Stand-alone gas turbine and hybrid MCFC and SOFC-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments

The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hy...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy reports Ročník 7; s. 4659 - 4680
Hlavní autori: Hasanzadeh, Amirhossein, Chitsaz, Ata, Mojaver, Parisa, Ghasemi, Amir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2021
Elsevier
Predmet:
ISSN:2352-4847, 2352-4847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hybridization based on a throughout comparative investigation between 10-MW GT, MCFC-GT, and SOFC-GT systems in their optimum conditions. A model for SOFC, MCFC, and combustion processes was developed using the Gibbs minimization method through Lagrange multipliers. This model calculates unreformed methane during the methane reforming process occurring within the fuel cells. In addition, it calculates pollutant gases emission rates caused by combustion (i.e. NO, NO2, CO2). The economic analysis of the systems was based on the life cycle-costing P1-P2 method which considers fuel and investment costs. The Genetic algorithm was utilized for single- and multi-objective optimization purposes in different cases. Also, a comprehensive sensitivity analysis was conducted to compare the three systems in their optimum conditions to guarantee results obtained from the optimization scenario. The findings revealed that the SOFC was the best candidate for the GT system hybridization. This hybridization reduced the system investment and fuel costs, and CO2 and NO emissions in the fixed power conditions. The maximum energy efficiency of the GT, MCFC-GT, and SOFC-GT systems was obtained to be 43.8%, 53.8%, and 70.3%, respectively. The minimum values for the CO2 emission of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems were 460.8 kg/MWh, 367.9 kg/MWh, and 280.4 kg/MWh, besides NO emission was calculated 13.9 kg/MWh, 1.3 kg/MWh, and 1.2 kg/MWh, respectively. The least life cycle cost of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems was 163.6, 160.7, and 106 million dollars, respectively. •Fixed 10 MW power of GT, MCFC-GT, and SOFC-GT were compared at optimum conditions.•Life cycle cost of the systems is calculated to predict their economic performance.•SOFC-GT system is 26% and 16% more efficient than GT and MCFC-GT, respectively.•SOFC-GT emits CO2 39% and 24% lower than GT and MCFC-GT, respectively.•SOFC-GT life cycle cost is 35% and 34% lower than GT and MCFC-GT, respectively.
AbstractList The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hybridization based on a throughout comparative investigation between 10-MW GT, MCFC-GT, and SOFC-GT systems in their optimum conditions. A model for SOFC, MCFC, and combustion processes was developed using the Gibbs minimization method through Lagrange multipliers. This model calculates unreformed methane during the methane reforming process occurring within the fuel cells. In addition, it calculates pollutant gases emission rates caused by combustion (i.e. NO, NO2, CO2). The economic analysis of the systems was based on the life cycle-costing P1-P2 method which considers fuel and investment costs. The Genetic algorithm was utilized for single- and multi-objective optimization purposes in different cases. Also, a comprehensive sensitivity analysis was conducted to compare the three systems in their optimum conditions to guarantee results obtained from the optimization scenario. The findings revealed that the SOFC was the best candidate for the GT system hybridization. This hybridization reduced the system investment and fuel costs, and CO2 and NO emissions in the fixed power conditions. The maximum energy efficiency of the GT, MCFC-GT, and SOFC-GT systems was obtained to be 43.8%, 53.8%, and 70.3%, respectively. The minimum values for the CO2 emission of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems were 460.8 kg/MWh, 367.9 kg/MWh, and 280.4 kg/MWh, besides NO emission was calculated 13.9 kg/MWh, 1.3 kg/MWh, and 1.2 kg/MWh, respectively. The least life cycle cost of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems was 163.6, 160.7, and 106 million dollars, respectively. •Fixed 10 MW power of GT, MCFC-GT, and SOFC-GT were compared at optimum conditions.•Life cycle cost of the systems is calculated to predict their economic performance.•SOFC-GT system is 26% and 16% more efficient than GT and MCFC-GT, respectively.•SOFC-GT emits CO2 39% and 24% lower than GT and MCFC-GT, respectively.•SOFC-GT life cycle cost is 35% and 34% lower than GT and MCFC-GT, respectively.
The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), were investigated in detail. The purpose of the present study is to assess the feasibility of the hybridization based on a throughout comparative investigation between 10-MW GT, MCFC-GT, and SOFC-GT systems in their optimum conditions. A model for SOFC, MCFC, and combustion processes was developed using the Gibbs minimization method through Lagrange multipliers. This model calculates unreformed methane during the methane reforming process occurring within the fuel cells. In addition, it calculates pollutant gases emission rates caused by combustion (i.e. NO, NO2, CO2). The economic analysis of the systems was based on the life cycle-costing P1-P2 method which considers fuel and investment costs. The Genetic algorithm was utilized for single- and multi-objective optimization purposes in different cases. Also, a comprehensive sensitivity analysis was conducted to compare the three systems in their optimum conditions to guarantee results obtained from the optimization scenario. The findings revealed that the SOFC was the best candidate for the GT system hybridization. This hybridization reduced the system investment and fuel costs, and CO2 and NO emissions in the fixed power conditions. The maximum energy efficiency of the GT, MCFC-GT, and SOFC-GT systems was obtained to be 43.8%, 53.8%, and 70.3%, respectively. The minimum values for the CO2 emission of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems were 460.8 kg/MWh, 367.9 kg/MWh, and 280.4 kg/MWh, besides NO emission was calculated 13.9 kg/MWh, 1.3 kg/MWh, and 1.2 kg/MWh, respectively. The least life cycle cost of the stand-alone GT, the hybrid MCFC-GT, and the hybrid SOFC-GT systems was 163.6, 160.7, and 106 million dollars, respectively.
Author Hasanzadeh, Amirhossein
Chitsaz, Ata
Ghasemi, Amir
Mojaver, Parisa
Author_xml – sequence: 1
  givenname: Amirhossein
  orcidid: 0000-0001-7815-3988
  surname: Hasanzadeh
  fullname: Hasanzadeh, Amirhossein
  organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
– sequence: 2
  givenname: Ata
  surname: Chitsaz
  fullname: Chitsaz, Ata
  organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
– sequence: 3
  givenname: Parisa
  surname: Mojaver
  fullname: Mojaver, Parisa
  organization: Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
– sequence: 4
  givenname: Amir
  orcidid: 0000-0002-3910-6828
  surname: Ghasemi
  fullname: Ghasemi, Amir
  email: amir_ghasemi@ut.ir
  organization: School of Environment, College of Engineering, University of Tehran, Tehran, Iran
BookMark eNp9kcFu3CAQhlGUSk22eYGeeIDYBWyDHeUSWdk2UqockpwRhvGGlRciICv5DfLYxbtVFfWQC8wM_B_M_Ofo1HkHCH2npKSE8h_bEjZzKBlhtCSiJA05QWesalhRt7U4_RB_RRcxbgkhtGOk5tUZen9MyplCTRmJNyri9BYGm-NcxS_zEKzBv_t1f8gfH9Z98fFSnGOCXbzCvd-9qqCS3QOe7AhYz3rKq4_pEoPb2-DdDlxS0-WBBA7CZsYqRohxOYjf0JdRTREu_u4r9Ly-fep_FfcPP-_6m_tC15SkouYk9yGMpkNFq4GOdKzooKgAoYGPzIgOFDUcgBlDB6JZwxTplsy0NRfVCt0ducarrXwNdqfCLL2y8lDwYSNVSDb_XjYaWmIUN6bRtQDouuUN3nSmom1T8cxiR5YOPsYA4z8eJXKxRm7lYo1crJFEyGxNFrX_ibRNeXLepaDs9Ln0-iiFPKC9hSCjtuA0GBtAp9yB_Uz-B5FfrgY
CitedBy_id crossref_primary_10_1016_j_egyr_2024_01_055
crossref_primary_10_1016_j_applthermaleng_2022_118438
crossref_primary_10_1016_j_spc_2022_07_011
crossref_primary_10_1016_j_ijhydene_2022_03_187
crossref_primary_10_3390_su132313187
crossref_primary_10_1016_j_enconman_2024_118611
crossref_primary_10_1016_j_rser_2023_113278
crossref_primary_10_2514_1_C038174
crossref_primary_10_1016_j_apenergy_2023_122463
crossref_primary_10_1016_j_fuel_2022_125003
crossref_primary_10_1016_j_jclepro_2023_137907
crossref_primary_10_1016_j_rineng_2025_106750
crossref_primary_10_1016_j_fuel_2022_124752
crossref_primary_10_1016_j_fuel_2022_125527
crossref_primary_10_1016_j_renene_2025_123703
crossref_primary_10_1007_s10644_024_09706_w
crossref_primary_10_1016_j_jcou_2025_103097
crossref_primary_10_1016_j_chemosphere_2023_138454
crossref_primary_10_1016_j_fuel_2022_125969
crossref_primary_10_1016_j_ijhydene_2025_03_238
crossref_primary_10_1016_j_cjche_2021_05_038
crossref_primary_10_1016_j_tsep_2024_102407
crossref_primary_10_1016_j_apenergy_2022_120449
crossref_primary_10_1007_s11367_023_02224_3
crossref_primary_10_1016_j_est_2022_105274
crossref_primary_10_1016_j_applthermaleng_2022_119871
crossref_primary_10_1016_j_applthermaleng_2021_117593
crossref_primary_10_1080_15567036_2022_2108167
crossref_primary_10_1016_j_chemosphere_2023_139818
crossref_primary_10_1016_j_ijhydene_2022_04_284
crossref_primary_10_1016_j_fuel_2022_126825
crossref_primary_10_1016_j_energy_2024_133043
crossref_primary_10_1016_j_ijhydene_2021_12_044
crossref_primary_10_1016_j_psep_2023_06_052
crossref_primary_10_1016_j_ijhydene_2023_05_097
crossref_primary_10_1016_j_ijhydene_2024_07_101
crossref_primary_10_1016_j_energy_2024_133145
crossref_primary_10_1016_j_icheatmasstransfer_2021_105624
crossref_primary_10_1016_j_fuel_2022_125182
crossref_primary_10_1016_j_egyr_2022_08_185
crossref_primary_10_1016_j_applthermaleng_2022_119585
crossref_primary_10_1016_j_renene_2025_122881
crossref_primary_10_1016_j_fuel_2022_125300
crossref_primary_10_1016_j_fuel_2022_124498
crossref_primary_10_1016_j_tsep_2023_102226
crossref_primary_10_1016_j_ijhydene_2022_12_093
crossref_primary_10_1016_j_energy_2022_126489
crossref_primary_10_1016_j_ijhydene_2022_06_102
crossref_primary_10_1016_j_energy_2025_134683
crossref_primary_10_1016_j_egyr_2022_05_281
crossref_primary_10_3390_su141912380
crossref_primary_10_3390_en17112694
crossref_primary_10_1016_j_cles_2022_100003
crossref_primary_10_1016_j_enconman_2023_117730
crossref_primary_10_1016_j_energy_2024_132408
crossref_primary_10_1016_j_applthermaleng_2024_122867
crossref_primary_10_1038_s41598_021_96733_6
crossref_primary_10_1016_j_fuel_2022_125593
crossref_primary_10_1016_j_fuel_2022_126442
crossref_primary_10_1016_j_apenergy_2023_121486
crossref_primary_10_1093_ijlct_ctae008
crossref_primary_10_1002_aesr_202400132
Cites_doi 10.1016/j.ijhydene.2017.08.216
10.1016/j.energy.2017.12.008
10.1016/j.enconman.2019.112195
10.1016/j.scs.2019.101575
10.1016/j.apenergy.2020.114630
10.1016/j.tsep.2018.01.013
10.1016/j.jpowsour.2017.03.113
10.1016/j.ijhydene.2012.03.005
10.1016/j.apenergy.2018.09.027
10.1016/S0378-7753(01)00842-4
10.1016/j.scs.2020.102667
10.1007/s12555-016-0234-0
10.1016/j.scs.2018.10.021
10.1016/j.ijhydene.2017.02.178
10.1016/j.ijhydene.2019.05.156
10.1016/j.energy.2017.03.105
10.1016/j.ijhydene.2009.10.104
10.1016/j.energy.2015.07.137
10.1016/j.enconman.2018.04.088
10.1016/j.applthermaleng.2014.12.016
10.1016/j.energy.2018.03.178
10.1016/j.jelechem.2016.07.005
10.1016/j.ces.2017.08.033
10.1115/1.2930068
10.1016/j.ijhydene.2017.04.277
10.1016/j.jpowsour.2018.07.035
10.1016/j.scs.2019.101650
10.1016/j.desal.2013.11.039
10.1016/j.enconman.2018.03.067
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2021.07.050
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 4680
ExternalDocumentID oai_doaj_org_article_5ce80da6dd5c47ee997ce6659d318536
10_1016_j_egyr_2021_07_050
S2352484721005151
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c410t-4608477dc1b313b1f1f31ba17e7ce6f2d79ea1d6ee2dd1b0c252a09e2ddd84673
IEDL.DBID DOA
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701766400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Fri Oct 03 12:30:44 EDT 2025
Thu Oct 16 04:40:22 EDT 2025
Tue Nov 18 21:49:05 EST 2025
Sat Nov 08 17:17:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Gas turbine
Environmental pollution
Fuel cell
Life cycle cost
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-4608477dc1b313b1f1f31ba17e7ce6f2d79ea1d6ee2dd1b0c252a09e2ddd84673
ORCID 0000-0002-3910-6828
0000-0001-7815-3988
OpenAccessLink https://doaj.org/article/5ce80da6dd5c47ee997ce6659d318536
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_5ce80da6dd5c47ee997ce6659d318536
crossref_primary_10_1016_j_egyr_2021_07_050
crossref_citationtrail_10_1016_j_egyr_2021_07_050
elsevier_sciencedirect_doi_10_1016_j_egyr_2021_07_050
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Saebea, Magistri, Massardo, Arpornwichanop (b33) 2017; 127
Dincer, Rosen, Ahmadi (b12) 2017
Hoseintabar-Marzebali (b18) 2019; 50
Venkataraman, El-Kharouf, Pandya, Amakiri, Steinberger-Wilckens (b38) 2020; 18
Mamaghani, Najafi, Shirazi, Rinaldi (b24) 2015; 77
Jenkins (b20) 2020
Najafi, Shirazi, Aminyavari, Rinaldi, Taylor (b30) 2014; 334
Roushenas, Zarei, Torabi (b32) 2021; 66
Calise, Dentice d’Accadia, Vanoli, von Spakovsky (b3) 2006
Tao, Armstrong, Virkar (b36) 2005
Choudhary, Sahu, S, Kumari, Mohapatra (b7) 2018
Mojaver, Jafarmadar, Khalilarya, Chitsaz (b25) 2019
Tsanas, Stenby, Yan (b37) 2017; 174
Zare, Mahmoudi, Yari, Amidpour (b41) 2012
Choudhary, Sanjay (b9) 2017; 42
Duffie, Beckman, Worek (b15) 1994; 116
Pérez-Trujillo, Elizalde-Blancas, McPhail, Della Pietra, Bosio (b31) 2020; 263
Sartori da Silva, Matelli (b35) 2019; 44
Chan, Low, Ding (b4) 2002; 103
Sghaier, Khir, Ben Brahim (b34) 2018; 43
Moreno-Gamboa, Escudero-Atehortua, Nieto-Londoño (b29) 2020; 20
Lee (b23) 2016
Mojaver, Khalilarya, Chitsaz, Assadi (b27) 2020; 38
Jamshidi, Askarzadeh (b19) 2019; 44
Ansarinasab, Mehrpooya (b1) 2018; 165
Kim, Kim, Park, Yeo (b21) 2018; 16
van Biert, Woudstra, Godjevac, Visser, Aravind (b2) 2018; 397
Dhahad, Ahmadi, Dahari, Ghaebi, Parikhani (b11) 2021; 21
Eisavi, Chitsaz, Hosseinpour, Ranjbar (b16) 2018; 168
Duan, Lu, Yuan, Lv (b13) 2018; 152
Leal, Bortolaia, Leal Junior (b22) 2019; 202
Montorsi, Milani, Stefani, Terzi (b28) 2018; 5
Verda, Nicolin (b39) 2010; 35
Chitsaz, Sadeghi, Sadeghi, Ghanbarloo (b6) 2018; 144
Mojaver, Khalilarya, Chitsaz (b26) 2021
Cuneo, Zaccaria, Tucker, Sorce (b10) 2018; 230
Gharibi, Askarzadeh (b17) 2019; 50
Duan, Yue, Qu, Yang (b14) 2015; 93
Choudhary, Sanjay (b8) 2017; 42
Whiston, Collinge, Bilec, Schaefer (b40) 2017; 353
Chinda, Brault (b5) 2012; 37
Jenkins (10.1016/j.egyr.2021.07.050_b20) 2020
Saebea (10.1016/j.egyr.2021.07.050_b33) 2017; 127
Chinda (10.1016/j.egyr.2021.07.050_b5) 2012; 37
Choudhary (10.1016/j.egyr.2021.07.050_b9) 2017; 42
Chitsaz (10.1016/j.egyr.2021.07.050_b6) 2018; 144
Gharibi (10.1016/j.egyr.2021.07.050_b17) 2019; 50
Hoseintabar-Marzebali (10.1016/j.egyr.2021.07.050_b18) 2019; 50
Zare (10.1016/j.egyr.2021.07.050_b41) 2012
Lee (10.1016/j.egyr.2021.07.050_b23) 2016
Duan (10.1016/j.egyr.2021.07.050_b13) 2018; 152
Mojaver (10.1016/j.egyr.2021.07.050_b27) 2020; 38
Kim (10.1016/j.egyr.2021.07.050_b21) 2018; 16
Najafi (10.1016/j.egyr.2021.07.050_b30) 2014; 334
Verda (10.1016/j.egyr.2021.07.050_b39) 2010; 35
Moreno-Gamboa (10.1016/j.egyr.2021.07.050_b29) 2020; 20
Choudhary (10.1016/j.egyr.2021.07.050_b7) 2018
Mamaghani (10.1016/j.egyr.2021.07.050_b24) 2015; 77
Duffie (10.1016/j.egyr.2021.07.050_b15) 1994; 116
Leal (10.1016/j.egyr.2021.07.050_b22) 2019; 202
Ansarinasab (10.1016/j.egyr.2021.07.050_b1) 2018; 165
Sartori da Silva (10.1016/j.egyr.2021.07.050_b35) 2019; 44
Calise (10.1016/j.egyr.2021.07.050_b3) 2006
Choudhary (10.1016/j.egyr.2021.07.050_b8) 2017; 42
van Biert (10.1016/j.egyr.2021.07.050_b2) 2018; 397
Duan (10.1016/j.egyr.2021.07.050_b14) 2015; 93
Roushenas (10.1016/j.egyr.2021.07.050_b32) 2021; 66
Venkataraman (10.1016/j.egyr.2021.07.050_b38) 2020; 18
Dhahad (10.1016/j.egyr.2021.07.050_b11) 2021; 21
Pérez-Trujillo (10.1016/j.egyr.2021.07.050_b31) 2020; 263
Tao (10.1016/j.egyr.2021.07.050_b36) 2005
Whiston (10.1016/j.egyr.2021.07.050_b40) 2017; 353
Cuneo (10.1016/j.egyr.2021.07.050_b10) 2018; 230
Montorsi (10.1016/j.egyr.2021.07.050_b28) 2018; 5
Dincer (10.1016/j.egyr.2021.07.050_b12) 2017
Jamshidi (10.1016/j.egyr.2021.07.050_b19) 2019; 44
Sghaier (10.1016/j.egyr.2021.07.050_b34) 2018; 43
Chan (10.1016/j.egyr.2021.07.050_b4) 2002; 103
Tsanas (10.1016/j.egyr.2021.07.050_b37) 2017; 174
Eisavi (10.1016/j.egyr.2021.07.050_b16) 2018; 168
Mojaver (10.1016/j.egyr.2021.07.050_b25) 2019
Mojaver (10.1016/j.egyr.2021.07.050_b26) 2021
References_xml – volume: 44
  start-page: 310
  year: 2019
  end-page: 320
  ident: b19
  article-title: Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system
  publication-title: Sustain. Cities Soc.
– volume: 174
  start-page: 112
  year: 2017
  end-page: 126
  ident: b37
  article-title: Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers
  publication-title: Chem. Eng. Sci.
– year: 2018
  ident: b7
  article-title: Thermodynamic modeling of blade cooled turboprop engine integrated to solid oxide fuel cell: A concept
– volume: 77
  start-page: 1
  year: 2015
  end-page: 11
  ident: b24
  article-title: Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 3542
  year: 2018
  end-page: 3554
  ident: b34
  article-title: Energetic and exergetic parametric study of a SOFC-GT hybrid power plant
  publication-title: Int. J. Hydrog. Energy
– year: 2017
  ident: b12
  article-title: Optimization of Energy Systems
– volume: 38
  year: 2020
  ident: b27
  article-title: Multi-objective optimization of a power generation system based SOFC using taguchi/AHP/TOPSIS triple method
  publication-title: Sustain. Energy Technol. Assess.
– volume: 230
  start-page: 855
  year: 2018
  end-page: 864
  ident: b10
  article-title: Gas turbine size optimization in a hybrid system considering SOFC degradation
  publication-title: Appl. Energy
– volume: 21
  year: 2021
  ident: b11
  article-title: Energy, exergy, and exergoeconomic evaluation of a novel CCP system based on a solid oxide fuel cell integrated with absorption and ejector refrigeration cycles
  publication-title: Therm. Sci. Eng. Prog.
– start-page: 45
  year: 2021
  ident: b26
  article-title: Combined systems based on OSOFC/HSOFC: comparative analysis and multi-objective optimization of power and emission
  publication-title: Int. J. Energy Res.
– volume: 35
  start-page: 794
  year: 2010
  end-page: 806
  ident: b39
  article-title: Thermodynamic and economic optimization of a MCFC-based hybrid system for the combined production of electricity and hydrogen
  publication-title: Int. J. Hydrog. Energy
– volume: 42
  start-page: 15597
  year: 2017
  end-page: 15612
  ident: b9
  article-title: Novel and optimal integration of SOFC-icgt hybrid cycle: Energy analysis and entropy generation minimization
  publication-title: Int. J. Hydrog. Energy
– year: 2016
  ident: b23
  article-title: Analysis of impedance in a molten carbonate fuel cell
  publication-title: J. Electroanal. Chem.
– volume: 165
  start-page: 291
  year: 2018
  end-page: 303
  ident: b1
  article-title: Investigation of a combined molten carbonate fuel cell, gas turbine and stirling engine combined cooling heating and power (CCHP) process by exergy cost sensitivity analysis
  publication-title: Energy Convers. Manag.
– volume: 16
  start-page: 791
  year: 2018
  end-page: 803
  ident: b21
  article-title: Development of predictive model based control scheme for a molten carbonate fuel cell (MCFC) process
  publication-title: Int. J. Control Autom. Syst.
– volume: 353
  start-page: 152
  year: 2017
  end-page: 166
  ident: b40
  article-title: Exergy and economic comparison between kw-scale hybrid and stand-alone solid oxide fuel cell systems
  publication-title: J. Power Sources
– volume: 263
  year: 2020
  ident: b31
  article-title: Preliminary theoretical and experimental analysis of a molten carbonate fuel cell operating in reversible mode
  publication-title: Appl. Energy
– volume: 50
  year: 2019
  ident: b17
  article-title: Technical and economical bi-objective design of a grid-connected photovoltaic/diesel generator/fuel cell energy system
  publication-title: Sustain. Cities Soc.
– volume: 42
  start-page: 10248
  year: 2017
  end-page: 10263
  ident: b8
  article-title: Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle
  publication-title: Int. J. Hydrog. Energy
– year: 2020
  ident: b20
  article-title: Chemical engineering plant cost index [www document]
  publication-title: Chem. Eng.
– volume: 5
  start-page: 444
  year: 2018
  end-page: 453
  ident: b28
  article-title: Numerical analysis of the exhaust gases recovery from a turbine CHP unit to improve the energy efficiency of a ceramic kiln
  publication-title: Therm. Sci. Eng. Prog.
– start-page: 47
  year: 2012
  ident: b41
  article-title: Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle
  publication-title: Energy
– volume: 103
  start-page: 188
  year: 2002
  end-page: 200
  ident: b4
  article-title: Energy and exergy analysis of simple solid-oxide fuel-cell power systems
  publication-title: J. Power Sources
– volume: 50
  year: 2019
  ident: b18
  article-title: Transient performance improvement of a stand-alone fuel cell for residential applications
  publication-title: Sustain. Cities Soc.
– volume: 93
  start-page: 20
  year: 2015
  end-page: 30
  ident: b14
  article-title: Study on CO 2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane
  publication-title: Energy
– volume: 202
  year: 2019
  ident: b22
  article-title: Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle
  publication-title: Energy Convers. Manag.
– volume: 116
  start-page: 67
  year: 1994
  end-page: 68
  ident: b15
  article-title: Solar engineering of thermal processes
  publication-title: J. Sol. Energy Eng.
– volume: 127
  start-page: 743
  year: 2017
  end-page: 755
  ident: b33
  article-title: Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management
  publication-title: Energy
– start-page: 32
  year: 2019
  ident: b25
  article-title: Thermodynamic investigation and optimization of a power generation system based solid oxide fuel cell using taguchi approach
  publication-title: Int. J. Eng.
– volume: 37
  start-page: 9237
  year: 2012
  end-page: 9248
  ident: b5
  article-title: The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling
  publication-title: Int. J. Hydrog. Energy
– volume: 20
  year: 2020
  ident: b29
  article-title: Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods
  publication-title: Therm. Sci. Eng. Prog.
– volume: 18
  year: 2020
  ident: b38
  article-title: Coupling of engine exhaust and fuel cell exhaust with vapour absorption refrigeration/air conditioning systems for transport applications: A review
  publication-title: Therm. Sci. Eng. Prog.
– start-page: 159
  year: 2006
  ident: b3
  article-title: Single-level optimization of a hybrid SOFC-GT power plant
  publication-title: J. Power Sources
– volume: 334
  start-page: 46
  year: 2014
  end-page: 59
  ident: b30
  article-title: Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system
  publication-title: Desalination
– volume: 168
  start-page: 343
  year: 2018
  end-page: 356
  ident: b16
  article-title: Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems
  publication-title: Energy Convers. Manag.
– year: 2005
  ident: b36
  article-title: Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI
  publication-title: Nineteenth Annual ACERC & ICES Conference
– volume: 144
  start-page: 420
  year: 2018
  end-page: 431
  ident: b6
  article-title: Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm
  publication-title: Energy
– volume: 152
  start-page: 682
  year: 2018
  end-page: 693
  ident: b13
  article-title: Optimization and part-load performance analysis of MCFC/ST hybrid power system
  publication-title: Energy
– volume: 397
  start-page: 382
  year: 2018
  end-page: 396
  ident: b2
  article-title: A thermodynamic comparison of solid oxide fuel cell-combined cycles
  publication-title: J. Power Sources
– volume: 66
  year: 2021
  ident: b32
  article-title: A novel trigeneration system based on solid oxide fuel cell-gas turbine integrated with compressed air and thermal energy storage concepts: Energy, exergy, and life cycle approaches
  publication-title: Sustain. Cities Soc.
– volume: 44
  start-page: 18293
  year: 2019
  end-page: 18307
  ident: b35
  article-title: Exergoeconomic analysis and determination of power cost in MCFC – steam turbine combined cycle
  publication-title: Int. J. Hydrog. Energy
– volume: 43
  start-page: 3542
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b34
  article-title: Energetic and exergetic parametric study of a SOFC-GT hybrid power plant
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.08.216
– year: 2020
  ident: 10.1016/j.egyr.2021.07.050_b20
  article-title: Chemical engineering plant cost index [www document]
  publication-title: Chem. Eng.
– volume: 144
  start-page: 420
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b6
  article-title: Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.008
– volume: 202
  year: 2019
  ident: 10.1016/j.egyr.2021.07.050_b22
  article-title: Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112195
– volume: 50
  year: 2019
  ident: 10.1016/j.egyr.2021.07.050_b17
  article-title: Technical and economical bi-objective design of a grid-connected photovoltaic/diesel generator/fuel cell energy system
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101575
– start-page: 32
  year: 2019
  ident: 10.1016/j.egyr.2021.07.050_b25
  article-title: Thermodynamic investigation and optimization of a power generation system based solid oxide fuel cell using taguchi approach
  publication-title: Int. J. Eng.
– volume: 263
  year: 2020
  ident: 10.1016/j.egyr.2021.07.050_b31
  article-title: Preliminary theoretical and experimental analysis of a molten carbonate fuel cell operating in reversible mode
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114630
– volume: 5
  start-page: 444
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b28
  article-title: Numerical analysis of the exhaust gases recovery from a turbine CHP unit to improve the energy efficiency of a ceramic kiln
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2018.01.013
– year: 2005
  ident: 10.1016/j.egyr.2021.07.050_b36
  article-title: Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI
– volume: 353
  start-page: 152
  year: 2017
  ident: 10.1016/j.egyr.2021.07.050_b40
  article-title: Exergy and economic comparison between kw-scale hybrid and stand-alone solid oxide fuel cell systems
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.113
– year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b7
– volume: 37
  start-page: 9237
  year: 2012
  ident: 10.1016/j.egyr.2021.07.050_b5
  article-title: The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.03.005
– volume: 230
  start-page: 855
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b10
  article-title: Gas turbine size optimization in a hybrid system considering SOFC degradation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.027
– volume: 103
  start-page: 188
  year: 2002
  ident: 10.1016/j.egyr.2021.07.050_b4
  article-title: Energy and exergy analysis of simple solid-oxide fuel-cell power systems
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00842-4
– volume: 38
  year: 2020
  ident: 10.1016/j.egyr.2021.07.050_b27
  article-title: Multi-objective optimization of a power generation system based SOFC using taguchi/AHP/TOPSIS triple method
  publication-title: Sustain. Energy Technol. Assess.
– start-page: 45
  year: 2021
  ident: 10.1016/j.egyr.2021.07.050_b26
  article-title: Combined systems based on OSOFC/HSOFC: comparative analysis and multi-objective optimization of power and emission
  publication-title: Int. J. Energy Res.
– volume: 18
  year: 2020
  ident: 10.1016/j.egyr.2021.07.050_b38
  article-title: Coupling of engine exhaust and fuel cell exhaust with vapour absorption refrigeration/air conditioning systems for transport applications: A review
  publication-title: Therm. Sci. Eng. Prog.
– volume: 66
  year: 2021
  ident: 10.1016/j.egyr.2021.07.050_b32
  article-title: A novel trigeneration system based on solid oxide fuel cell-gas turbine integrated with compressed air and thermal energy storage concepts: Energy, exergy, and life cycle approaches
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102667
– volume: 21
  year: 2021
  ident: 10.1016/j.egyr.2021.07.050_b11
  article-title: Energy, exergy, and exergoeconomic evaluation of a novel CCP system based on a solid oxide fuel cell integrated with absorption and ejector refrigeration cycles
  publication-title: Therm. Sci. Eng. Prog.
– volume: 16
  start-page: 791
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b21
  article-title: Development of predictive model based control scheme for a molten carbonate fuel cell (MCFC) process
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-016-0234-0
– volume: 44
  start-page: 310
  year: 2019
  ident: 10.1016/j.egyr.2021.07.050_b19
  article-title: Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.10.021
– volume: 42
  start-page: 10248
  year: 2017
  ident: 10.1016/j.egyr.2021.07.050_b8
  article-title: Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.02.178
– volume: 44
  start-page: 18293
  year: 2019
  ident: 10.1016/j.egyr.2021.07.050_b35
  article-title: Exergoeconomic analysis and determination of power cost in MCFC – steam turbine combined cycle
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.05.156
– volume: 127
  start-page: 743
  year: 2017
  ident: 10.1016/j.egyr.2021.07.050_b33
  article-title: Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.105
– volume: 35
  start-page: 794
  year: 2010
  ident: 10.1016/j.egyr.2021.07.050_b39
  article-title: Thermodynamic and economic optimization of a MCFC-based hybrid system for the combined production of electricity and hydrogen
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.10.104
– volume: 93
  start-page: 20
  year: 2015
  ident: 10.1016/j.egyr.2021.07.050_b14
  article-title: Study on CO 2 capture from molten carbonate fuel cell hybrid system integrated with oxygen ion transfer membrane
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.137
– volume: 20
  year: 2020
  ident: 10.1016/j.egyr.2021.07.050_b29
  article-title: Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods
  publication-title: Therm. Sci. Eng. Prog.
– volume: 168
  start-page: 343
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b16
  article-title: Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.04.088
– volume: 77
  start-page: 1
  year: 2015
  ident: 10.1016/j.egyr.2021.07.050_b24
  article-title: Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.12.016
– volume: 152
  start-page: 682
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b13
  article-title: Optimization and part-load performance analysis of MCFC/ST hybrid power system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.178
– year: 2016
  ident: 10.1016/j.egyr.2021.07.050_b23
  article-title: Analysis of impedance in a molten carbonate fuel cell
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.07.005
– volume: 174
  start-page: 112
  year: 2017
  ident: 10.1016/j.egyr.2021.07.050_b37
  article-title: Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.08.033
– volume: 116
  start-page: 67
  year: 1994
  ident: 10.1016/j.egyr.2021.07.050_b15
  article-title: Solar engineering of thermal processes
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.2930068
– volume: 42
  start-page: 15597
  year: 2017
  ident: 10.1016/j.egyr.2021.07.050_b9
  article-title: Novel and optimal integration of SOFC-icgt hybrid cycle: Energy analysis and entropy generation minimization
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.04.277
– volume: 397
  start-page: 382
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b2
  article-title: A thermodynamic comparison of solid oxide fuel cell-combined cycles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.035
– volume: 50
  year: 2019
  ident: 10.1016/j.egyr.2021.07.050_b18
  article-title: Transient performance improvement of a stand-alone fuel cell for residential applications
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101650
– start-page: 159
  year: 2006
  ident: 10.1016/j.egyr.2021.07.050_b3
  article-title: Single-level optimization of a hybrid SOFC-GT power plant
  publication-title: J. Power Sources
– volume: 334
  start-page: 46
  year: 2014
  ident: 10.1016/j.egyr.2021.07.050_b30
  article-title: Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.11.039
– volume: 165
  start-page: 291
  year: 2018
  ident: 10.1016/j.egyr.2021.07.050_b1
  article-title: Investigation of a combined molten carbonate fuel cell, gas turbine and stirling engine combined cooling heating and power (CCHP) process by exergy cost sensitivity analysis
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.03.067
– year: 2017
  ident: 10.1016/j.egyr.2021.07.050_b12
– start-page: 47
  year: 2012
  ident: 10.1016/j.egyr.2021.07.050_b41
  article-title: Thermoeconomic analysis and optimization of an ammonia-water power/cooling cogeneration cycle
  publication-title: Energy
SSID ssj0001920463
Score 2.459282
Snippet The life cycle cost, environmental, and energy performances of gas turbine (GT) hybridization with two high-temperature fuel cells, solid oxide fuel cell...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 4659
SubjectTerms Environmental pollution
Fuel cell
Gas turbine
Life cycle cost
Multi-objective optimization
Title Stand-alone gas turbine and hybrid MCFC and SOFC-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments
URI https://dx.doi.org/10.1016/j.egyr.2021.07.050
https://doaj.org/article/5ce80da6dd5c47ee997ce6659d318536
Volume 7
WOSCitedRecordID wos000701766400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3BTtwwEEAthDhwQa0oYilFPnArVu0kjmNubcSKC7RSi8TNcuwJLFotaLMg7YUzn83Yzi7phV56iRTLsZOZUWZG8rwh5NjKKjBdKubQGFgBTrIGh1hVcieEL6W1bWw2oS4vq-tr_WvQ6iucCUt44CS4b9JBxb0tvZeuUABaKwdlKbUPdb95hG1zpQfJ1F2KWwIKK3aWkxkr8B_cV8ykw11wswww0Ewkcif_yytFeP_AOQ0czvgD2ekjRfo9veFHsgGzXfISuv56Zqf3M6A3tqPoMTC3BYqj9HYZyq_oRT2u4_3vn-OaDSclbHN3Sus35jedTlqgbol7UHffLU7ooPbNTk_iShArBKldYzy7T-RqfPanPmd9MwXmCsEXrCg5CkF5J5pc5I1oRZuLxgoFQZ5t5pUGi8oByLwXDXeZzCzX4c6HGCXfI5sz_LZ9QjUvQXnMZaBsCtVazK81RgJgpWzaqnEjIlbCNK4njYeGF1OzOlJ2Z4ICTFCA4cqgAkbk6_qZh8TZeHf2j6Cj9czAyI4DaDmmtxzzL8sZEbnSsOnDjRRG4FKTdzY_-B-bfybbYclU1XhINhfzR_hCttzTYtLNj6Ix4_Xi-ewVCfP6Rg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stand-alone+gas+turbine+and+hybrid+MCFC+and+SOFC-gas+turbine+systems%3A+Comparative+life+cycle+cost%2C+environmental%2C+and+energy+assessments&rft.jtitle=Energy+reports&rft.au=Amirhossein+Hasanzadeh&rft.au=Ata+Chitsaz&rft.au=Parisa+Mojaver&rft.au=Amir+Ghasemi&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=7&rft.spage=4659&rft.epage=4680&rft_id=info:doi/10.1016%2Fj.egyr.2021.07.050&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5ce80da6dd5c47ee997ce6659d318536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon