd84673 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701766400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4847 |
| IngestDate | Fri Oct 03 12:30:44 EDT 2025 Thu Oct 16 04:40:22 EDT 2025 Tue Nov 18 21:49:05 EST 2025 Sat Nov 08 17:17:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Gas turbine Environmental pollution Fuel cell Life cycle cost |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-4608477dc1b313b1f1f31ba17e7ce6f2d79ea1d6ee2dd1b0c252a09e2ddd84673 |
| ORCID | 0000-0002-3910-6828 0000-0001-7815-3988 |
| OpenAccessLink | https://doaj.org/article/5ce80da6dd5c47ee997ce6659d318536 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5ce80da6dd5c47ee997ce6659d318536 crossref_primary_10_1016_j_egyr_2021_07_050 crossref_citationtrail_10_1016_j_egyr_2021_07_050 elsevier_sciencedirect_doi_10_1016_j_egyr_2021_07_050 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy reports |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Saebea, Magistri, Massardo, Arpornwichanop (b33) 2017; 127 Dincer, Rosen, Ahmadi (b12) 2017 Hoseintabar-Marzebali (b18) 2019; 50 Venkataraman, El-Kharouf, Pandya, Amakiri, Steinberger-Wilckens (b38) 2020; 18 Mamaghani, Najafi, Shirazi, Rinaldi (b24) 2015; 77 Jenkins (b20) 2020 Najafi, Shirazi, Aminyavari, Rinaldi, Taylor (b30) 2014; 334 Roushenas, Zarei, Torabi (b32) 2021; 66 Calise, Dentice d’Accadia, Vanoli, von Spakovsky (b3) 2006 Tao, Armstrong, Virkar (b36) 2005 Choudhary, Sahu, S, Kumari, Mohapatra (b7) 2018 Mojaver, Jafarmadar, Khalilarya, Chitsaz (b25) 2019 Tsanas, Stenby, Yan (b37) 2017; 174 Zare, Mahmoudi, Yari, Amidpour (b41) 2012 Choudhary, Sanjay (b9) 2017; 42 Duffie, Beckman, Worek (b15) 1994; 116 Pérez-Trujillo, Elizalde-Blancas, McPhail, Della Pietra, Bosio (b31) 2020; 263 Sartori da Silva, Matelli (b35) 2019; 44 Chan, Low, Ding (b4) 2002; 103 Sghaier, Khir, Ben Brahim (b34) 2018; 43 Moreno-Gamboa, Escudero-Atehortua, Nieto-Londoño (b29) 2020; 20 Lee (b23) 2016 Mojaver, Khalilarya, Chitsaz, Assadi (b27) 2020; 38 Jamshidi, Askarzadeh (b19) 2019; 44 Ansarinasab, Mehrpooya (b1) 2018; 165 Kim, Kim, Park, Yeo (b21) 2018; 16 van Biert, Woudstra, Godjevac, Visser, Aravind (b2) 2018; 397 Dhahad, Ahmadi, Dahari, Ghaebi, Parikhani (b11) 2021; 21 Eisavi, Chitsaz, Hosseinpour, Ranjbar (b16) 2018; 168 Duan, Lu, Yuan, Lv (b13) 2018; 152 Leal, Bortolaia, Leal Junior (b22) 2019; 202 Montorsi, Milani, Stefani, Terzi (b28) 2018; 5 Verda, Nicolin (b39) 2010; 35 Chitsaz, Sadeghi, Sadeghi, Ghanbarloo (b6) 2018; 144 Mojaver, Khalilarya, Chitsaz (b26) 2021 Cuneo, Zaccaria, Tucker, Sorce (b10) 2018; 230 Gharibi, Askarzadeh (b17) 2019; 50 Duan, Yue, Qu, Yang (b14) 2015; 93 Choudhary, Sanjay (b8) 2017; 42 Whiston, Collinge, Bilec, Schaefer (b40) 2017; 353 Chinda, Brault (b5) 2012; 37 Jenkins (10.1016/j.egyr.2021.07.050_b20) 2020 Saebea (10.1016/j.egyr.2021.07.050_b33) 2017; 127 Chinda (10.1016/j.egyr.2021.07.050_b5) 2012; 37 Choudhary (10.1016/j.egyr.2021.07.050_b9) 2017; 42 Chitsaz (10.1016/j.egyr.2021.07.050_b6) 2018; 144 Gharibi (10.1016/j.egyr.2021.07.050_b17) 2019; 50 Hoseintabar-Marzebali (10.1016/j.egyr.2021.07.050_b18) 2019; 50 Zare (10.1016/j.egyr.2021.07.050_b41) 2012 Lee (10.1016/j.egyr.2021.07.050_b23) 2016 Duan (10.1016/j.egyr.2021.07.050_b13) 2018; 152 Mojaver (10.1016/j.egyr.2021.07.050_b27) 2020; 38 Kim (10.1016/j.egyr.2021.07.050_b21) 2018; 16 Najafi (10.1016/j.egyr.2021.07.050_b30) 2014; 334 Verda (10.1016/j.egyr.2021.07.050_b39) 2010; 35 Moreno-Gamboa (10.1016/j.egyr.2021.07.050_b29) 2020; 20 Choudhary (10.1016/j.egyr.2021.07.050_b7) 2018 Mamaghani (10.1016/j.egyr.2021.07.050_b24) 2015; 77 Duffie (10.1016/j.egyr.2021.07.050_b15) 1994; 116 Leal (10.1016/j.egyr.2021.07.050_b22) 2019; 202 Ansarinasab (10.1016/j.egyr.2021.07.050_b1) 2018; 165 Sartori da Silva (10.1016/j.egyr.2021.07.050_b35) 2019; 44 Calise (10.1016/j.egyr.2021.07.050_b3) 2006 Choudhary (10.1016/j.egyr.2021.07.050_b8) 2017; 42 van Biert (10.1016/j.egyr.2021.07.050_b2) 2018; 397 Duan (10.1016/j.egyr.2021.07.050_b14) 2015; 93 Roushenas (10.1016/j.egyr.2021.07.050_b32) 2021; 66 Venkataraman (10.1016/j.egyr.2021.07.050_b38) 2020; 18 Dhahad (10.1016/j.egyr.2021.07.050_b11) 2021; 21 Pérez-Trujillo (10.1016/j.egyr.2021.07.050_b31) 2020; 263 Tao (10.1016/j.egyr.2021.07.050_b36) 2005 Whiston (10.1016/j.egyr.2021.07.050_b40) 2017; 353 Cuneo (10.1016/j.egyr.2021.07.050_b10) 2018; 230 Montorsi (10.1016/j.egyr.2021.07.050_b28) 2018; 5 Dincer (10.1016/j.egyr.2021.07.050_b12) 2017 Jamshidi (10.1016/j.egyr.2021.07.050_b19) 2019; 44 Sghaier (10.1016/j.egyr.2021.07.050_b34) 2018; 43 Chan (10.1016/j.egyr.2021.07.050_b4) 2002; 103 Tsanas (10.1016/j.egyr.2021.07.050_b37) 2017; 174 Eisavi (10.1016/j.egyr.2021.07.050_b16) 2018; 168 Mojaver (10.1016/j.egyr.2021.07.050_b25) 2019 Mojaver (10.1016/j.egyr.2021.07.050_b26) 2021 |
| References_xml | – volume: 44 start-page: 310 year: 2019 end-page: 320 ident: b19 article-title: Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system publication-title: Sustain. Cities Soc. – volume: 174 start-page: 112 year: 2017 end-page: 126 ident: b37 article-title: Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers publication-title: Chem. Eng. Sci. – year: 2018 ident: b7 article-title: Thermodynamic modeling of blade cooled turboprop engine integrated to solid oxide fuel cell: A concept – volume: 77 start-page: 1 year: 2015 end-page: 11 ident: b24 article-title: Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system publication-title: Appl. Therm. Eng. – volume: 43 start-page: 3542 year: 2018 end-page: 3554 ident: b34 article-title: Energetic and exergetic parametric study of a SOFC-GT hybrid power plant publication-title: Int. J. Hydrog. Energy – year: 2017 ident: b12 article-title: Optimization of Energy Systems – volume: 38 year: 2020 ident: b27 article-title: Multi-objective optimization of a power generation system based SOFC using taguchi/AHP/TOPSIS triple method publication-title: Sustain. Energy Technol. Assess. – volume: 230 start-page: 855 year: 2018 end-page: 864 ident: b10 article-title: Gas turbine size optimization in a hybrid system considering SOFC degradation publication-title: Appl. Energy – volume: 21 year: 2021 ident: b11 article-title: Energy, exergy, and exergoeconomic evaluation of a novel CCP system based on a solid oxide fuel cell integrated with absorption and ejector refrigeration cycles publication-title: Therm. Sci. Eng. Prog. – start-page: 45 year: 2021 ident: b26 article-title: Combined systems based on OSOFC/HSOFC: comparative analysis and multi-objective optimization of power and emission publication-title: Int. J. Energy Res. – volume: 35 start-page: 794 year: 2010 end-page: 806 ident: b39 article-title: Thermodynamic and economic optimization of a MCFC-based hybrid system for the combined production of electricity and hydrogen publication-title: Int. J. Hydrog. Energy – volume: 42 start-page: 15597 year: 2017 end-page: 15612 ident: b9 article-title: Novel and optimal integration of SOFC-icgt hybrid cycle: Energy analysis and entropy generation minimization publication-title: Int. J. Hydrog. Energy – year: 2016 ident: b23 article-title: Analysis of impedance in a molten carbonate fuel cell publication-title: J. Electroanal. Chem. – volume: 165 start-page: 291 year: 2018 end-page: 303 ident: b1 article-title: Investigation of a combined molten carbonate fuel cell, gas turbine and stirling engine combined cooling heating and power (CCHP) process by exergy cost sensitivity analysis publication-title: Energy Convers. Manag. – volume: 16 start-page: 791 year: 2018 end-page: 803 ident: b21 article-title: Development of predictive model based control scheme for a molten carbonate fuel cell (MCFC) process publication-title: Int. J. Control Autom. Syst. – volume: 353 start-page: 152 year: 2017 end-page: 166 ident: b40 article-title: Exergy and economic comparison between kw-scale hybrid and stand-alone solid oxide fuel cell systems publication-title: J. Power Sources – volume: 263 year: 2020 ident: b31 article-title: Preliminary theoretical and experimental analysis of a molten carbonate fuel cell operating in reversible mode publication-title: Appl. Energy – volume: 50 year: 2019 ident: b17 article-title: Technical and economical bi-objective design of a grid-connected photovoltaic/diesel generator/fuel cell energy system publication-title: Sustain. Cities Soc. – volume: 42 start-page: 10248 year: 2017 end-page: 10263 ident: b8 article-title: Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle publication-title: Int. J. Hydrog. Energy – year: 2020 ident: b20 article-title: Chemical engineering plant cost index [www document] publication-title: Chem. Eng. – volume: 5 start-page: 444 year: 2018 end-page: 453 ident: b28 article-title: Numerical analysis of the exhaust gases recovery from a turbine CHP unit to improve the energy efficiency of a ceramic kiln publication-title: Therm. Sci. Eng. Prog. – start-page: 47 year: 2012 ident: b41 article-title: Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle publication-title: Energy – volume: 103 start-page: 188 year: 2002 end-page: 200 ident: b4 article-title: Energy and exergy analysis of simple solid-oxide fuel-cell power systems publication-title: J. Power Sources – volume: 50 year: 2019 ident: b18 article-title: Transient performance improvement of a stand-alone fuel cell for residential applications publication-title: Sustain. Cities Soc. – volume: 93 start-page: 20 year: 2015 end-page: 30 ident: b14 article-title: Study on CO 2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane publication-title: Energy – volume: 202 year: 2019 ident: b22 article-title: Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle publication-title: Energy Convers. Manag. – volume: 116 start-page: 67 year: 1994 end-page: 68 ident: b15 article-title: Solar engineering of thermal processes publication-title: J. Sol. Energy Eng. – volume: 127 start-page: 743 year: 2017 end-page: 755 ident: b33 article-title: Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management publication-title: Energy – start-page: 32 year: 2019 ident: b25 article-title: Thermodynamic investigation and optimization of a power generation system based solid oxide fuel cell using taguchi approach publication-title: Int. J. Eng. – volume: 37 start-page: 9237 year: 2012 end-page: 9248 ident: b5 article-title: The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling publication-title: Int. J. Hydrog. Energy – volume: 20 year: 2020 ident: b29 article-title: Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods publication-title: Therm. Sci. Eng. Prog. – volume: 18 year: 2020 ident: b38 article-title: Coupling of engine exhaust and fuel cell exhaust with vapour absorption refrigeration/air conditioning systems for transport applications: A review publication-title: Therm. Sci. Eng. Prog. – start-page: 159 year: 2006 ident: b3 article-title: Single-level optimization of a hybrid SOFC-GT power plant publication-title: J. Power Sources – volume: 334 start-page: 46 year: 2014 end-page: 59 ident: b30 article-title: Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system publication-title: Desalination – volume: 168 start-page: 343 year: 2018 end-page: 356 ident: b16 article-title: Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems publication-title: Energy Convers. Manag. – year: 2005 ident: b36 article-title: Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI publication-title: Nineteenth Annual ACERC & ICES Conference – volume: 144 start-page: 420 year: 2018 end-page: 431 ident: b6 article-title: Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm publication-title: Energy – volume: 152 start-page: 682 year: 2018 end-page: 693 ident: b13 article-title: Optimization and part-load performance analysis of MCFC/ST hybrid power system publication-title: Energy – volume: 397 start-page: 382 year: 2018 end-page: 396 ident: b2 article-title: A thermodynamic comparison of solid oxide fuel cell-combined cycles publication-title: J. Power Sources – volume: 66 year: 2021 ident: b32 article-title: A novel trigeneration system based on solid oxide fuel cell-gas turbine integrated with compressed air and thermal energy storage concepts: Energy, exergy, and life cycle approaches publication-title: Sustain. Cities Soc. – volume: 44 start-page: 18293 year: 2019 end-page: 18307 ident: b35 article-title: Exergoeconomic analysis and determination of power cost in MCFC – steam turbine combined cycle publication-title: Int. J. Hydrog. Energy – volume: 43 start-page: 3542 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b34 article-title: Energetic and exergetic parametric study of a SOFC-GT hybrid power plant publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.08.216 – year: 2020 ident: 10.1016/j.egyr.2021.07.050_b20 article-title: Chemical engineering plant cost index [www document] publication-title: Chem. Eng. – volume: 144 start-page: 420 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b6 article-title: Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm publication-title: Energy doi: 10.1016/j.energy.2017.12.008 – volume: 202 year: 2019 ident: 10.1016/j.egyr.2021.07.050_b22 article-title: Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112195 – volume: 50 year: 2019 ident: 10.1016/j.egyr.2021.07.050_b17 article-title: Technical and economical bi-objective design of a grid-connected photovoltaic/diesel generator/fuel cell energy system publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101575 – start-page: 32 year: 2019 ident: 10.1016/j.egyr.2021.07.050_b25 article-title: Thermodynamic investigation and optimization of a power generation system based solid oxide fuel cell using taguchi approach publication-title: Int. J. Eng. – volume: 263 year: 2020 ident: 10.1016/j.egyr.2021.07.050_b31 article-title: Preliminary theoretical and experimental analysis of a molten carbonate fuel cell operating in reversible mode publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114630 – volume: 5 start-page: 444 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b28 article-title: Numerical analysis of the exhaust gases recovery from a turbine CHP unit to improve the energy efficiency of a ceramic kiln publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2018.01.013 – year: 2005 ident: 10.1016/j.egyr.2021.07.050_b36 article-title: Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI – volume: 353 start-page: 152 year: 2017 ident: 10.1016/j.egyr.2021.07.050_b40 article-title: Exergy and economic comparison between kw-scale hybrid and stand-alone solid oxide fuel cell systems publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.113 – year: 2018 ident: 10.1016/j.egyr.2021.07.050_b7 – volume: 37 start-page: 9237 year: 2012 ident: 10.1016/j.egyr.2021.07.050_b5 article-title: The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.03.005 – volume: 230 start-page: 855 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b10 article-title: Gas turbine size optimization in a hybrid system considering SOFC degradation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.027 – volume: 103 start-page: 188 year: 2002 ident: 10.1016/j.egyr.2021.07.050_b4 article-title: Energy and exergy analysis of simple solid-oxide fuel-cell power systems publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00842-4 – volume: 38 year: 2020 ident: 10.1016/j.egyr.2021.07.050_b27 article-title: Multi-objective optimization of a power generation system based SOFC using taguchi/AHP/TOPSIS triple method publication-title: Sustain. Energy Technol. Assess. – start-page: 45 year: 2021 ident: 10.1016/j.egyr.2021.07.050_b26 article-title: Combined systems based on OSOFC/HSOFC: comparative analysis and multi-objective optimization of power and emission publication-title: Int. J. Energy Res. – volume: 18 year: 2020 ident: 10.1016/j.egyr.2021.07.050_b38 article-title: Coupling of engine exhaust and fuel cell exhaust with vapour absorption refrigeration/air conditioning systems for transport applications: A review publication-title: Therm. Sci. Eng. Prog. – volume: 66 year: 2021 ident: 10.1016/j.egyr.2021.07.050_b32 article-title: A novel trigeneration system based on solid oxide fuel cell-gas turbine integrated with compressed air and thermal energy storage concepts: Energy, exergy, and life cycle approaches publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102667 – volume: 21 year: 2021 ident: 10.1016/j.egyr.2021.07.050_b11 article-title: Energy, exergy, and exergoeconomic evaluation of a novel CCP system based on a solid oxide fuel cell integrated with absorption and ejector refrigeration cycles publication-title: Therm. Sci. Eng. Prog. – volume: 16 start-page: 791 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b21 article-title: Development of predictive model based control scheme for a molten carbonate fuel cell (MCFC) process publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-016-0234-0 – volume: 44 start-page: 310 year: 2019 ident: 10.1016/j.egyr.2021.07.050_b19 article-title: Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.10.021 – volume: 42 start-page: 10248 year: 2017 ident: 10.1016/j.egyr.2021.07.050_b8 article-title: Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.02.178 – volume: 44 start-page: 18293 year: 2019 ident: 10.1016/j.egyr.2021.07.050_b35 article-title: Exergoeconomic analysis and determination of power cost in MCFC – steam turbine combined cycle publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.05.156 – volume: 127 start-page: 743 year: 2017 ident: 10.1016/j.egyr.2021.07.050_b33 article-title: Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management publication-title: Energy doi: 10.1016/j.energy.2017.03.105 – volume: 35 start-page: 794 year: 2010 ident: 10.1016/j.egyr.2021.07.050_b39 article-title: Thermodynamic and economic optimization of a MCFC-based hybrid system for the combined production of electricity and hydrogen publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.10.104 – volume: 93 start-page: 20 year: 2015 ident: 10.1016/j.egyr.2021.07.050_b14 article-title: Study on CO 2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane publication-title: Energy doi: 10.1016/j.energy.2015.07.137 – volume: 20 year: 2020 ident: 10.1016/j.egyr.2021.07.050_b29 article-title: Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods publication-title: Therm. Sci. Eng. Prog. – volume: 168 start-page: 343 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b16 article-title: Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.04.088 – volume: 77 start-page: 1 year: 2015 ident: 10.1016/j.egyr.2021.07.050_b24 article-title: Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.12.016 – volume: 152 start-page: 682 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b13 article-title: Optimization and part-load performance analysis of MCFC/ST hybrid power system publication-title: Energy doi: 10.1016/j.energy.2018.03.178 – year: 2016 ident: 10.1016/j.egyr.2021.07.050_b23 article-title: Analysis of impedance in a molten carbonate fuel cell publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.07.005 – volume: 174 start-page: 112 year: 2017 ident: 10.1016/j.egyr.2021.07.050_b37 article-title: Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.08.033 – volume: 116 start-page: 67 year: 1994 ident: 10.1016/j.egyr.2021.07.050_b15 article-title: Solar engineering of thermal processes publication-title: J. Sol. Energy Eng. doi: 10.1115/1.2930068 – volume: 42 start-page: 15597 year: 2017 ident: 10.1016/j.egyr.2021.07.050_b9 article-title: Novel and optimal integration of SOFC-icgt hybrid cycle: Energy analysis and entropy generation minimization publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.04.277 – volume: 397 start-page: 382 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b2 article-title: A thermodynamic comparison of solid oxide fuel cell-combined cycles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.035 – volume: 50 year: 2019 ident: 10.1016/j.egyr.2021.07.050_b18 article-title: Transient performance improvement of a stand-alone fuel cell for residential applications publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101650 – start-page: 159 year: 2006 ident: 10.1016/j.egyr.2021.07.050_b3 article-title: Single-level optimization of a hybrid SOFC-GT power plant publication-title: J. Power Sources – volume: 334 start-page: 46 year: 2014 ident: 10.1016/j.egyr.2021.07.050_b30 article-title: Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system publication-title: Desalination doi: 10.1016/j.desal.2013.11.039 – volume: 165 start-page: 291 year: 2018 ident: 10.1016/j.egyr.2021.07.050_b1 article-title: Investigation of a combined molten carbonate fuel cell, gas turbine and stirling engine combined cooling heating and power (CCHP) process by exergy cost sensitivity analysis publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.03.067 – year: 2017 ident: 10.1016/j.egyr.2021.07.050_b12 – start-page: 47 year: 2012 ident: 10.1016/j.egyr.2021.07.050_b41 article-title: Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle publication-title: Energy |
| SSID | ssj0001920463 |
| Score | 2.459282 |
| Snippet | The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 4659 |
| SubjectTerms | Environmental pollution Fuel cell Gas turbine Life cycle cost Multi-objective optimization |
| Title | Stand-alone gas turbine and hybrid MCFC and SOFC-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments |
| URI | https://dx.doi.org/10.1016/j.egyr.2021.07.050 https://doaj.org/article/5ce80da6dd5c47ee997ce6659d318536 |
| Volume | 7 |
| WOSCitedRecordID | wos000701766400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3BTtwwEEAthDhwQa0oYilFPnArVu0kjmNubcSKC7RSi8TNcuwJLFotaLMg7YUzn83Yzi7phV56iRTLsZOZUWZG8rwh5NjKKjBdKubQGFgBTrIGh1hVcieEL6W1bWw2oS4vq-tr_WvQ6iucCUt44CS4b9JBxb0tvZeuUABaKwdlKbUPdb95hG1zpQfJ1F2KWwIKK3aWkxkr8B_cV8ykw11wswww0Ewkcif_yytFeP_AOQ0czvgD2ekjRfo9veFHsgGzXfISuv56Zqf3M6A3tqPoMTC3BYqj9HYZyq_oRT2u4_3vn-OaDSclbHN3Sus35jedTlqgbol7UHffLU7ooPbNTk_iShArBKldYzy7T-RqfPanPmd9MwXmCsEXrCg5CkF5J5pc5I1oRZuLxgoFQZ5t5pUGi8oByLwXDXeZzCzX4c6HGCXfI5sz_LZ9QjUvQXnMZaBsCtVazK81RgJgpWzaqnEjIlbCNK4njYeGF1OzOlJ2Z4ICTFCA4cqgAkbk6_qZh8TZeHf2j6Cj9czAyI4DaDmmtxzzL8sZEbnSsOnDjRRG4FKTdzY_-B-bfybbYclU1XhINhfzR_hCttzTYtLNj6Ix4_Xi-ewVCfP6Rg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stand-alone+gas+turbine+and+hybrid+MCFC+and+SOFC-gas+turbine+systems%3A+Comparative+life+cycle+cost%2C+environmental%2C+and+energy+assessments&rft.jtitle=Energy+reports&rft.au=Amirhossein+Hasanzadeh&rft.au=Ata+Chitsaz&rft.au=Parisa+Mojaver&rft.au=Amir+Ghasemi&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=7&rft.spage=4659&rft.epage=4680&rft_id=info:doi/10.1016%2Fj.egyr.2021.07.050&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5ce80da6dd5c47ee997ce6659d318536 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |