Thermoeconomic optimization of a solar-assisted supercritical CO2 Brayton cycle, organic Rankine cycle and multi-effect distillation system
In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receive...
Saved in:
| Published in: | Energy reports Vol. 8; pp. 13494 - 13503 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2022
Elsevier |
| Subjects: | |
| ISSN: | 2352-4847, 2352-4847 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receiver reflected the sun’s light by heliostats, enters the storage system and then enters the fluid stream according to the amount of heat required to initiate the cycle. The working fluid of solar receiver is a mixture of the 60% NaNO3 and 40% KNO3, supercritical carbon dioxide is working fluid of the Brayton cycle and R600 is the working fluid of the organic Rankine cycle. The innovation of this article is using power and fresh water cycle without fuel consumption (with solar system and storage tanks). The simulation of this combined cycle was carried out by engineering equation solver software and energy and exergy efficiency changes in terms of different parameters are obtained. Then, a multi objective optimization of this system considering exergy efficiency and cost of system as objective functions is performed by genetic algorithm in Matlab software. Decision variables of the whole cycles are including Compressor inlet temperature, Turbine inlet temperature, Number of MED effect, The temperature of the water fed the desalination, Evaporator pinch point, Mass flow (Critical Carbon Dioxide), Turbine inlet pressure, Compressor inlet pressure and Pressure drop. The two objective functions optimization including exergy and economic parameters of this cycle is carried out for achieving reduction of electricity generation cost and increase of the exergy efficiency. The results of this optimization showed, the maximum exergy efficiency of this combined system is 61.78% and the minimum cost of electricity production is 0.2617 $/kWh. In this regard, the multiple effect distillation system produces 530.9 KgS freshwater in 15 stages. |
|---|---|
| AbstractList | In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receiver reflected the sun’s light by heliostats, enters the storage system and then enters the fluid stream according to the amount of heat required to initiate the cycle. The working fluid of solar receiver is a mixture of the 60% NaNO3and 40% KNO3, supercritical carbon dioxide is working fluid of the Brayton cycle and R600 is the working fluid of the organic Rankine cycle. The innovation of this article is using power and fresh water cycle without fuel consumption (with solar system and storage tanks). The simulation of this combined cycle was carried out by engineering equation solver software and energy and exergy efficiency changes in terms of different parameters are obtained. Then, a multi objective optimization of this system considering exergy efficiency and cost of system as objective functions is performed by genetic algorithm in Matlab software. Decision variables of the whole cycles are including Compressor inlet temperature, Turbine inlet temperature, Number of MED effect, The temperature of the water fed the desalination, Evaporator pinch point, Mass flow (Critical Carbon Dioxide), Turbine inlet pressure, Compressor inlet pressure and Pressure drop. The two objective functions optimization including exergy and economic parameters of this cycle is carried out for achieving reduction of electricity generation cost and increase of the exergy efficiency. The results of this optimization showed, the maximum exergy efficiency of this combined system is 61.78% and the minimum cost of electricity production is 0.2617 $/kWh. In this regard, the multiple effect distillation system produces 530.9 KgSfreshwater in 15 stages. In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receiver reflected the sun’s light by heliostats, enters the storage system and then enters the fluid stream according to the amount of heat required to initiate the cycle. The working fluid of solar receiver is a mixture of the 60% NaNO3 and 40% KNO3, supercritical carbon dioxide is working fluid of the Brayton cycle and R600 is the working fluid of the organic Rankine cycle. The innovation of this article is using power and fresh water cycle without fuel consumption (with solar system and storage tanks). The simulation of this combined cycle was carried out by engineering equation solver software and energy and exergy efficiency changes in terms of different parameters are obtained. Then, a multi objective optimization of this system considering exergy efficiency and cost of system as objective functions is performed by genetic algorithm in Matlab software. Decision variables of the whole cycles are including Compressor inlet temperature, Turbine inlet temperature, Number of MED effect, The temperature of the water fed the desalination, Evaporator pinch point, Mass flow (Critical Carbon Dioxide), Turbine inlet pressure, Compressor inlet pressure and Pressure drop. The two objective functions optimization including exergy and economic parameters of this cycle is carried out for achieving reduction of electricity generation cost and increase of the exergy efficiency. The results of this optimization showed, the maximum exergy efficiency of this combined system is 61.78% and the minimum cost of electricity production is 0.2617 $/kWh. In this regard, the multiple effect distillation system produces 530.9 KgS freshwater in 15 stages. |
| Author | Shirmohammadi, Reza Ahmadi, Abolfazl Dashti, Reza Khademi, Mohammad |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Khademi fullname: Khademi, Mohammad organization: Iran University of Science and Technology, School of advanced Technologies, Department of Energy system engineering, Tehran, Iran – sequence: 2 givenname: Abolfazl orcidid: 0000-0003-2652-6011 surname: Ahmadi fullname: Ahmadi, Abolfazl email: a_ahmadi@iust.ac.ir organization: Iran University of Science and Technology, School of advanced Technologies, Department of Energy system engineering, Tehran, Iran – sequence: 3 givenname: Reza surname: Dashti fullname: Dashti, Reza organization: Iran University of Science and Technology, School of advanced Technologies, Department of Energy system engineering, Tehran, Iran – sequence: 4 givenname: Reza surname: Shirmohammadi fullname: Shirmohammadi, Reza organization: Department of Renewable Energies and Environment, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran |
| BookMark | eNp9kd1qFTEUhQepYK19Aa_yAM4xfzOTAW_04E-hUJB6HXaSnZrjzOSQpML0FXxpczoi4kWvEhZZX1hrvWzOlrhg07xmdMco698edni3ph2nnFdhRxl91pxz0fFWKjmc_XN_0VzmfKCUspFT2Yvz5tftd0xzRBuXOAdL4rGEOTxACXEh0RMgOU6QWsg55IKO5PsjJptCCRYmsr_h5EOCtdTXdrUTviEx3cFSSV9h-REW3GQCiyPz_VRCi96jLcRVXJim7aO8Vvb8qnnuYcp4-ee8aL59-ni7_9Je33y-2r-_bq1ktLSyE4Ngg1Gi80hNN_YgUSAX6HrjmVOOWyZQMRg71YPnXrjRc9OjUn0nQVw0VxvXRTjoYwozpFVHCPpRqAE0pJpvQj3w3hsjzWiGQVrVgTUGR1DMek6tdJXFN5ZNMeeE_i-PUX1aRx_0aR19Wuek1XWqSf1nsqE8NlEShOlp67vNirWgnwGTzjbgYtGFVGutCcJT9t_g57Do |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119285 crossref_primary_10_1016_j_enconman_2024_118357 crossref_primary_10_1016_j_energy_2024_131288 crossref_primary_10_1016_j_solener_2025_113443 crossref_primary_10_1016_j_renene_2024_120256 crossref_primary_10_1002_ese3_1675 crossref_primary_10_1016_j_egyr_2023_03_102 crossref_primary_10_1016_j_applthermaleng_2024_123684 crossref_primary_10_1002_gch2_202300191 crossref_primary_10_1016_j_applthermaleng_2024_124667 crossref_primary_10_1016_j_ecmx_2025_101200 crossref_primary_10_1021_acssuschemeng_5c01261 crossref_primary_10_1002_ep_70081 crossref_primary_10_1016_j_egyr_2023_09_131 crossref_primary_10_1016_j_tsep_2023_101679 crossref_primary_10_1007_s42108_025_00367_7 crossref_primary_10_1016_j_energy_2024_134285 crossref_primary_10_3390_pr11041181 crossref_primary_10_1080_15567036_2025_2561894 crossref_primary_10_1080_15567036_2025_2525377 |
| Cites_doi | 10.1115/1.4024964 10.1063/1.5067205 10.1016/j.rser.2013.11.010 10.1080/14786451.2016.1166109 10.1016/j.applthermaleng.2018.07.125 10.1061/(ASCE)EY.1943-7897.0000545 10.1016/j.energy.2014.03.115 10.1016/j.enconman.2016.12.085 10.1016/j.energy.2012.03.034 10.1016/j.energy.2010.01.013 10.1016/j.ijhydene.2015.12.211 10.1016/j.egyr.2022.03.040 10.1016/j.enconman.2017.06.043 10.3390/en14102849 10.1115/1.4006986 10.1016/j.rser.2021.111420 10.3390/pr6090153 10.1016/j.solener.2003.08.036 10.1016/j.desal.2007.02.071 10.1016/j.apenergy.2017.12.031 10.1016/j.energy.2018.05.137 10.1002/ep.12564 10.1016/j.egypro.2014.03.124 10.1016/j.energy.2016.11.041 10.1504/IJEX.2018.092501 10.1016/j.jcou.2022.101927 10.1007/s10973-021-10833-z 10.1016/j.egyr.2021.08.168 10.1016/j.egyr.2021.11.258 10.1016/S0038-092X(97)00107-2 10.1016/j.egyr.2021.10.091 10.1016/j.egyr.2022.01.222 10.1016/j.energy.2011.03.073 10.1016/j.egypro.2014.03.193 10.1016/j.apenergy.2013.06.020 10.1109/8.558650 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.egyr.2022.10.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4847 |
| EndPage | 13503 |
| ExternalDocumentID | oai_doaj_org_article_726fbb4b9b774c85acbbe9a81cf20c4d 10_1016_j_egyr_2022_10_010 S2352484722019552 |
| GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E O9- OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c410t-4537317b835fe0b596a4e3e23ed6bf1d8d2c13e81a9586af2f3d9f2b6e88654a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877515300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4847 |
| IngestDate | Fri Oct 03 12:42:22 EDT 2025 Sat Nov 29 07:39:17 EST 2025 Tue Nov 18 20:44:32 EST 2025 Sat Sep 06 17:18:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi effect desalination (MED) Supercritical carbon dioxide Solar Brayton cycle Genetic algorithm Organic Rankine cycle (ORC) |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-4537317b835fe0b596a4e3e23ed6bf1d8d2c13e81a9586af2f3d9f2b6e88654a3 |
| ORCID | 0000-0003-2652-6011 |
| OpenAccessLink | https://doaj.org/article/726fbb4b9b774c85acbbe9a81cf20c4d |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_726fbb4b9b774c85acbbe9a81cf20c4d crossref_primary_10_1016_j_egyr_2022_10_010 crossref_citationtrail_10_1016_j_egyr_2022_10_010 elsevier_sciencedirect_doi_10_1016_j_egyr_2022_10_010 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy reports |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Javanshir, Sarunac, Razzaghpanah (b16) 2018; 157 AlZahrani, Dincer (b1) 2018; 26 Mohammad, Pourfayaz, Kasaeian (b23) 2022; 8 Kouta, Al-Sulaiman, Atif (b18) 2017; 119 Gholamalizadeh, Kim (b13) 2014; 70 Tjahjono (b36) 2021; 14 Le Roux, Bello-Ochende, Meyer (b20) 2012; 46 Karagiannis, Soldatos (b17) 2008; 223 Zahedi, Ahmadi, Dashti (b44) 2021; 150 Balta, Kizilkan, Yılmaz (b5) 2016; 41 Dincer, Rosen, Ahmadi (b9) 2017 Siddiqui, Taimoor, Almitani (b32) 2018; 6 Weile, Michielssen (b41) 1997; 45 Veronika, Bertrand, Leyer (b38) 2022; 8 Meas, Bello-Ochende (b21) 2017; 148 de la Calle (b7) 2018 Spelling (b35) 2012; 41 Dunham, Iverson (b10) 2014; 30 Esmaeilion, Ahmadi, Dashti (b11) 2021; 28 Iverson (b15) 2013; 111 Segal, Epstein (b28) 2003; 75 Atif, Al-Sulaiman (b3) 2018; 144 Santarelli (b27) 2016 del Pozo, C.A., et al., 0000. Thermal and Exergy Efficiency Analysis of a Solar-driven Closed Brayton Power Plant with Helium & s-CO2 as Working Fluids. Shirmohammadi (b29) 2021; 145 Vasquez Padilla (b37) 2018; 37 Sadeghzadeh, Ghorbani, Ahmadi, Sharma (b26) 2021; 7 Spelling, Laumert, Fransson (b33) 2012; 134 Wang, He (b39) 2017; 135 Shirmohammadi (b30) 2021; 7 Shirmohammadi (b31) 2022; 59 Spelling, Laumert, Fransson (b34) 2014; 136 Riazi, Ahmed (b25) 2013 Ansari, Sayyaadi, Amidpour (b2) 2010; 35 Kribus (b19) 1998; 62 Grange (b14) 2014; 49 Quero (b24) 2014; 49 Yilmaz (b42) 2018; 143 Boyle, G., 2004. Renewable Energy. Renewable Energy. Oxford University Press, p. 456, ISBN-10: 0199261784. ISBN-13: 9780199261789, 2004: p. 456 Gao (b12) 2017; 36 Bahari, Ahmadi, Dashti (b4) 2021; 4 Wang (b40) 2018; 212 Meriche, Baghidja, Boukelia (b22) 2014; 4 Yue, Li, Qiao, Ren, Si (b43) 2022; 8 Atif (10.1016/j.egyr.2022.10.010_b3) 2018; 144 Weile (10.1016/j.egyr.2022.10.010_b41) 1997; 45 Esmaeilion (10.1016/j.egyr.2022.10.010_b11) 2021; 28 Yue (10.1016/j.egyr.2022.10.010_b43) 2022; 8 Vasquez Padilla (10.1016/j.egyr.2022.10.010_b37) 2018; 37 Tjahjono (10.1016/j.egyr.2022.10.010_b36) 2021; 14 Meas (10.1016/j.egyr.2022.10.010_b21) 2017; 148 Shirmohammadi (10.1016/j.egyr.2022.10.010_b31) 2022; 59 Le Roux (10.1016/j.egyr.2022.10.010_b20) 2012; 46 Dincer (10.1016/j.egyr.2022.10.010_b9) 2017 Mohammad (10.1016/j.egyr.2022.10.010_b23) 2022; 8 Veronika (10.1016/j.egyr.2022.10.010_b38) 2022; 8 Wang (10.1016/j.egyr.2022.10.010_b39) 2017; 135 Wang (10.1016/j.egyr.2022.10.010_b40) 2018; 212 Sadeghzadeh (10.1016/j.egyr.2022.10.010_b26) 2021; 7 Segal (10.1016/j.egyr.2022.10.010_b28) 2003; 75 Javanshir (10.1016/j.egyr.2022.10.010_b16) 2018; 157 Siddiqui (10.1016/j.egyr.2022.10.010_b32) 2018; 6 Meriche (10.1016/j.egyr.2022.10.010_b22) 2014; 4 Shirmohammadi (10.1016/j.egyr.2022.10.010_b30) 2021; 7 Spelling (10.1016/j.egyr.2022.10.010_b35) 2012; 41 Kribus (10.1016/j.egyr.2022.10.010_b19) 1998; 62 Yilmaz (10.1016/j.egyr.2022.10.010_b42) 2018; 143 Ansari (10.1016/j.egyr.2022.10.010_b2) 2010; 35 10.1016/j.egyr.2022.10.010_b8 Spelling (10.1016/j.egyr.2022.10.010_b33) 2012; 134 AlZahrani (10.1016/j.egyr.2022.10.010_b1) 2018; 26 Gholamalizadeh (10.1016/j.egyr.2022.10.010_b13) 2014; 70 Riazi (10.1016/j.egyr.2022.10.010_b25) 2013 Spelling (10.1016/j.egyr.2022.10.010_b34) 2014; 136 de la Calle (10.1016/j.egyr.2022.10.010_b7) 2018 Grange (10.1016/j.egyr.2022.10.010_b14) 2014; 49 Dunham (10.1016/j.egyr.2022.10.010_b10) 2014; 30 Gao (10.1016/j.egyr.2022.10.010_b12) 2017; 36 Shirmohammadi (10.1016/j.egyr.2022.10.010_b29) 2021; 145 10.1016/j.egyr.2022.10.010_b6 Bahari (10.1016/j.egyr.2022.10.010_b4) 2021; 4 Zahedi (10.1016/j.egyr.2022.10.010_b44) 2021; 150 Kouta (10.1016/j.egyr.2022.10.010_b18) 2017; 119 Balta (10.1016/j.egyr.2022.10.010_b5) 2016; 41 Santarelli (10.1016/j.egyr.2022.10.010_b27) 2016 Quero (10.1016/j.egyr.2022.10.010_b24) 2014; 49 Iverson (10.1016/j.egyr.2022.10.010_b15) 2013; 111 Karagiannis (10.1016/j.egyr.2022.10.010_b17) 2008; 223 |
| References_xml | – volume: 134 year: 2012 ident: b33 article-title: Optimal gas-turbine design for hybrid solar power plant operation publication-title: J. Eng. Gas Turbines Power – volume: 41 start-page: 8032 year: 2016 end-page: 8041 ident: b5 article-title: Energy and exergy analyses of integrated hydrogen production system using high temperature steam electrolysis publication-title: Int. J. Hydrogen Energy – volume: 59 year: 2022 ident: b31 article-title: Exergoenvironmental analysis and thermoeconomic optimization of an industrial post-combustion CO2 capture and utilization installation publication-title: J. CO2 Utilization – volume: 148 start-page: 770 year: 2017 end-page: 784 ident: b21 article-title: Thermodynamic design optimisation of an open air recuperative twin-shaft solar thermal brayton cycle with combined or exclusive reheating and intercooling publication-title: Energy Convers. Manage. – volume: 7 start-page: 5344 year: 2021 end-page: 5358 ident: b26 article-title: A solar-driven plant to produce power, cooling, freshwater, and hot water for an industrial complex publication-title: Energy Rep. – volume: 143 start-page: 429 year: 2018 end-page: 437 ident: b42 article-title: Thermodynamic performance evaluation of a novel solar energy based multigeneration system publication-title: Appl. Therm. Eng. – volume: 145 start-page: 1585 year: 2021 end-page: 1597 ident: b29 article-title: Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant publication-title: J. Therm. Anal. Calorim. – volume: 157 start-page: 65 year: 2018 end-page: 75 ident: b16 article-title: Thermodynamic analysis and optimization of single and combined power cycles for concentrated solar power applications publication-title: Energy – volume: 136 year: 2014 ident: b34 article-title: A comparative thermoeconomic study of hybrid solar gas-turbine power plants publication-title: J. Eng. Gas Turbines Power – volume: 30 start-page: 758 year: 2014 end-page: 770 ident: b10 article-title: High-efficiency thermodynamic power cycles for concentrated solar power systems publication-title: Renew. Sustain. Energy Rev. – volume: 35 start-page: 1981 year: 2010 end-page: 1996 ident: b2 article-title: Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-tvc) publication-title: Energy – volume: 144 year: 2018 ident: b3 article-title: Energy and exergy analyses of recompression brayton cycles integrated with a solar power tower through a two-tank thermal storage system publication-title: J. Energy Eng. – volume: 150 year: 2021 ident: b44 article-title: Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system publication-title: Renew. Sustain. Energy Rev. – volume: 8 start-page: 4196 year: 2022 end-page: 4208 ident: b38 article-title: Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery publication-title: Energy Rep. – volume: 135 start-page: 336 year: 2017 end-page: 350 ident: b39 article-title: Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 brayton cycle based on integrated modeling publication-title: Energy Convers. Manage. – year: 2016 ident: b27 publication-title: Thermodynamic Analysis of Beam Down Solar Gas Turbine Power Plant Equipped with Concentrating Receiver System – volume: 6 start-page: 153 year: 2018 ident: b32 article-title: Energy and exergy analysis of the S-CO2 brayton cycle coupled with bottoming cycles publication-title: Processes – volume: 4 start-page: 224 year: 2014 end-page: 232 ident: b22 article-title: Design and performance evaluation of solar gas turbine power plant in south western algeria publication-title: Int. J. Renew. Energy Res. (IJRER) – volume: 70 start-page: 204 year: 2014 end-page: 211 ident: b13 article-title: Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms publication-title: Energy – volume: 4 year: 2021 ident: b4 article-title: Exergo-economic analysis and optimization of a combined solar collector with steam and Organic Rankine Cycle using particle swarm optimization (PSO) algorithm publication-title: Clean. Eng. Technol. – volume: 8 start-page: 322 year: 2022 end-page: 333 ident: b43 article-title: A concept of a supercritical CO2 brayton and organic rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization publication-title: Energy Rep. – reference: del Pozo, C.A., et al., 0000. Thermal and Exergy Efficiency Analysis of a Solar-driven Closed Brayton Power Plant with Helium & s-CO2 as Working Fluids. – volume: 37 start-page: 1 year: 2018 end-page: 20 ident: b37 article-title: Multi-objective thermodynamic optimisation of supercritical CO2 brayton cycles integrated with solar central receivers publication-title: Int. J. Sustain. Energy – volume: 75 start-page: 503 year: 2003 end-page: 510 ident: b28 article-title: Optimized working temperatures of a solar central receiver publication-title: Sol. Energy – volume: 7 start-page: 7390 year: 2021 end-page: 7404 ident: b30 article-title: Techno-economic assessment and optimization of a solar-assisted industrial post-combustion CO2 capture and utilization plant publication-title: Energy Rep. – volume: 14 start-page: 2849 year: 2021 ident: b36 article-title: Thermo-economic analysis on integrated CO2, organic Rankine cycles, and NaClO plant using liquefied natural gas publication-title: Energies – volume: 111 start-page: 957 year: 2013 end-page: 970 ident: b15 article-title: Supercritical CO2 brayton cycles for solar-thermal energy publication-title: Appl. Energy – reference: Boyle, G., 2004. Renewable Energy. Renewable Energy. Oxford University Press, p. 456, ISBN-10: 0199261784. ISBN-13: 9780199261789, 2004: p. 456, – volume: 223 start-page: 448 year: 2008 end-page: 456 ident: b17 article-title: Water desalination cost literature: review and assessment publication-title: Desalination – volume: 212 start-page: 109 year: 2018 end-page: 121 ident: b40 article-title: A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants publication-title: Appl. Energy – volume: 41 start-page: 113 year: 2012 end-page: 120 ident: b35 article-title: Thermoeconomic optimization of a combined-cycle solar tower power plant publication-title: Energy – volume: 36 start-page: 1234 year: 2017 end-page: 1243 ident: b12 article-title: Parameter and layout optimization of a high temperature solar combined cycle using low temperature thermal storage publication-title: Environ. Prog. Sustain. Energy – volume: 49 start-page: 1147 year: 2014 end-page: 1156 ident: b14 article-title: Simulation of a hybrid solar gas-turbine cycle with storage integration publication-title: Energy Procedia – year: 2017 ident: b9 article-title: Optimization of Energy Systems – year: 2013 ident: b25 article-title: Efficiency enhancement of a small scale closed solar thermal Brayton cycle by a combined simple organic Rankine cycle publication-title: ASME 2012 International Mechanical Engineering Congress and Exposition – volume: 8 start-page: 2976 year: 2022 end-page: 2988 ident: b23 article-title: Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications publication-title: Energy Rep. – volume: 49 start-page: 1820 year: 2014 end-page: 1830 ident: b24 article-title: Solugas–Operation experience of the first solar hybrid gas turbine system at MW scale publication-title: Energy Procedia – volume: 62 start-page: 121 year: 1998 end-page: 129 ident: b19 article-title: A solar-driven combined cycle power plant publication-title: Sol. Energy – volume: 26 start-page: 21 year: 2018 end-page: 40 ident: b1 article-title: Comparative energy and exergy studies of combined CO2 Brayton-organic Rankine cycle integrated with solar tower plant publication-title: Int. J. Exergy – year: 2018 ident: b7 article-title: System-level simulation of a novel solar power tower plant based on a sodium receiver, PCM storage and sCO2 power block publication-title: AIP Conference Proceedings – volume: 28 start-page: 2733 year: 2021 end-page: 2750 ident: b11 article-title: Exergy-economic-environment optimization of the waste-to-energy power plant using multi-objective particle-swarm optimization (MOPSO) publication-title: Sci. Iranica – volume: 45 start-page: 343 year: 1997 end-page: 353 ident: b41 article-title: Genetic algorithm optimization applied to electromagnetics: A review publication-title: IEEE Trans. Antennas and Propagation – volume: 119 start-page: 996 year: 2017 end-page: 1009 ident: b18 article-title: Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system publication-title: Energy – volume: 46 start-page: 42 year: 2012 end-page: 50 ident: b20 article-title: Optimum performance of the small-scale open and direct solar thermal brayton cycle at various environmental conditions and constraints publication-title: Energy – volume: 136 issue: 1 year: 2014 ident: 10.1016/j.egyr.2022.10.010_b34 article-title: A comparative thermoeconomic study of hybrid solar gas-turbine power plants publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4024964 – year: 2018 ident: 10.1016/j.egyr.2022.10.010_b7 article-title: System-level simulation of a novel solar power tower plant based on a sodium receiver, PCM storage and sCO2 power block doi: 10.1063/1.5067205 – volume: 30 start-page: 758 year: 2014 ident: 10.1016/j.egyr.2022.10.010_b10 article-title: High-efficiency thermodynamic power cycles for concentrated solar power systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.11.010 – year: 2013 ident: 10.1016/j.egyr.2022.10.010_b25 article-title: Efficiency enhancement of a small scale closed solar thermal Brayton cycle by a combined simple organic Rankine cycle – volume: 28 start-page: 2733 issue: 5 year: 2021 ident: 10.1016/j.egyr.2022.10.010_b11 article-title: Exergy-economic-environment optimization of the waste-to-energy power plant using multi-objective particle-swarm optimization (MOPSO) publication-title: Sci. Iranica – ident: 10.1016/j.egyr.2022.10.010_b6 – year: 2016 ident: 10.1016/j.egyr.2022.10.010_b27 – volume: 37 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.egyr.2022.10.010_b37 article-title: Multi-objective thermodynamic optimisation of supercritical CO2 brayton cycles integrated with solar central receivers publication-title: Int. J. Sustain. Energy doi: 10.1080/14786451.2016.1166109 – ident: 10.1016/j.egyr.2022.10.010_b8 – volume: 143 start-page: 429 year: 2018 ident: 10.1016/j.egyr.2022.10.010_b42 article-title: Thermodynamic performance evaluation of a novel solar energy based multigeneration system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.125 – volume: 144 issue: 4 year: 2018 ident: 10.1016/j.egyr.2022.10.010_b3 article-title: Energy and exergy analyses of recompression brayton cycles integrated with a solar power tower through a two-tank thermal storage system publication-title: J. Energy Eng. doi: 10.1061/(ASCE)EY.1943-7897.0000545 – volume: 70 start-page: 204 year: 2014 ident: 10.1016/j.egyr.2022.10.010_b13 article-title: Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms publication-title: Energy doi: 10.1016/j.energy.2014.03.115 – volume: 135 start-page: 336 year: 2017 ident: 10.1016/j.egyr.2022.10.010_b39 article-title: Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 brayton cycle based on integrated modeling publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.12.085 – volume: 46 start-page: 42 issue: 1 year: 2012 ident: 10.1016/j.egyr.2022.10.010_b20 article-title: Optimum performance of the small-scale open and direct solar thermal brayton cycle at various environmental conditions and constraints publication-title: Energy doi: 10.1016/j.energy.2012.03.034 – year: 2017 ident: 10.1016/j.egyr.2022.10.010_b9 – volume: 35 start-page: 1981 issue: 5 year: 2010 ident: 10.1016/j.egyr.2022.10.010_b2 article-title: Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-tvc) publication-title: Energy doi: 10.1016/j.energy.2010.01.013 – volume: 41 start-page: 8032 issue: 19 year: 2016 ident: 10.1016/j.egyr.2022.10.010_b5 article-title: Energy and exergy analyses of integrated hydrogen production system using high temperature steam electrolysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.12.211 – volume: 8 start-page: 4196 year: 2022 ident: 10.1016/j.egyr.2022.10.010_b38 article-title: Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.040 – volume: 148 start-page: 770 year: 2017 ident: 10.1016/j.egyr.2022.10.010_b21 article-title: Thermodynamic design optimisation of an open air recuperative twin-shaft solar thermal brayton cycle with combined or exclusive reheating and intercooling publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.06.043 – volume: 14 start-page: 2849 issue: 10 year: 2021 ident: 10.1016/j.egyr.2022.10.010_b36 article-title: Thermo-economic analysis on integrated CO2, organic Rankine cycles, and NaClO plant using liquefied natural gas publication-title: Energies doi: 10.3390/en14102849 – volume: 134 issue: 9 year: 2012 ident: 10.1016/j.egyr.2022.10.010_b33 article-title: Optimal gas-turbine design for hybrid solar power plant operation publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4006986 – volume: 150 year: 2021 ident: 10.1016/j.egyr.2022.10.010_b44 article-title: Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111420 – volume: 6 start-page: 153 issue: 9 year: 2018 ident: 10.1016/j.egyr.2022.10.010_b32 article-title: Energy and exergy analysis of the S-CO2 brayton cycle coupled with bottoming cycles publication-title: Processes doi: 10.3390/pr6090153 – volume: 75 start-page: 503 issue: 6 year: 2003 ident: 10.1016/j.egyr.2022.10.010_b28 article-title: Optimized working temperatures of a solar central receiver publication-title: Sol. Energy doi: 10.1016/j.solener.2003.08.036 – volume: 223 start-page: 448 issue: 1–3 year: 2008 ident: 10.1016/j.egyr.2022.10.010_b17 article-title: Water desalination cost literature: review and assessment publication-title: Desalination doi: 10.1016/j.desal.2007.02.071 – volume: 212 start-page: 109 year: 2018 ident: 10.1016/j.egyr.2022.10.010_b40 article-title: A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.031 – volume: 157 start-page: 65 year: 2018 ident: 10.1016/j.egyr.2022.10.010_b16 article-title: Thermodynamic analysis and optimization of single and combined power cycles for concentrated solar power applications publication-title: Energy doi: 10.1016/j.energy.2018.05.137 – volume: 36 start-page: 1234 issue: 4 year: 2017 ident: 10.1016/j.egyr.2022.10.010_b12 article-title: Parameter and layout optimization of a high temperature solar combined cycle using low temperature thermal storage publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.12564 – volume: 49 start-page: 1147 year: 2014 ident: 10.1016/j.egyr.2022.10.010_b14 article-title: Simulation of a hybrid solar gas-turbine cycle with storage integration publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.03.124 – volume: 119 start-page: 996 year: 2017 ident: 10.1016/j.egyr.2022.10.010_b18 article-title: Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system publication-title: Energy doi: 10.1016/j.energy.2016.11.041 – volume: 26 start-page: 21 issue: 1–2 year: 2018 ident: 10.1016/j.egyr.2022.10.010_b1 article-title: Comparative energy and exergy studies of combined CO2 Brayton-organic Rankine cycle integrated with solar tower plant publication-title: Int. J. Exergy doi: 10.1504/IJEX.2018.092501 – volume: 59 year: 2022 ident: 10.1016/j.egyr.2022.10.010_b31 article-title: Exergoenvironmental analysis and thermoeconomic optimization of an industrial post-combustion CO2 capture and utilization installation publication-title: J. CO2 Utilization doi: 10.1016/j.jcou.2022.101927 – volume: 4 start-page: 224 issue: 1 year: 2014 ident: 10.1016/j.egyr.2022.10.010_b22 article-title: Design and performance evaluation of solar gas turbine power plant in south western algeria publication-title: Int. J. Renew. Energy Res. (IJRER) – volume: 145 start-page: 1585 issue: 3 year: 2021 ident: 10.1016/j.egyr.2022.10.010_b29 article-title: Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-021-10833-z – volume: 7 start-page: 5344 year: 2021 ident: 10.1016/j.egyr.2022.10.010_b26 article-title: A solar-driven plant to produce power, cooling, freshwater, and hot water for an industrial complex publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.08.168 – volume: 8 start-page: 322 year: 2022 ident: 10.1016/j.egyr.2022.10.010_b43 article-title: A concept of a supercritical CO2 brayton and organic rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.11.258 – volume: 62 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.egyr.2022.10.010_b19 article-title: A solar-driven combined cycle power plant publication-title: Sol. Energy doi: 10.1016/S0038-092X(97)00107-2 – volume: 7 start-page: 7390 year: 2021 ident: 10.1016/j.egyr.2022.10.010_b30 article-title: Techno-economic assessment and optimization of a solar-assisted industrial post-combustion CO2 capture and utilization plant publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.10.091 – volume: 8 start-page: 2976 year: 2022 ident: 10.1016/j.egyr.2022.10.010_b23 article-title: Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.01.222 – volume: 41 start-page: 113 issue: 1 year: 2012 ident: 10.1016/j.egyr.2022.10.010_b35 article-title: Thermoeconomic optimization of a combined-cycle solar tower power plant publication-title: Energy doi: 10.1016/j.energy.2011.03.073 – volume: 4 year: 2021 ident: 10.1016/j.egyr.2022.10.010_b4 article-title: Exergo-economic analysis and optimization of a combined solar collector with steam and Organic Rankine Cycle using particle swarm optimization (PSO) algorithm publication-title: Clean. Eng. Technol. – volume: 49 start-page: 1820 issue: Supplement C year: 2014 ident: 10.1016/j.egyr.2022.10.010_b24 article-title: Solugas–Operation experience of the first solar hybrid gas turbine system at MW scale publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.03.193 – volume: 111 start-page: 957 year: 2013 ident: 10.1016/j.egyr.2022.10.010_b15 article-title: Supercritical CO2 brayton cycles for solar-thermal energy publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.06.020 – volume: 45 start-page: 343 issue: 3 year: 1997 ident: 10.1016/j.egyr.2022.10.010_b41 article-title: Genetic algorithm optimization applied to electromagnetics: A review publication-title: IEEE Trans. Antennas and Propagation doi: 10.1109/8.558650 |
| SSID | ssj0001920463 |
| Score | 2.3489177 |
| Snippet | In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 13494 |
| SubjectTerms | Genetic algorithm Multi effect desalination (MED) Organic Rankine cycle (ORC) Solar Brayton cycle Supercritical carbon dioxide |
| Title | Thermoeconomic optimization of a solar-assisted supercritical CO2 Brayton cycle, organic Rankine cycle and multi-effect distillation system |
| URI | https://dx.doi.org/10.1016/j.egyr.2022.10.010 https://doaj.org/article/726fbb4b9b774c85acbbe9a81cf20c4d |
| Volume | 8 |
| WOSCitedRecordID | wos000877515300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EMvVau26lJa-dBbSZv4kdhHQKBeShGiErfIjzECwS7KLkh74Q_wpzsTe1FO9NJLDpYfkT9n_I0yMx9jX5GhiiZ0sqqDB3RQwKIdjL6Chn4zyQ5M7Uaxie742Jyf25OJ1BfFhOXywHnjfnSiTd4rbz0SlWC0C96DdaYJSdRBRbK-dWcnztRV5i1UCmtUltOiUmiDS8ZMDu6CizUVAxXiO4V2Ufrs5FYai_dPLqfJhXP0hr0uTJHv5Td8y17A_B17RFiHmwWUdGK-wC_-pqRS8kXiji_JV62QEhN-kS_vbmEIRc-AH_wWfH9wayR8PKxx2l2eZZ0CP3UkogC5mbt55GOsYZUDPngkW3CdA-d4Lv_8nv05Ojw7-FkVPYUqqKZeVUrLDumCR9KVoPbatk6BBCEhtj410UQRGgmmcVab1iWRZLRJ-BaMabVy8gPbmi_m8JFx61Sqk5Yqdq1y6LQFi4NVhzBrdDn9jDWb_exDKTZOmhfX_Saq7KonDHrCgNoQgxn79jTmNpfaeLb3PsH01JPKZI8NuG19OTz9vw7PjOkNyH1hHJlJ4FSXzyy-_T8W_8Re0ZQ5sXGHba2GO_jMXob71eVy-DKeZ3z-ejj8C0Uk_iw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoeconomic+optimization+of+a+solar-assisted+supercritical+CO2+Brayton+cycle%2C+organic+Rankine+cycle+and+multi-effect+distillation+system&rft.jtitle=Energy+reports&rft.au=Khademi%2C+Mohammad&rft.au=Ahmadi%2C+Abolfazl&rft.au=Dashti%2C+Reza&rft.au=Shirmohammadi%2C+Reza&rft.date=2022-11-01&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=13494&rft.epage=13503&rft_id=info:doi/10.1016%2Fj.egyr.2022.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyr_2022_10_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |