Thermoeconomic optimization of a solar-assisted supercritical CO2 Brayton cycle, organic Rankine cycle and multi-effect distillation system

In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receive...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports Vol. 8; pp. 13494 - 13503
Main Authors: Khademi, Mohammad, Ahmadi, Abolfazl, Dashti, Reza, Shirmohammadi, Reza
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2022
Elsevier
Subjects:
ISSN:2352-4847, 2352-4847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receiver reflected the sun’s light by heliostats, enters the storage system and then enters the fluid stream according to the amount of heat required to initiate the cycle. The working fluid of solar receiver is a mixture of the 60% NaNO3 and 40% KNO3, supercritical carbon dioxide is working fluid of the Brayton cycle and R600 is the working fluid of the organic Rankine cycle. The innovation of this article is using power and fresh water cycle without fuel consumption (with solar system and storage tanks). The simulation of this combined cycle was carried out by engineering equation solver software and energy and exergy efficiency changes in terms of different parameters are obtained. Then, a multi objective optimization of this system considering exergy efficiency and cost of system as objective functions is performed by genetic algorithm in Matlab software. Decision variables of the whole cycles are including Compressor inlet temperature, Turbine inlet temperature, Number of MED effect, The temperature of the water fed the desalination, Evaporator pinch point, Mass flow (Critical Carbon Dioxide), Turbine inlet pressure, Compressor inlet pressure and Pressure drop. The two objective functions optimization including exergy and economic parameters of this cycle is carried out for achieving reduction of electricity generation cost and increase of the exergy efficiency. The results of this optimization showed, the maximum exergy efficiency of this combined system is 61.78% and the minimum cost of electricity production is 0.2617 $/kWh. In this regard, the multiple effect distillation system produces 530.9 KgS freshwater in 15 stages.
AbstractList In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receiver reflected the sun’s light by heliostats, enters the storage system and then enters the fluid stream according to the amount of heat required to initiate the cycle. The working fluid of solar receiver is a mixture of the 60% NaNO3and 40% KNO3, supercritical carbon dioxide is working fluid of the Brayton cycle and R600 is the working fluid of the organic Rankine cycle. The innovation of this article is using power and fresh water cycle without fuel consumption (with solar system and storage tanks). The simulation of this combined cycle was carried out by engineering equation solver software and energy and exergy efficiency changes in terms of different parameters are obtained. Then, a multi objective optimization of this system considering exergy efficiency and cost of system as objective functions is performed by genetic algorithm in Matlab software. Decision variables of the whole cycles are including Compressor inlet temperature, Turbine inlet temperature, Number of MED effect, The temperature of the water fed the desalination, Evaporator pinch point, Mass flow (Critical Carbon Dioxide), Turbine inlet pressure, Compressor inlet pressure and Pressure drop. The two objective functions optimization including exergy and economic parameters of this cycle is carried out for achieving reduction of electricity generation cost and increase of the exergy efficiency. The results of this optimization showed, the maximum exergy efficiency of this combined system is 61.78% and the minimum cost of electricity production is 0.2617 $/kWh. In this regard, the multiple effect distillation system produces 530.9 KgSfreshwater in 15 stages.
In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation system driven by solar energy have been applied for power and freshwater generation. In this cycle, the solar collector, the central receiver reflected the sun’s light by heliostats, enters the storage system and then enters the fluid stream according to the amount of heat required to initiate the cycle. The working fluid of solar receiver is a mixture of the 60% NaNO3 and 40% KNO3, supercritical carbon dioxide is working fluid of the Brayton cycle and R600 is the working fluid of the organic Rankine cycle. The innovation of this article is using power and fresh water cycle without fuel consumption (with solar system and storage tanks). The simulation of this combined cycle was carried out by engineering equation solver software and energy and exergy efficiency changes in terms of different parameters are obtained. Then, a multi objective optimization of this system considering exergy efficiency and cost of system as objective functions is performed by genetic algorithm in Matlab software. Decision variables of the whole cycles are including Compressor inlet temperature, Turbine inlet temperature, Number of MED effect, The temperature of the water fed the desalination, Evaporator pinch point, Mass flow (Critical Carbon Dioxide), Turbine inlet pressure, Compressor inlet pressure and Pressure drop. The two objective functions optimization including exergy and economic parameters of this cycle is carried out for achieving reduction of electricity generation cost and increase of the exergy efficiency. The results of this optimization showed, the maximum exergy efficiency of this combined system is 61.78% and the minimum cost of electricity production is 0.2617 $/kWh. In this regard, the multiple effect distillation system produces 530.9 KgS freshwater in 15 stages.
Author Shirmohammadi, Reza
Ahmadi, Abolfazl
Dashti, Reza
Khademi, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Khademi
  fullname: Khademi, Mohammad
  organization: Iran University of Science and Technology, School of advanced Technologies, Department of Energy system engineering, Tehran, Iran
– sequence: 2
  givenname: Abolfazl
  orcidid: 0000-0003-2652-6011
  surname: Ahmadi
  fullname: Ahmadi, Abolfazl
  email: a_ahmadi@iust.ac.ir
  organization: Iran University of Science and Technology, School of advanced Technologies, Department of Energy system engineering, Tehran, Iran
– sequence: 3
  givenname: Reza
  surname: Dashti
  fullname: Dashti, Reza
  organization: Iran University of Science and Technology, School of advanced Technologies, Department of Energy system engineering, Tehran, Iran
– sequence: 4
  givenname: Reza
  surname: Shirmohammadi
  fullname: Shirmohammadi, Reza
  organization: Department of Renewable Energies and Environment, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
BookMark eNp9kd1qFTEUhQepYK19Aa_yAM4xfzOTAW_04E-hUJB6HXaSnZrjzOSQpML0FXxpczoi4kWvEhZZX1hrvWzOlrhg07xmdMco698edni3ph2nnFdhRxl91pxz0fFWKjmc_XN_0VzmfKCUspFT2Yvz5tftd0xzRBuXOAdL4rGEOTxACXEh0RMgOU6QWsg55IKO5PsjJptCCRYmsr_h5EOCtdTXdrUTviEx3cFSSV9h-REW3GQCiyPz_VRCi96jLcRVXJim7aO8Vvb8qnnuYcp4-ee8aL59-ni7_9Je33y-2r-_bq1ktLSyE4Ngg1Gi80hNN_YgUSAX6HrjmVOOWyZQMRg71YPnXrjRc9OjUn0nQVw0VxvXRTjoYwozpFVHCPpRqAE0pJpvQj3w3hsjzWiGQVrVgTUGR1DMek6tdJXFN5ZNMeeE_i-PUX1aRx_0aR19Wuek1XWqSf1nsqE8NlEShOlp67vNirWgnwGTzjbgYtGFVGutCcJT9t_g57Do
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119285
crossref_primary_10_1016_j_enconman_2024_118357
crossref_primary_10_1016_j_energy_2024_131288
crossref_primary_10_1016_j_solener_2025_113443
crossref_primary_10_1016_j_renene_2024_120256
crossref_primary_10_1002_ese3_1675
crossref_primary_10_1016_j_egyr_2023_03_102
crossref_primary_10_1016_j_applthermaleng_2024_123684
crossref_primary_10_1002_gch2_202300191
crossref_primary_10_1016_j_applthermaleng_2024_124667
crossref_primary_10_1016_j_ecmx_2025_101200
crossref_primary_10_1021_acssuschemeng_5c01261
crossref_primary_10_1002_ep_70081
crossref_primary_10_1016_j_egyr_2023_09_131
crossref_primary_10_1016_j_tsep_2023_101679
crossref_primary_10_1007_s42108_025_00367_7
crossref_primary_10_1016_j_energy_2024_134285
crossref_primary_10_3390_pr11041181
crossref_primary_10_1080_15567036_2025_2561894
crossref_primary_10_1080_15567036_2025_2525377
Cites_doi 10.1115/1.4024964
10.1063/1.5067205
10.1016/j.rser.2013.11.010
10.1080/14786451.2016.1166109
10.1016/j.applthermaleng.2018.07.125
10.1061/(ASCE)EY.1943-7897.0000545
10.1016/j.energy.2014.03.115
10.1016/j.enconman.2016.12.085
10.1016/j.energy.2012.03.034
10.1016/j.energy.2010.01.013
10.1016/j.ijhydene.2015.12.211
10.1016/j.egyr.2022.03.040
10.1016/j.enconman.2017.06.043
10.3390/en14102849
10.1115/1.4006986
10.1016/j.rser.2021.111420
10.3390/pr6090153
10.1016/j.solener.2003.08.036
10.1016/j.desal.2007.02.071
10.1016/j.apenergy.2017.12.031
10.1016/j.energy.2018.05.137
10.1002/ep.12564
10.1016/j.egypro.2014.03.124
10.1016/j.energy.2016.11.041
10.1504/IJEX.2018.092501
10.1016/j.jcou.2022.101927
10.1007/s10973-021-10833-z
10.1016/j.egyr.2021.08.168
10.1016/j.egyr.2021.11.258
10.1016/S0038-092X(97)00107-2
10.1016/j.egyr.2021.10.091
10.1016/j.egyr.2022.01.222
10.1016/j.energy.2011.03.073
10.1016/j.egypro.2014.03.193
10.1016/j.apenergy.2013.06.020
10.1109/8.558650
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2022.10.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 13503
ExternalDocumentID oai_doaj_org_article_726fbb4b9b774c85acbbe9a81cf20c4d
10_1016_j_egyr_2022_10_010
S2352484722019552
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c410t-4537317b835fe0b596a4e3e23ed6bf1d8d2c13e81a9586af2f3d9f2b6e88654a3
IEDL.DBID DOA
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877515300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Fri Oct 03 12:42:22 EDT 2025
Sat Nov 29 07:39:17 EST 2025
Tue Nov 18 20:44:32 EST 2025
Sat Sep 06 17:18:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi effect desalination (MED)
Supercritical carbon dioxide
Solar Brayton cycle
Genetic algorithm
Organic Rankine cycle (ORC)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-4537317b835fe0b596a4e3e23ed6bf1d8d2c13e81a9586af2f3d9f2b6e88654a3
ORCID 0000-0003-2652-6011
OpenAccessLink https://doaj.org/article/726fbb4b9b774c85acbbe9a81cf20c4d
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_726fbb4b9b774c85acbbe9a81cf20c4d
crossref_primary_10_1016_j_egyr_2022_10_010
crossref_citationtrail_10_1016_j_egyr_2022_10_010
elsevier_sciencedirect_doi_10_1016_j_egyr_2022_10_010
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Javanshir, Sarunac, Razzaghpanah (b16) 2018; 157
AlZahrani, Dincer (b1) 2018; 26
Mohammad, Pourfayaz, Kasaeian (b23) 2022; 8
Kouta, Al-Sulaiman, Atif (b18) 2017; 119
Gholamalizadeh, Kim (b13) 2014; 70
Tjahjono (b36) 2021; 14
Le Roux, Bello-Ochende, Meyer (b20) 2012; 46
Karagiannis, Soldatos (b17) 2008; 223
Zahedi, Ahmadi, Dashti (b44) 2021; 150
Balta, Kizilkan, Yılmaz (b5) 2016; 41
Dincer, Rosen, Ahmadi (b9) 2017
Siddiqui, Taimoor, Almitani (b32) 2018; 6
Weile, Michielssen (b41) 1997; 45
Veronika, Bertrand, Leyer (b38) 2022; 8
Meas, Bello-Ochende (b21) 2017; 148
de la Calle (b7) 2018
Spelling (b35) 2012; 41
Dunham, Iverson (b10) 2014; 30
Esmaeilion, Ahmadi, Dashti (b11) 2021; 28
Iverson (b15) 2013; 111
Segal, Epstein (b28) 2003; 75
Atif, Al-Sulaiman (b3) 2018; 144
Santarelli (b27) 2016
del Pozo, C.A., et al., 0000. Thermal and Exergy Efficiency Analysis of a Solar-driven Closed Brayton Power Plant with Helium & s-CO2 as Working Fluids.
Shirmohammadi (b29) 2021; 145
Vasquez Padilla (b37) 2018; 37
Sadeghzadeh, Ghorbani, Ahmadi, Sharma (b26) 2021; 7
Spelling, Laumert, Fransson (b33) 2012; 134
Wang, He (b39) 2017; 135
Shirmohammadi (b30) 2021; 7
Shirmohammadi (b31) 2022; 59
Spelling, Laumert, Fransson (b34) 2014; 136
Riazi, Ahmed (b25) 2013
Ansari, Sayyaadi, Amidpour (b2) 2010; 35
Kribus (b19) 1998; 62
Grange (b14) 2014; 49
Quero (b24) 2014; 49
Yilmaz (b42) 2018; 143
Boyle, G., 2004. Renewable Energy. Renewable Energy. Oxford University Press, p. 456, ISBN-10: 0199261784. ISBN-13: 9780199261789, 2004: p. 456
Gao (b12) 2017; 36
Bahari, Ahmadi, Dashti (b4) 2021; 4
Wang (b40) 2018; 212
Meriche, Baghidja, Boukelia (b22) 2014; 4
Yue, Li, Qiao, Ren, Si (b43) 2022; 8
Atif (10.1016/j.egyr.2022.10.010_b3) 2018; 144
Weile (10.1016/j.egyr.2022.10.010_b41) 1997; 45
Esmaeilion (10.1016/j.egyr.2022.10.010_b11) 2021; 28
Yue (10.1016/j.egyr.2022.10.010_b43) 2022; 8
Vasquez Padilla (10.1016/j.egyr.2022.10.010_b37) 2018; 37
Tjahjono (10.1016/j.egyr.2022.10.010_b36) 2021; 14
Meas (10.1016/j.egyr.2022.10.010_b21) 2017; 148
Shirmohammadi (10.1016/j.egyr.2022.10.010_b31) 2022; 59
Le Roux (10.1016/j.egyr.2022.10.010_b20) 2012; 46
Dincer (10.1016/j.egyr.2022.10.010_b9) 2017
Mohammad (10.1016/j.egyr.2022.10.010_b23) 2022; 8
Veronika (10.1016/j.egyr.2022.10.010_b38) 2022; 8
Wang (10.1016/j.egyr.2022.10.010_b39) 2017; 135
Wang (10.1016/j.egyr.2022.10.010_b40) 2018; 212
Sadeghzadeh (10.1016/j.egyr.2022.10.010_b26) 2021; 7
Segal (10.1016/j.egyr.2022.10.010_b28) 2003; 75
Javanshir (10.1016/j.egyr.2022.10.010_b16) 2018; 157
Siddiqui (10.1016/j.egyr.2022.10.010_b32) 2018; 6
Meriche (10.1016/j.egyr.2022.10.010_b22) 2014; 4
Shirmohammadi (10.1016/j.egyr.2022.10.010_b30) 2021; 7
Spelling (10.1016/j.egyr.2022.10.010_b35) 2012; 41
Kribus (10.1016/j.egyr.2022.10.010_b19) 1998; 62
Yilmaz (10.1016/j.egyr.2022.10.010_b42) 2018; 143
Ansari (10.1016/j.egyr.2022.10.010_b2) 2010; 35
10.1016/j.egyr.2022.10.010_b8
Spelling (10.1016/j.egyr.2022.10.010_b33) 2012; 134
AlZahrani (10.1016/j.egyr.2022.10.010_b1) 2018; 26
Gholamalizadeh (10.1016/j.egyr.2022.10.010_b13) 2014; 70
Riazi (10.1016/j.egyr.2022.10.010_b25) 2013
Spelling (10.1016/j.egyr.2022.10.010_b34) 2014; 136
de la Calle (10.1016/j.egyr.2022.10.010_b7) 2018
Grange (10.1016/j.egyr.2022.10.010_b14) 2014; 49
Dunham (10.1016/j.egyr.2022.10.010_b10) 2014; 30
Gao (10.1016/j.egyr.2022.10.010_b12) 2017; 36
Shirmohammadi (10.1016/j.egyr.2022.10.010_b29) 2021; 145
10.1016/j.egyr.2022.10.010_b6
Bahari (10.1016/j.egyr.2022.10.010_b4) 2021; 4
Zahedi (10.1016/j.egyr.2022.10.010_b44) 2021; 150
Kouta (10.1016/j.egyr.2022.10.010_b18) 2017; 119
Balta (10.1016/j.egyr.2022.10.010_b5) 2016; 41
Santarelli (10.1016/j.egyr.2022.10.010_b27) 2016
Quero (10.1016/j.egyr.2022.10.010_b24) 2014; 49
Iverson (10.1016/j.egyr.2022.10.010_b15) 2013; 111
Karagiannis (10.1016/j.egyr.2022.10.010_b17) 2008; 223
References_xml – volume: 134
  year: 2012
  ident: b33
  article-title: Optimal gas-turbine design for hybrid solar power plant operation
  publication-title: J. Eng. Gas Turbines Power
– volume: 41
  start-page: 8032
  year: 2016
  end-page: 8041
  ident: b5
  article-title: Energy and exergy analyses of integrated hydrogen production system using high temperature steam electrolysis
  publication-title: Int. J. Hydrogen Energy
– volume: 59
  year: 2022
  ident: b31
  article-title: Exergoenvironmental analysis and thermoeconomic optimization of an industrial post-combustion CO2 capture and utilization installation
  publication-title: J. CO2 Utilization
– volume: 148
  start-page: 770
  year: 2017
  end-page: 784
  ident: b21
  article-title: Thermodynamic design optimisation of an open air recuperative twin-shaft solar thermal brayton cycle with combined or exclusive reheating and intercooling
  publication-title: Energy Convers. Manage.
– volume: 7
  start-page: 5344
  year: 2021
  end-page: 5358
  ident: b26
  article-title: A solar-driven plant to produce power, cooling, freshwater, and hot water for an industrial complex
  publication-title: Energy Rep.
– volume: 143
  start-page: 429
  year: 2018
  end-page: 437
  ident: b42
  article-title: Thermodynamic performance evaluation of a novel solar energy based multigeneration system
  publication-title: Appl. Therm. Eng.
– volume: 145
  start-page: 1585
  year: 2021
  end-page: 1597
  ident: b29
  article-title: Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant
  publication-title: J. Therm. Anal. Calorim.
– volume: 157
  start-page: 65
  year: 2018
  end-page: 75
  ident: b16
  article-title: Thermodynamic analysis and optimization of single and combined power cycles for concentrated solar power applications
  publication-title: Energy
– volume: 136
  year: 2014
  ident: b34
  article-title: A comparative thermoeconomic study of hybrid solar gas-turbine power plants
  publication-title: J. Eng. Gas Turbines Power
– volume: 30
  start-page: 758
  year: 2014
  end-page: 770
  ident: b10
  article-title: High-efficiency thermodynamic power cycles for concentrated solar power systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 35
  start-page: 1981
  year: 2010
  end-page: 1996
  ident: b2
  article-title: Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-tvc)
  publication-title: Energy
– volume: 144
  year: 2018
  ident: b3
  article-title: Energy and exergy analyses of recompression brayton cycles integrated with a solar power tower through a two-tank thermal storage system
  publication-title: J. Energy Eng.
– volume: 150
  year: 2021
  ident: b44
  article-title: Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system
  publication-title: Renew. Sustain. Energy Rev.
– volume: 8
  start-page: 4196
  year: 2022
  end-page: 4208
  ident: b38
  article-title: Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery
  publication-title: Energy Rep.
– volume: 135
  start-page: 336
  year: 2017
  end-page: 350
  ident: b39
  article-title: Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 brayton cycle based on integrated modeling
  publication-title: Energy Convers. Manage.
– year: 2016
  ident: b27
  publication-title: Thermodynamic Analysis of Beam Down Solar Gas Turbine Power Plant Equipped with Concentrating Receiver System
– volume: 6
  start-page: 153
  year: 2018
  ident: b32
  article-title: Energy and exergy analysis of the S-CO2 brayton cycle coupled with bottoming cycles
  publication-title: Processes
– volume: 4
  start-page: 224
  year: 2014
  end-page: 232
  ident: b22
  article-title: Design and performance evaluation of solar gas turbine power plant in south western algeria
  publication-title: Int. J. Renew. Energy Res. (IJRER)
– volume: 70
  start-page: 204
  year: 2014
  end-page: 211
  ident: b13
  article-title: Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms
  publication-title: Energy
– volume: 4
  year: 2021
  ident: b4
  article-title: Exergo-economic analysis and optimization of a combined solar collector with steam and Organic Rankine Cycle using particle swarm optimization (PSO) algorithm
  publication-title: Clean. Eng. Technol.
– volume: 8
  start-page: 322
  year: 2022
  end-page: 333
  ident: b43
  article-title: A concept of a supercritical CO2 brayton and organic rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization
  publication-title: Energy Rep.
– reference: del Pozo, C.A., et al., 0000. Thermal and Exergy Efficiency Analysis of a Solar-driven Closed Brayton Power Plant with Helium & s-CO2 as Working Fluids.
– volume: 37
  start-page: 1
  year: 2018
  end-page: 20
  ident: b37
  article-title: Multi-objective thermodynamic optimisation of supercritical CO2 brayton cycles integrated with solar central receivers
  publication-title: Int. J. Sustain. Energy
– volume: 75
  start-page: 503
  year: 2003
  end-page: 510
  ident: b28
  article-title: Optimized working temperatures of a solar central receiver
  publication-title: Sol. Energy
– volume: 7
  start-page: 7390
  year: 2021
  end-page: 7404
  ident: b30
  article-title: Techno-economic assessment and optimization of a solar-assisted industrial post-combustion CO2 capture and utilization plant
  publication-title: Energy Rep.
– volume: 14
  start-page: 2849
  year: 2021
  ident: b36
  article-title: Thermo-economic analysis on integrated CO2, organic Rankine cycles, and NaClO plant using liquefied natural gas
  publication-title: Energies
– volume: 111
  start-page: 957
  year: 2013
  end-page: 970
  ident: b15
  article-title: Supercritical CO2 brayton cycles for solar-thermal energy
  publication-title: Appl. Energy
– reference: Boyle, G., 2004. Renewable Energy. Renewable Energy. Oxford University Press, p. 456, ISBN-10: 0199261784. ISBN-13: 9780199261789, 2004: p. 456,
– volume: 223
  start-page: 448
  year: 2008
  end-page: 456
  ident: b17
  article-title: Water desalination cost literature: review and assessment
  publication-title: Desalination
– volume: 212
  start-page: 109
  year: 2018
  end-page: 121
  ident: b40
  article-title: A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants
  publication-title: Appl. Energy
– volume: 41
  start-page: 113
  year: 2012
  end-page: 120
  ident: b35
  article-title: Thermoeconomic optimization of a combined-cycle solar tower power plant
  publication-title: Energy
– volume: 36
  start-page: 1234
  year: 2017
  end-page: 1243
  ident: b12
  article-title: Parameter and layout optimization of a high temperature solar combined cycle using low temperature thermal storage
  publication-title: Environ. Prog. Sustain. Energy
– volume: 49
  start-page: 1147
  year: 2014
  end-page: 1156
  ident: b14
  article-title: Simulation of a hybrid solar gas-turbine cycle with storage integration
  publication-title: Energy Procedia
– year: 2017
  ident: b9
  article-title: Optimization of Energy Systems
– year: 2013
  ident: b25
  article-title: Efficiency enhancement of a small scale closed solar thermal Brayton cycle by a combined simple organic Rankine cycle
  publication-title: ASME 2012 International Mechanical Engineering Congress and Exposition
– volume: 8
  start-page: 2976
  year: 2022
  end-page: 2988
  ident: b23
  article-title: Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications
  publication-title: Energy Rep.
– volume: 49
  start-page: 1820
  year: 2014
  end-page: 1830
  ident: b24
  article-title: Solugas–Operation experience of the first solar hybrid gas turbine system at MW scale
  publication-title: Energy Procedia
– volume: 62
  start-page: 121
  year: 1998
  end-page: 129
  ident: b19
  article-title: A solar-driven combined cycle power plant
  publication-title: Sol. Energy
– volume: 26
  start-page: 21
  year: 2018
  end-page: 40
  ident: b1
  article-title: Comparative energy and exergy studies of combined CO2 Brayton-organic Rankine cycle integrated with solar tower plant
  publication-title: Int. J. Exergy
– year: 2018
  ident: b7
  article-title: System-level simulation of a novel solar power tower plant based on a sodium receiver, PCM storage and sCO2 power block
  publication-title: AIP Conference Proceedings
– volume: 28
  start-page: 2733
  year: 2021
  end-page: 2750
  ident: b11
  article-title: Exergy-economic-environment optimization of the waste-to-energy power plant using multi-objective particle-swarm optimization (MOPSO)
  publication-title: Sci. Iranica
– volume: 45
  start-page: 343
  year: 1997
  end-page: 353
  ident: b41
  article-title: Genetic algorithm optimization applied to electromagnetics: A review
  publication-title: IEEE Trans. Antennas and Propagation
– volume: 119
  start-page: 996
  year: 2017
  end-page: 1009
  ident: b18
  article-title: Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system
  publication-title: Energy
– volume: 46
  start-page: 42
  year: 2012
  end-page: 50
  ident: b20
  article-title: Optimum performance of the small-scale open and direct solar thermal brayton cycle at various environmental conditions and constraints
  publication-title: Energy
– volume: 136
  issue: 1
  year: 2014
  ident: 10.1016/j.egyr.2022.10.010_b34
  article-title: A comparative thermoeconomic study of hybrid solar gas-turbine power plants
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4024964
– year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b7
  article-title: System-level simulation of a novel solar power tower plant based on a sodium receiver, PCM storage and sCO2 power block
  doi: 10.1063/1.5067205
– volume: 30
  start-page: 758
  year: 2014
  ident: 10.1016/j.egyr.2022.10.010_b10
  article-title: High-efficiency thermodynamic power cycles for concentrated solar power systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.11.010
– year: 2013
  ident: 10.1016/j.egyr.2022.10.010_b25
  article-title: Efficiency enhancement of a small scale closed solar thermal Brayton cycle by a combined simple organic Rankine cycle
– volume: 28
  start-page: 2733
  issue: 5
  year: 2021
  ident: 10.1016/j.egyr.2022.10.010_b11
  article-title: Exergy-economic-environment optimization of the waste-to-energy power plant using multi-objective particle-swarm optimization (MOPSO)
  publication-title: Sci. Iranica
– ident: 10.1016/j.egyr.2022.10.010_b6
– year: 2016
  ident: 10.1016/j.egyr.2022.10.010_b27
– volume: 37
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b37
  article-title: Multi-objective thermodynamic optimisation of supercritical CO2 brayton cycles integrated with solar central receivers
  publication-title: Int. J. Sustain. Energy
  doi: 10.1080/14786451.2016.1166109
– ident: 10.1016/j.egyr.2022.10.010_b8
– volume: 143
  start-page: 429
  year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b42
  article-title: Thermodynamic performance evaluation of a novel solar energy based multigeneration system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.125
– volume: 144
  issue: 4
  year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b3
  article-title: Energy and exergy analyses of recompression brayton cycles integrated with a solar power tower through a two-tank thermal storage system
  publication-title: J. Energy Eng.
  doi: 10.1061/(ASCE)EY.1943-7897.0000545
– volume: 70
  start-page: 204
  year: 2014
  ident: 10.1016/j.egyr.2022.10.010_b13
  article-title: Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.115
– volume: 135
  start-page: 336
  year: 2017
  ident: 10.1016/j.egyr.2022.10.010_b39
  article-title: Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 brayton cycle based on integrated modeling
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.12.085
– volume: 46
  start-page: 42
  issue: 1
  year: 2012
  ident: 10.1016/j.egyr.2022.10.010_b20
  article-title: Optimum performance of the small-scale open and direct solar thermal brayton cycle at various environmental conditions and constraints
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.034
– year: 2017
  ident: 10.1016/j.egyr.2022.10.010_b9
– volume: 35
  start-page: 1981
  issue: 5
  year: 2010
  ident: 10.1016/j.egyr.2022.10.010_b2
  article-title: Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-tvc)
  publication-title: Energy
  doi: 10.1016/j.energy.2010.01.013
– volume: 41
  start-page: 8032
  issue: 19
  year: 2016
  ident: 10.1016/j.egyr.2022.10.010_b5
  article-title: Energy and exergy analyses of integrated hydrogen production system using high temperature steam electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.12.211
– volume: 8
  start-page: 4196
  year: 2022
  ident: 10.1016/j.egyr.2022.10.010_b38
  article-title: Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.03.040
– volume: 148
  start-page: 770
  year: 2017
  ident: 10.1016/j.egyr.2022.10.010_b21
  article-title: Thermodynamic design optimisation of an open air recuperative twin-shaft solar thermal brayton cycle with combined or exclusive reheating and intercooling
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.06.043
– volume: 14
  start-page: 2849
  issue: 10
  year: 2021
  ident: 10.1016/j.egyr.2022.10.010_b36
  article-title: Thermo-economic analysis on integrated CO2, organic Rankine cycles, and NaClO plant using liquefied natural gas
  publication-title: Energies
  doi: 10.3390/en14102849
– volume: 134
  issue: 9
  year: 2012
  ident: 10.1016/j.egyr.2022.10.010_b33
  article-title: Optimal gas-turbine design for hybrid solar power plant operation
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4006986
– volume: 150
  year: 2021
  ident: 10.1016/j.egyr.2022.10.010_b44
  article-title: Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111420
– volume: 6
  start-page: 153
  issue: 9
  year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b32
  article-title: Energy and exergy analysis of the S-CO2 brayton cycle coupled with bottoming cycles
  publication-title: Processes
  doi: 10.3390/pr6090153
– volume: 75
  start-page: 503
  issue: 6
  year: 2003
  ident: 10.1016/j.egyr.2022.10.010_b28
  article-title: Optimized working temperatures of a solar central receiver
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.08.036
– volume: 223
  start-page: 448
  issue: 1–3
  year: 2008
  ident: 10.1016/j.egyr.2022.10.010_b17
  article-title: Water desalination cost literature: review and assessment
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.02.071
– volume: 212
  start-page: 109
  year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b40
  article-title: A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.031
– volume: 157
  start-page: 65
  year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b16
  article-title: Thermodynamic analysis and optimization of single and combined power cycles for concentrated solar power applications
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.137
– volume: 36
  start-page: 1234
  issue: 4
  year: 2017
  ident: 10.1016/j.egyr.2022.10.010_b12
  article-title: Parameter and layout optimization of a high temperature solar combined cycle using low temperature thermal storage
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.12564
– volume: 49
  start-page: 1147
  year: 2014
  ident: 10.1016/j.egyr.2022.10.010_b14
  article-title: Simulation of a hybrid solar gas-turbine cycle with storage integration
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.03.124
– volume: 119
  start-page: 996
  year: 2017
  ident: 10.1016/j.egyr.2022.10.010_b18
  article-title: Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.041
– volume: 26
  start-page: 21
  issue: 1–2
  year: 2018
  ident: 10.1016/j.egyr.2022.10.010_b1
  article-title: Comparative energy and exergy studies of combined CO2 Brayton-organic Rankine cycle integrated with solar tower plant
  publication-title: Int. J. Exergy
  doi: 10.1504/IJEX.2018.092501
– volume: 59
  year: 2022
  ident: 10.1016/j.egyr.2022.10.010_b31
  article-title: Exergoenvironmental analysis and thermoeconomic optimization of an industrial post-combustion CO2 capture and utilization installation
  publication-title: J. CO2 Utilization
  doi: 10.1016/j.jcou.2022.101927
– volume: 4
  start-page: 224
  issue: 1
  year: 2014
  ident: 10.1016/j.egyr.2022.10.010_b22
  article-title: Design and performance evaluation of solar gas turbine power plant in south western algeria
  publication-title: Int. J. Renew. Energy Res. (IJRER)
– volume: 145
  start-page: 1585
  issue: 3
  year: 2021
  ident: 10.1016/j.egyr.2022.10.010_b29
  article-title: Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-021-10833-z
– volume: 7
  start-page: 5344
  year: 2021
  ident: 10.1016/j.egyr.2022.10.010_b26
  article-title: A solar-driven plant to produce power, cooling, freshwater, and hot water for an industrial complex
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.08.168
– volume: 8
  start-page: 322
  year: 2022
  ident: 10.1016/j.egyr.2022.10.010_b43
  article-title: A concept of a supercritical CO2 brayton and organic rankine combined cycle for solar energy utilization with typical geothermal as auxiliary heat source: Thermodynamic analysis and optimization
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.11.258
– volume: 62
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.egyr.2022.10.010_b19
  article-title: A solar-driven combined cycle power plant
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(97)00107-2
– volume: 7
  start-page: 7390
  year: 2021
  ident: 10.1016/j.egyr.2022.10.010_b30
  article-title: Techno-economic assessment and optimization of a solar-assisted industrial post-combustion CO2 capture and utilization plant
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.10.091
– volume: 8
  start-page: 2976
  year: 2022
  ident: 10.1016/j.egyr.2022.10.010_b23
  article-title: Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.01.222
– volume: 41
  start-page: 113
  issue: 1
  year: 2012
  ident: 10.1016/j.egyr.2022.10.010_b35
  article-title: Thermoeconomic optimization of a combined-cycle solar tower power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.073
– volume: 4
  year: 2021
  ident: 10.1016/j.egyr.2022.10.010_b4
  article-title: Exergo-economic analysis and optimization of a combined solar collector with steam and Organic Rankine Cycle using particle swarm optimization (PSO) algorithm
  publication-title: Clean. Eng. Technol.
– volume: 49
  start-page: 1820
  issue: Supplement C
  year: 2014
  ident: 10.1016/j.egyr.2022.10.010_b24
  article-title: Solugas–Operation experience of the first solar hybrid gas turbine system at MW scale
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.03.193
– volume: 111
  start-page: 957
  year: 2013
  ident: 10.1016/j.egyr.2022.10.010_b15
  article-title: Supercritical CO2 brayton cycles for solar-thermal energy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.06.020
– volume: 45
  start-page: 343
  issue: 3
  year: 1997
  ident: 10.1016/j.egyr.2022.10.010_b41
  article-title: Genetic algorithm optimization applied to electromagnetics: A review
  publication-title: IEEE Trans. Antennas and Propagation
  doi: 10.1109/8.558650
SSID ssj0001920463
Score 2.3489177
Snippet In this paper, the simulation and optimization of a combined supercritical carbon dioxide Brayton cycle, an organic Rankine cycle and multi-effect distillation...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 13494
SubjectTerms Genetic algorithm
Multi effect desalination (MED)
Organic Rankine cycle (ORC)
Solar Brayton cycle
Supercritical carbon dioxide
Title Thermoeconomic optimization of a solar-assisted supercritical CO2 Brayton cycle, organic Rankine cycle and multi-effect distillation system
URI https://dx.doi.org/10.1016/j.egyr.2022.10.010
https://doaj.org/article/726fbb4b9b774c85acbbe9a81cf20c4d
Volume 8
WOSCitedRecordID wos000877515300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EMvVau26lJa-dBbSZv4kdhHQKBeShGiErfIjzECwS7KLkh74Q_wpzsTe1FO9NJLDpYfkT9n_I0yMx9jX5GhiiZ0sqqDB3RQwKIdjL6Chn4zyQ5M7Uaxie742Jyf25OJ1BfFhOXywHnjfnSiTd4rbz0SlWC0C96DdaYJSdRBRbK-dWcnztRV5i1UCmtUltOiUmiDS8ZMDu6CizUVAxXiO4V2Ufrs5FYai_dPLqfJhXP0hr0uTJHv5Td8y17A_B17RFiHmwWUdGK-wC_-pqRS8kXiji_JV62QEhN-kS_vbmEIRc-AH_wWfH9wayR8PKxx2l2eZZ0CP3UkogC5mbt55GOsYZUDPngkW3CdA-d4Lv_8nv05Ojw7-FkVPYUqqKZeVUrLDumCR9KVoPbatk6BBCEhtj410UQRGgmmcVab1iWRZLRJ-BaMabVy8gPbmi_m8JFx61Sqk5Yqdq1y6LQFi4NVhzBrdDn9jDWb_exDKTZOmhfX_Saq7KonDHrCgNoQgxn79jTmNpfaeLb3PsH01JPKZI8NuG19OTz9vw7PjOkNyH1hHJlJ4FSXzyy-_T8W_8Re0ZQ5sXGHba2GO_jMXob71eVy-DKeZ3z-ejj8C0Uk_iw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoeconomic+optimization+of+a+solar-assisted+supercritical+CO2+Brayton+cycle%2C+organic+Rankine+cycle+and+multi-effect+distillation+system&rft.jtitle=Energy+reports&rft.au=Khademi%2C+Mohammad&rft.au=Ahmadi%2C+Abolfazl&rft.au=Dashti%2C+Reza&rft.au=Shirmohammadi%2C+Reza&rft.date=2022-11-01&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=13494&rft.epage=13503&rft_id=info:doi/10.1016%2Fj.egyr.2022.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyr_2022_10_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon