Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete

Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA based geopolymer concrete (FGC). To accelerate the usage of FA in building industry, an innovative machine learning techniques namely gene expr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ain Shams Engineering Journal Ročník 12; číslo 4; s. 3603 - 3617
Hlavní autori: Chu, Hong-Hu, Khan, Mohsin Ali, Javed, Muhammad, Zafar, Adeel, Ijaz Khan, M., Alabduljabbar, Hisham, Qayyum, Sumaira
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2021
Elsevier
Predmet:
ISSN:2090-4479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA based geopolymer concrete (FGC). To accelerate the usage of FA in building industry, an innovative machine learning techniques namely gene expression programming (GEP) and multi expression programming (MEP) are employed for forecasting the compressive strength of FGC. The comprehensive database is constructed comprising of 311 compressive strength results. The obtained equations relate the compressive strength of FGC with eight most effective parameters i.e., curing regime (T), time for curing (t) in hours, age of samples (A) in days, percentage of total aggregate by volume (% Ag), molarity of sodium hydroxide (NaOH) solution (M), silica (SiO2) solids percentage in sodium silicate (Na2SiO3) solution (%S), superplasticizer (%P) and extra water (%EW) as percent FA. The accurateness and predictive capacity of both GEP and MEP model is assessed via statistical checks, external validation criteria suggested by different researcher and then compared with linear regression (LR) and non-linear regression (NLR) models. In comparison with MEP equation, the GEP equation has lesser statistical error and higher correlation coefficient. Also, the GEP equation is short and it would be easy to use in the field. So, the GEP model is further utilized for sensitivity and parametric study. This research will increase the re-usage of hazardous FA in the development of green concrete that would leads to environmental safety and monetarist reliefs.
AbstractList Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA based geopolymer concrete (FGC). To accelerate the usage of FA in building industry, an innovative machine learning techniques namely gene expression programming (GEP) and multi expression programming (MEP) are employed for forecasting the compressive strength of FGC. The comprehensive database is constructed comprising of 311 compressive strength results. The obtained equations relate the compressive strength of FGC with eight most effective parameters i.e., curing regime (T), time for curing (t) in hours, age of samples (A) in days, percentage of total aggregate by volume (% Ag), molarity of sodium hydroxide (NaOH) solution (M), silica (SiO2) solids percentage in sodium silicate (Na2SiO3) solution (%S), superplasticizer (%P) and extra water (%EW) as percent FA. The accurateness and predictive capacity of both GEP and MEP model is assessed via statistical checks, external validation criteria suggested by different researcher and then compared with linear regression (LR) and non-linear regression (NLR) models. In comparison with MEP equation, the GEP equation has lesser statistical error and higher correlation coefficient. Also, the GEP equation is short and it would be easy to use in the field. So, the GEP model is further utilized for sensitivity and parametric study. This research will increase the re-usage of hazardous FA in the development of green concrete that would leads to environmental safety and monetarist reliefs.
Author Khan, Mohsin Ali
Zafar, Adeel
Alabduljabbar, Hisham
Javed, Muhammad
Ijaz Khan, M.
Chu, Hong-Hu
Qayyum, Sumaira
Author_xml – sequence: 1
  givenname: Hong-Hu
  surname: Chu
  fullname: Chu, Hong-Hu
  organization: College of Civil Engineering, Hunan University, Changsha 410082, PR China
– sequence: 2
  givenname: Mohsin Ali
  surname: Khan
  fullname: Khan, Mohsin Ali
  organization: Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
– sequence: 3
  givenname: Muhammad
  surname: Javed
  fullname: Javed, Muhammad
  organization: Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
– sequence: 4
  givenname: Adeel
  surname: Zafar
  fullname: Zafar, Adeel
  organization: Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
– sequence: 5
  givenname: M.
  surname: Ijaz Khan
  fullname: Ijaz Khan, M.
  email: mikhan@math.qau.edu.pk
  organization: Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad 44000, Pakistan
– sequence: 6
  givenname: Hisham
  surname: Alabduljabbar
  fullname: Alabduljabbar, Hisham
  organization: Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
– sequence: 7
  givenname: Sumaira
  surname: Qayyum
  fullname: Qayyum, Sumaira
  organization: Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad 44000, Pakistan
BookMark eNp9kc1u1DAUhb0oEqX0BVh5CYsE_2XiQWxQVUqlIpCga-vGucl4lNgj21Mxb8Rj4hC6QWoXlu3r-x3b57wiZz54JOQNZzVnfPN-X0PCfS2Y4DWTNeP6jJwLtmWVUu32JblMyXWsrIVudHNOfv84pgzOQzchPSakYaDDdKog7T7Q-3U_oscKfx0iFjh4eohhjDDPzo_07c3193cUfE_n45Tdk21fl7YhxGWghZSXat4htWFeiQekKUf0Y96VG8MhTKcZYzn3NmLG1-TFAFPCy3_zBbn_fP3z6kt19-3m9urTXWUVZ7mSnWwAUKIWg7C236ihRdlp26ih2SitlNRbNfS6b0GD3WDLkTNdzGglKM3lBblddfsAe3OIboZ4MgGc-VsIcTQQs7MTmgYUa3QvZde3SqPuFC8eo2ikYNA1qmjpVcvGkFLEwViXIRdzcgQ3Gc7MEprZmyU0s4RmmDQltIKK_9DHpzwLfVwhLAY9OIwmWYfeYu-K6bn8wD2H_wGqgLe8
CitedBy_id crossref_primary_10_1038_s41598_024_54513_y
crossref_primary_10_1061_JCCEE5_CPENG_5956
crossref_primary_10_1038_s41598_024_69271_0
crossref_primary_10_1038_s41598_024_69316_4
crossref_primary_10_3390_w14060947
crossref_primary_10_3390_ma14247530
crossref_primary_10_1016_j_conbuildmat_2024_137809
crossref_primary_10_1016_j_jobe_2024_110417
crossref_primary_10_1515_rams_2024_0050
crossref_primary_10_3390_ma15093077
crossref_primary_10_3390_ma15134386
crossref_primary_10_1007_s12145_024_01482_5
crossref_primary_10_1007_s43452_025_01254_y
crossref_primary_10_1016_j_conbuildmat_2022_126508
crossref_primary_10_1016_j_conbuildmat_2024_137370
crossref_primary_10_3390_buildings12030314
crossref_primary_10_3390_ma15010039
crossref_primary_10_3390_app15031018
crossref_primary_10_1515_rams_2025_0113
crossref_primary_10_1016_j_jclepro_2021_129518
crossref_primary_10_1016_j_conbuildmat_2023_131014
crossref_primary_10_1016_j_istruc_2024_106837
crossref_primary_10_1515_rams_2024_0068
crossref_primary_10_1016_j_conbuildmat_2024_135519
crossref_primary_10_1016_j_cscm_2024_e03849
crossref_primary_10_3390_w14182858
crossref_primary_10_32604_cmes_2023_043384
crossref_primary_10_3390_ma15217412
crossref_primary_10_1016_j_conbuildmat_2023_134092
crossref_primary_10_32604_cmes_2024_052505
crossref_primary_10_1016_j_jobe_2023_107904
crossref_primary_10_1016_j_cplett_2022_139478
crossref_primary_10_1007_s41024_024_00461_z
crossref_primary_10_1007_s41939_023_00355_6
crossref_primary_10_1108_ACMM_12_2023_2935
crossref_primary_10_1016_j_conbuildmat_2023_133309
crossref_primary_10_1016_j_heliyon_2023_e22036
crossref_primary_10_1108_JM2_12_2024_0410
crossref_primary_10_1016_j_heliyon_2024_e36841
crossref_primary_10_1016_j_cscm_2025_e04405
crossref_primary_10_1016_j_cscm_2022_e01610
crossref_primary_10_1016_j_istruc_2021_11_011
crossref_primary_10_1108_WJE_12_2023_0504
crossref_primary_10_32604_jpm_2024_053859
crossref_primary_10_1007_s41062_025_02212_6
crossref_primary_10_1515_rams_2024_0043
crossref_primary_10_1016_j_istruc_2025_108802
crossref_primary_10_1515_rams_2024_0042
crossref_primary_10_1038_s41598_024_65905_5
crossref_primary_10_1515_rams_2023_0187
crossref_primary_10_1002_suco_70302
crossref_primary_10_1108_EC_05_2024_0452
crossref_primary_10_3390_sym13112009
crossref_primary_10_1016_j_ijhydene_2023_12_227
crossref_primary_10_3390_polym13162750
crossref_primary_10_1515_rams_2025_0091
crossref_primary_10_1016_j_cscm_2022_e01446
crossref_primary_10_1016_j_jcou_2022_102237
crossref_primary_10_1016_j_cscm_2024_e04112
crossref_primary_10_1038_s41598_024_64486_7
crossref_primary_10_1016_j_cscm_2023_e02172
crossref_primary_10_1016_j_jobe_2024_109184
crossref_primary_10_3390_polym13193389
crossref_primary_10_3390_su142114388
crossref_primary_10_3390_ma15113808
crossref_primary_10_3390_app15094733
crossref_primary_10_3390_ma14237241
crossref_primary_10_1016_j_conbuildmat_2023_134101
crossref_primary_10_1038_s41598_025_02648_x
crossref_primary_10_1016_j_mtcomm_2024_109222
crossref_primary_10_1016_j_jclepro_2022_131364
crossref_primary_10_1007_s11356_024_35388_y
crossref_primary_10_1371_journal_pone_0296494
crossref_primary_10_1038_s41598_025_01327_1
crossref_primary_10_1016_j_seppur_2021_119880
crossref_primary_10_3390_mining2040034
crossref_primary_10_1016_j_cscm_2024_e03135
crossref_primary_10_1007_s40996_025_02029_4
crossref_primary_10_1016_j_conbuildmat_2022_129534
crossref_primary_10_1016_j_mtcomm_2025_112370
crossref_primary_10_1080_19648189_2023_2171141
crossref_primary_10_1016_j_advengsoft_2024_103611
crossref_primary_10_1016_j_cscm_2025_e04755
crossref_primary_10_1007_s42107_023_00908_7
crossref_primary_10_3390_polym14091789
crossref_primary_10_1063_5_0230832
crossref_primary_10_1016_j_conbuildmat_2023_132539
crossref_primary_10_1016_j_jobe_2025_114085
crossref_primary_10_3390_sym14112324
crossref_primary_10_1016_j_conbuildmat_2023_133078
crossref_primary_10_3390_jcs5100271
crossref_primary_10_1007_s41062_022_00826_8
crossref_primary_10_1016_j_conbuildmat_2021_125634
crossref_primary_10_1371_journal_pone_0310422
crossref_primary_10_1016_j_cscm_2022_e01536
crossref_primary_10_1016_j_wasman_2024_07_027
crossref_primary_10_3390_min14040366
crossref_primary_10_1007_s13202_024_01800_z
crossref_primary_10_3390_coatings13010066
crossref_primary_10_3390_buildings14051347
crossref_primary_10_1002_suco_70063
crossref_primary_10_3390_fire8080289
crossref_primary_10_1016_j_heliyon_2024_e32856
crossref_primary_10_1002_suco_202200344
crossref_primary_10_1016_j_engappai_2025_110210
crossref_primary_10_1016_j_conbuildmat_2023_132012
crossref_primary_10_1155_2024_7854488
Cites_doi 10.1016/j.conbuildmat.2018.09.097
10.1016/j.conbuildmat.2016.03.181
10.1016/j.conbuildmat.2010.04.011
10.1016/j.conbuildmat.2015.06.014
10.1007/s10853-006-0224-3
10.1016/j.proeng.2013.01.030
10.1061/(ASCE)MT.1943-5533.0000494
10.1016/j.advengsoft.2015.05.007
10.1016/j.conbuildmat.2012.06.064
10.1016/j.jclepro.2015.10.109
10.1016/j.ijsbe.2016.05.009
10.1016/j.conbuildmat.2015.12.136
10.1016/j.jhazmat.2019.06.004
10.1016/j.conbuildmat.2007.04.021
10.1016/j.conbuildmat.2011.06.039
10.1016/j.conbuildmat.2016.09.059
10.1016/j.conbuildmat.2010.05.001
10.1016/j.conbuildmat.2018.02.118
10.1016/j.matdes.2011.10.036
10.1016/j.conbuildmat.2015.08.009
10.3390/ma14040794
10.25088/ComplexSystems.14.4.285
10.1016/j.conbuildmat.2017.03.153
10.1016/j.conbuildmat.2016.03.008
10.1593/tlo.12304
10.1016/j.eswa.2007.06.006
10.1016/j.jclepro.2018.11.102
10.3390/ma12203404
10.1016/j.conbuildmat.2016.04.080
10.1016/j.cemconres.2017.07.010
10.1007/s00521-016-2492-4
10.1016/j.conbuildmat.2017.03.123
10.1016/j.asoc.2019.105842
10.1061/(ASCE)MT.1943-5533.0000154
10.3390/cryst10090741
10.1007/s00521-012-0941-2
10.1155/2021/6618407
10.1016/j.jksues.2015.09.003
10.1617/s11527-015-0790-4
10.1016/j.jhazmat.2012.07.070
10.1016/j.conbuildmat.2012.09.026
10.1016/j.advengsoft.2017.03.011
10.1016/j.conbuildmat.2017.06.067
10.1016/j.matdes.2012.08.005
10.1016/j.conbuildmat.2009.02.012
10.12989/sem.2010.36.6.759
10.1007/s12205-014-1254-z
10.1016/j.conbuildmat.2013.01.016
10.1016/j.jclepro.2015.12.115
10.1016/j.jclepro.2018.12.059
10.1016/j.jclepro.2018.08.065
10.3850/978-981-07-5354-2_M-55-433
10.1016/j.conbuildmat.2017.04.077
10.1016/j.conbuildmat.2016.11.034
10.1617/s11527-013-0039-z
10.3390/ma14051106
10.1007/s10853-006-0523-8
10.1016/j.compstruct.2009.10.027
10.3846/13923730.2014.893910
10.1139/l11-077
10.1016/j.conbuildmat.2016.05.034
10.1016/j.serj.2017.03.005
10.1016/j.conbuildmat.2016.10.114
10.1016/j.conbuildmat.2014.07.096
10.1016/j.conbuildmat.2016.02.135
10.1016/j.jhazmat.2016.12.010
10.1016/j.conbuildmat.2016.07.043
10.1016/j.conbuildmat.2017.01.132
10.1016/j.jhazmat.2017.07.050
10.1007/3-540-32498-4_2
10.1016/j.compositesb.2014.05.001
10.1109/ICBEE.2010.5649609
10.1007/s00366-009-0140-7
10.1016/j.conbuildmat.2018.05.060
10.1016/j.conbuildmat.2018.11.265
10.1016/j.conbuildmat.2018.09.031
10.1016/j.conbuildmat.2017.01.120
10.1016/j.conbuildmat.2018.01.175
10.1002/fam.2240
10.1016/j.compstruc.2015.09.005
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.asej.2021.03.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 3617
ExternalDocumentID oai_doaj_org_article_5a4058d33bd748e8b41479e25320ab54
10_1016_j_asej_2021_03_018
S2090447921001830
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c410t-3b35aae3e82f2ccd64f7e3b8c54f5648443894fd8d7a8ac6e71e10885873a4813
IEDL.DBID DOA
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721361200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2090-4479
IngestDate Fri Oct 03 12:42:14 EDT 2025
Tue Nov 18 22:03:43 EST 2025
Wed Nov 05 20:54:57 EST 2025
Sat Apr 29 22:42:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Geopolymer concrete (GPC)
Gene expression programming (GEP)
Fly-ash
Waste material
Artificial intelligence (AI)
Multi expression programming (MEP)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-3b35aae3e82f2ccd64f7e3b8c54f5648443894fd8d7a8ac6e71e10885873a4813
OpenAccessLink https://doaj.org/article/5a4058d33bd748e8b41479e25320ab54
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_5a4058d33bd748e8b41479e25320ab54
crossref_citationtrail_10_1016_j_asej_2021_03_018
crossref_primary_10_1016_j_asej_2021_03_018
elsevier_sciencedirect_doi_10_1016_j_asej_2021_03_018
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Ain Shams Engineering Journal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Nuaklong, Sata, Chindaprasirt (b0190) 2016; 112
Koza, JR, Koza JR. Genetic programming: on the programming of computers by means of natural selection. vol. 1. MIT Press, 1992.
Sadowski (b0375) 2019; 212
Li (b0065) 2019; 210
Kusbiantoro (b0110) 2012; 36
Deb P, Nath P, Sarker P. Sulphate resistance of slag blended fly ash based geopolymer concrete. In: Concrete 2013: Proceedings of the 26th Biennial National Conference of the Concrete Institute of Australia. Concrete Institute of Australia, 2013.
Aval, Ketabdari, Gharebaghi (b0325) 2017
Getahun, Shitote, Gariy (b0400) 2018; 190
Jafari, Mahini (b0465) 2017; 139
Rafieizonooz (b0020) 2016; 116
Lokuge (b0160) 2018; 166
Sadrmomtazi, Sobhani, Mirgozar (b0315) 2013; 42
Mahdinia, Eskandari-Naddaf, Shadnia (b0450) 2019; 198
Li (b0390) 2012; 5
Nadesan, Dinakar (b0035) 2017; 7
Mousavi (b0550) 2010; 36
Okoye, Durgaprasad, Singh (b0215) 2015; 98
Azimi-Pour, Eskandari-Naddaf (b0455) 2018; 189
Ahmed, Nuruddin, Shafiq (b0080) 2011; 5
Gandomi, Roke (b0545) 2015; 88
Ozbay, Gesoglu, Güneyisi (b0470) 2008; 22
Ishak (b0270) 2019; 12
Hsu, Chi, Huang (b0290) 2018; 176
Tkaczewska (b0570) 2014; 70
Kumar, Sen, Seshu (b0070) 2020
Shehab, Eisa, Wahba (b0205) 2016; 126
Ali Khan (b0520) 2021; 14
.
Mehta, Siddique (b0165) 2017; 150
Sudin, Swamy (b0415) 2006; 41
Oltean, Dumitrescu (b0490) 2002
Shaikh (b0200) 2016; 5
Ahmad (b0565) 2021; 14
Das SK, et al., Incorporation of Ultrafine Rice Husk Ash (URHA) in Geopolymer Concrete. 2019.
Dantas, Leite, de Jesus Nagahama (b0350) 2013; 38
Gandomi (b0425) 2012; 24
Sonebi, Cevik (b0480) 2009; 23
Behnood, Golafshani (b0405) 2018; 202
Gandomi, Yun, Alavi (b0430) 2013; 46
Sujatha T, Kannapiran K, Nagan S. Strength assessment of heat cured geopolymer concrete slender column. 2012.
Baykasoğlu (b0320) 2008; 35
Patankar, Jamkar, Ghugal (b0255) 2013; 2
Patankar, Ghugal, Jamkar (b0260) 2015
Ibrahim, Razak (b0010) 2016; 115
Pasupathy (b0185) 2017; 100
Mashhadban, Kutanaei, Sayarinejad (b0345) 2016; 119
Ganesan, Abraham, Raj (b0220) 2015; 93
Kumar S, P. J, Ravindra PM, Rajendra S. Flexural behaviour of fly ash based reinforced geopolymer concrete beams. Int J Struct Civil Eng Res 2014;3(3).
Özcan (b0460) 2012; 26
Eskandari-Naddaf, Kazemi (b0355) 2017; 138
Oltean, Grosan (b0535) 2003; 14
Azim (b0420) 2020
Raijiwala D, Patil H. Geopolymer concrete a green concrete. In: 2010 2nd international conference on Chemical, Biological and Environmental Engineering. IEEE, 2010.
Mansouri (b0335) 2016; 49
Perera, Arteaga, De Diego (b0305) 2010; 92
Wardhono (b0155) 2017; 143
Nuruddin, Demie, Shafiq (b0275) 2011; 38
Sebaaly, Varma, Maina (b0360) 2018; 168
Alavi (b0500) 2010; 26
Assi (b0225) 2016; 112
Park (b0395) 2018; 341
Ghosh, Mukherjee, Saha (b0030) 2015; 5
Aleem, Arumairaj (b0055) 2012; 1
Tanyildizi, Çevik (b0475) 2010; 24
Wongsa (b0195) 2016; 111
Hamad (b0540) 2017; 29
Hardjito, Rangan (b0100) 2005
Shaikh, Vimonsatit (b0230) 2015; 39
Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence. vol. 21. Springer, 2006.
Olivia, Nikraz (b0130) 2012; 36
Mehta, Siddique (b0170) 2017; 146
Aprianti (b0005) 2017; 142
Jalal (b0340) 2013; 23
Perera (b0310) 2014; 66
Javed (b0445) 2020; 10
Gholampour, Gandomi, Ozbakkaloglu (b0295) 2017; 130
Xie, Ni, Su (b0380) 2017; 325
Vora, Dave (b0150) 2013; 51
Lavanya, Jegan (b0280) 2015; 10
Sarker, Haque, Ramgolam (b0135) 2013; 44
Arabshahi, Gharaei-Moghaddam, Tavakkolizadeh (b0495) 2020
Galvin B, Lloyd N. Fly ash based geopolymer concrete with recycled concrete aggregate. In: Proceedings of the CONCRETE 2011 Conference. The Concrete Institute of Australia, 2011.
Sumajouw M, Rangan BV. Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns. 2006.
Joseph, Mathew (b0075) 2015
Liu (b0410) 2020
Sharifi, Abrishami, Gandomi (b0505) 2020; 86
Lloyd N, Rangan V. Geopolymer concrete with fly ash. In: Proceedings of the Second International Conference on sustainable construction Materials and Technologies. UWM Center for By-Products Utilization, 2010.
Watts J. Concrete: the most destructive material on Earth. 2020; Available from
Lim, Karakus, Ozbakkaloglu (b0300) 2016; 162
Sarıdemir (b0485) 2010; 24
Akmal (b0015) 2017
Mansouri (b0330) 2018; 29
Shah, Javed, Abunama (b0525) 2020
Nordin (b0045) 2016; 7
Srinivasan, Karthik, Nagan (b0245) 2014; 3
Aliabdo, Abd Elmoaty, Salem (b0210) 2016; 123
Bayar T. Best practices for managing power plant coal ash. 2015 Mar, 18; Available from
Ramujee, PothaRaju (b0175) 2017; 4
Nath, Sarker (b0125) 2017; 130
Zhu, Wang, Ok (b0385) 2019; 378
Khan (b0530) 2021; 2021
Partha, Pradip, Prabir (b0095) 2013
Velay-Lizancos (b0365) 2017; 144
Shi (b0140) 2012; 237
Sathanandam (b0180) 2017; 27
Gandomi (b0560) 2011; 23
Satpute, Shirasath, Hake (b0235) 2016
González-Taboada (b0370) 2016; 106
Nuruddin (b0120) 2011; 164
Gandomi (b0510) 2015; 21
Azim (b0440) 2020
Babanajad, Gandomi, Alavi (b0555) 2017; 110
Deb, Nath, Sarker (b0085) 2013
Albitar (b0265) 2015; 19
Tiwari, Bajpai, Dewangan (b0040) 2016; 3
10.1016/j.asej.2021.03.018_b0090
Wardhono (10.1016/j.asej.2021.03.018_b0155) 2017; 143
Sebaaly (10.1016/j.asej.2021.03.018_b0360) 2018; 168
Ishak (10.1016/j.asej.2021.03.018_b0270) 2019; 12
Gandomi (10.1016/j.asej.2021.03.018_b0430) 2013; 46
Kusbiantoro (10.1016/j.asej.2021.03.018_b0110) 2012; 36
10.1016/j.asej.2021.03.018_b0250
Xie (10.1016/j.asej.2021.03.018_b0380) 2017; 325
Mashhadban (10.1016/j.asej.2021.03.018_b0345) 2016; 119
Khan (10.1016/j.asej.2021.03.018_b0530) 2021; 2021
Pasupathy (10.1016/j.asej.2021.03.018_b0185) 2017; 100
Oltean (10.1016/j.asej.2021.03.018_b0490) 2002
Ahmad (10.1016/j.asej.2021.03.018_b0565) 2021; 14
Alavi (10.1016/j.asej.2021.03.018_b0500) 2010; 26
Li (10.1016/j.asej.2021.03.018_b0065) 2019; 210
Lokuge (10.1016/j.asej.2021.03.018_b0160) 2018; 166
Joseph (10.1016/j.asej.2021.03.018_b0075) 2015
Sadrmomtazi (10.1016/j.asej.2021.03.018_b0315) 2013; 42
10.1016/j.asej.2021.03.018_b0145
10.1016/j.asej.2021.03.018_b0025
Gandomi (10.1016/j.asej.2021.03.018_b0560) 2011; 23
Assi (10.1016/j.asej.2021.03.018_b0225) 2016; 112
Getahun (10.1016/j.asej.2021.03.018_b0400) 2018; 190
Hsu (10.1016/j.asej.2021.03.018_b0290) 2018; 176
Mehta (10.1016/j.asej.2021.03.018_b0170) 2017; 146
Gandomi (10.1016/j.asej.2021.03.018_b0425) 2012; 24
Mansouri (10.1016/j.asej.2021.03.018_b0335) 2016; 49
Gholampour (10.1016/j.asej.2021.03.018_b0295) 2017; 130
Ali Khan (10.1016/j.asej.2021.03.018_b0520) 2021; 14
Gandomi (10.1016/j.asej.2021.03.018_b0510) 2015; 21
Rafieizonooz (10.1016/j.asej.2021.03.018_b0020) 2016; 116
Mehta (10.1016/j.asej.2021.03.018_b0165) 2017; 150
10.1016/j.asej.2021.03.018_b0435
Aprianti (10.1016/j.asej.2021.03.018_b0005) 2017; 142
Azim (10.1016/j.asej.2021.03.018_b0440) 2020
Kumar (10.1016/j.asej.2021.03.018_b0070) 2020
Albitar (10.1016/j.asej.2021.03.018_b0265) 2015; 19
Lim (10.1016/j.asej.2021.03.018_b0300) 2016; 162
Shaikh (10.1016/j.asej.2021.03.018_b0200) 2016; 5
Ramujee (10.1016/j.asej.2021.03.018_b0175) 2017; 4
10.1016/j.asej.2021.03.018_b0285
Vora (10.1016/j.asej.2021.03.018_b0150) 2013; 51
Shehab (10.1016/j.asej.2021.03.018_b0205) 2016; 126
Mahdinia (10.1016/j.asej.2021.03.018_b0450) 2019; 198
Nath (10.1016/j.asej.2021.03.018_b0125) 2017; 130
Baykasoğlu (10.1016/j.asej.2021.03.018_b0320) 2008; 35
Park (10.1016/j.asej.2021.03.018_b0395) 2018; 341
Liu (10.1016/j.asej.2021.03.018_b0410) 2020
Aval (10.1016/j.asej.2021.03.018_b0325) 2017
Velay-Lizancos (10.1016/j.asej.2021.03.018_b0365) 2017; 144
Ozbay (10.1016/j.asej.2021.03.018_b0470) 2008; 22
Arabshahi (10.1016/j.asej.2021.03.018_b0495) 2020
Eskandari-Naddaf (10.1016/j.asej.2021.03.018_b0355) 2017; 138
Mansouri (10.1016/j.asej.2021.03.018_b0330) 2018; 29
Perera (10.1016/j.asej.2021.03.018_b0310) 2014; 66
Ahmed (10.1016/j.asej.2021.03.018_b0080) 2011; 5
Lavanya (10.1016/j.asej.2021.03.018_b0280) 2015; 10
Ghosh (10.1016/j.asej.2021.03.018_b0030) 2015; 5
10.1016/j.asej.2021.03.018_b0050
Olivia (10.1016/j.asej.2021.03.018_b0130) 2012; 36
Aliabdo (10.1016/j.asej.2021.03.018_b0210) 2016; 123
Dantas (10.1016/j.asej.2021.03.018_b0350) 2013; 38
Okoye (10.1016/j.asej.2021.03.018_b0215) 2015; 98
Srinivasan (10.1016/j.asej.2021.03.018_b0245) 2014; 3
Ganesan (10.1016/j.asej.2021.03.018_b0220) 2015; 93
Javed (10.1016/j.asej.2021.03.018_b0445) 2020; 10
Shaikh (10.1016/j.asej.2021.03.018_b0230) 2015; 39
Tanyildizi (10.1016/j.asej.2021.03.018_b0475) 2010; 24
Nuaklong (10.1016/j.asej.2021.03.018_b0190) 2016; 112
Nordin (10.1016/j.asej.2021.03.018_b0045) 2016; 7
Babanajad (10.1016/j.asej.2021.03.018_b0555) 2017; 110
Patankar (10.1016/j.asej.2021.03.018_b0260) 2015
10.1016/j.asej.2021.03.018_b0060
Özcan (10.1016/j.asej.2021.03.018_b0460) 2012; 26
Gandomi (10.1016/j.asej.2021.03.018_b0545) 2015; 88
Sharifi (10.1016/j.asej.2021.03.018_b0505) 2020; 86
Jalal (10.1016/j.asej.2021.03.018_b0340) 2013; 23
Aleem (10.1016/j.asej.2021.03.018_b0055) 2012; 1
Zhu (10.1016/j.asej.2021.03.018_b0385) 2019; 378
10.1016/j.asej.2021.03.018_b0105
Satpute (10.1016/j.asej.2021.03.018_b0235) 2016
Jafari (10.1016/j.asej.2021.03.018_b0465) 2017; 139
Nuruddin (10.1016/j.asej.2021.03.018_b0120) 2011; 164
Tiwari (10.1016/j.asej.2021.03.018_b0040) 2016; 3
Deb (10.1016/j.asej.2021.03.018_b0085) 2013
Shah (10.1016/j.asej.2021.03.018_b0525) 2020
Sonebi (10.1016/j.asej.2021.03.018_b0480) 2009; 23
Akmal (10.1016/j.asej.2021.03.018_b0015) 2017
Sarker (10.1016/j.asej.2021.03.018_b0135) 2013; 44
Mousavi (10.1016/j.asej.2021.03.018_b0550) 2010; 36
Shi (10.1016/j.asej.2021.03.018_b0140) 2012; 237
Sathanandam (10.1016/j.asej.2021.03.018_b0180) 2017; 27
Sadowski (10.1016/j.asej.2021.03.018_b0375) 2019; 212
Patankar (10.1016/j.asej.2021.03.018_b0255) 2013; 2
Azimi-Pour (10.1016/j.asej.2021.03.018_b0455) 2018; 189
10.1016/j.asej.2021.03.018_b0115
Behnood (10.1016/j.asej.2021.03.018_b0405) 2018; 202
Partha (10.1016/j.asej.2021.03.018_b0095) 2013
10.1016/j.asej.2021.03.018_b0515
Ibrahim (10.1016/j.asej.2021.03.018_b0010) 2016; 115
Azim (10.1016/j.asej.2021.03.018_b0420) 2020
Perera (10.1016/j.asej.2021.03.018_b0305) 2010; 92
Sarıdemir (10.1016/j.asej.2021.03.018_b0485) 2010; 24
González-Taboada (10.1016/j.asej.2021.03.018_b0370) 2016; 106
Hardjito (10.1016/j.asej.2021.03.018_b0100) 2005
Wongsa (10.1016/j.asej.2021.03.018_b0195) 2016; 111
10.1016/j.asej.2021.03.018_b0240
Nuruddin (10.1016/j.asej.2021.03.018_b0275) 2011; 38
Li (10.1016/j.asej.2021.03.018_b0390) 2012; 5
Tkaczewska (10.1016/j.asej.2021.03.018_b0570) 2014; 70
Sudin (10.1016/j.asej.2021.03.018_b0415) 2006; 41
Hamad (10.1016/j.asej.2021.03.018_b0540) 2017; 29
Nadesan (10.1016/j.asej.2021.03.018_b0035) 2017; 7
Oltean (10.1016/j.asej.2021.03.018_b0535) 2003; 14
References_xml – volume: 14
  start-page: 1106
  year: 2021
  ident: b0520
  article-title: Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete
  publication-title: Materials
– volume: 106
  start-page: 480
  year: 2016
  end-page: 499
  ident: b0370
  article-title: Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming
  publication-title: Constr Build Mater
– year: 2017
  ident: b0015
  article-title: Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete
  publication-title: IOP Conf. Series: Materials Science and Engineering
– volume: 2
  start-page: 79
  year: 2013
  end-page: 83
  ident: b0255
  article-title: Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete
  publication-title: Int J Adv Technol Civ Eng
– volume: 19
  start-page: 1445
  year: 2015
  end-page: 1455
  ident: b0265
  article-title: Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash
  publication-title: KSCE J Civ Eng
– volume: 51
  start-page: 210
  year: 2013
  end-page: 219
  ident: b0150
  article-title: Parametric studies on compressive strength of geopolymer concrete
  publication-title: Procedia Eng
– volume: 126
  start-page: 560
  year: 2016
  end-page: 565
  ident: b0205
  article-title: Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement
  publication-title: Constr Build Mater
– volume: 21
  start-page: 761
  year: 2015
  end-page: 774
  ident: b0510
  article-title: New design equations for elastic modulus of concrete using multi expression programming
  publication-title: J Civil Eng Manage
– volume: 38
  start-page: 717
  year: 2013
  end-page: 722
  ident: b0350
  article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks
  publication-title: Constr Build Mater
– volume: 24
  start-page: 1132
  year: 2012
  end-page: 1143
  ident: b0425
  article-title: Novel approach to strength modeling of concrete under triaxial compression
  publication-title: J Mater Civ Eng
– start-page: 2395
  year: 2016
  end-page: 4396
  ident: b0235
  article-title: Investigation of alkaline activators for fly ash-based geopolymer concrete
  publication-title: Int J Advance Res Innovative Ideas Educ (IJARIIE), ISSN
– volume: 4
  start-page: 2937
  year: 2017
  end-page: 2945
  ident: b0175
  article-title: Mechanical properties of geopolymer concrete composites
  publication-title: Mater Today: Proc
– volume: 138
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0355
  article-title: ANN prediction of cement mortar compressive strength, influence of cement strength class
  publication-title: Constr Build Mater
– year: 2020
  ident: b0495
  article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming
  publication-title: Structures
– year: 2015
  ident: b0075
  article-title: Behavior of geopolymer concrete exposed to elevated temperatures
– volume: 164
  start-page: 315
  year: 2011
  end-page: 327
  ident: b0120
  article-title: Utilisation of waste material in geopolymeric concrete
  publication-title: Proc Inst Civil Eng-Construct Mater
– volume: 14
  start-page: 794
  year: 2021
  ident: b0565
  article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm
  publication-title: Materials
– volume: 3
  start-page: 2395
  year: 2016
  end-page: 10056
  ident: b0040
  article-title: Fly ash utilization: A brief review in Indian context
  publication-title: Int Res J Eng Technol (IRJET)
– volume: 139
  start-page: 93
  year: 2017
  end-page: 100
  ident: b0465
  article-title: Lightweight concrete design using gene expression programing
  publication-title: Constr Build Mater
– volume: 198
  start-page: 27
  year: 2019
  end-page: 41
  ident: b0450
  article-title: Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method
  publication-title: Constr Build Mater
– volume: 36
  start-page: 759
  year: 2010
  ident: b0550
  article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders
  publication-title: Struct Eng Mech
– volume: 150
  start-page: 792
  year: 2017
  end-page: 807
  ident: b0165
  article-title: Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash
  publication-title: Constr Build Mater
– reference: Sumajouw M, Rangan BV. Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns. 2006.
– volume: 341
  start-page: 75
  year: 2018
  end-page: 82
  ident: b0395
  article-title: Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN)
  publication-title: J Hazard Mater
– year: 2002
  ident: b0490
  article-title: Multi expression programming
  publication-title: J Genetic Programm Evolvable Machines, Kluwer, Second Tour of Review
– volume: 29
  start-page: 873
  year: 2018
  end-page: 888
  ident: b0330
  article-title: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques
  publication-title: Neural Comput Appl
– volume: 24
  start-page: 2612
  year: 2010
  end-page: 2618
  ident: b0475
  article-title: Modeling mechanical performance of lightweight concrete containing silica fume exposed to high temperature using genetic programming
  publication-title: Constr Build Mater
– volume: 130
  start-page: 122
  year: 2017
  end-page: 145
  ident: b0295
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr Build Mater
– volume: 378
  start-page: 120727
  year: 2019
  ident: b0385
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J Hazard Mater
– reference: Sujatha T, Kannapiran K, Nagan S. Strength assessment of heat cured geopolymer concrete slender column. 2012.
– volume: 142
  start-page: 4178
  year: 2017
  end-page: 4194
  ident: b0005
  article-title: A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II
  publication-title: J Cleaner Prod
– volume: 36
  start-page: 695
  year: 2012
  end-page: 703
  ident: b0110
  article-title: The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete
  publication-title: Constr Build Mater
– volume: 325
  start-page: 301
  year: 2017
  end-page: 309
  ident: b0380
  article-title: A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system
  publication-title: J Hazard Mater
– reference: Kumar S, P. J, Ravindra PM, Rajendra S. Flexural behaviour of fly ash based reinforced geopolymer concrete beams. Int J Struct Civil Eng Res 2014;3(3).
– volume: 7
  year: 2016
  ident: b0045
  article-title: Utilization of Fly ash waste as construction material
  publication-title: Int J Conservat Sci
– reference: Koza, JR, Koza JR. Genetic programming: on the programming of computers by means of natural selection. vol. 1. MIT Press, 1992.
– volume: 35
  start-page: 111
  year: 2008
  end-page: 123
  ident: b0320
  article-title: Prediction of compressive and tensile strength of limestone via genetic programming
  publication-title: Expert Syst Appl
– volume: 112
  start-page: 2300
  year: 2016
  end-page: 2307
  ident: b0190
  article-title: Influence of recycled aggregate on fly ash geopolymer concrete properties
  publication-title: J Cleaner Prod
– volume: 116
  start-page: 15
  year: 2016
  end-page: 24
  ident: b0020
  article-title: Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement
  publication-title: Constr Build Mater
– volume: 5
  start-page: 448
  year: 2012
  ident: b0390
  article-title: Polymorphisms of CHRNA5-CHRNA3-CHRNB4 Gene cluster and NSCLC risk in Chinese population
  publication-title: Transl Oncol
– volume: 210
  start-page: 1496
  year: 2019
  end-page: 1506
  ident: b0065
  article-title: Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China
  publication-title: J Cleaner Prod
– volume: 36
  start-page: 191
  year: 2012
  end-page: 198
  ident: b0130
  article-title: Properties of fly ash geopolymer concrete designed by Taguchi method
  publication-title: Mater Des (1980-2015)
– start-page: 1619
  year: 2015
  end-page: 1634
  ident: b0260
  article-title: Mix design of fly ash based geopolymer concrete
  publication-title: Advances in Structural Engineering
– volume: 143
  start-page: 272
  year: 2017
  end-page: 279
  ident: b0155
  article-title: Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes
  publication-title: Constr Build Mater
– volume: 23
  start-page: 248
  year: 2011
  end-page: 263
  ident: b0560
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: J Mater Civ Eng
– volume: 23
  start-page: 455
  year: 2013
  end-page: 470
  ident: b0340
  article-title: Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders
  publication-title: Neural Comput Appl
– volume: 166
  start-page: 472
  year: 2018
  end-page: 481
  ident: b0160
  article-title: Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model
  publication-title: Constr Build Mater
– volume: 26
  start-page: 111
  year: 2010
  end-page: 118
  ident: b0500
  article-title: Multi expression programming: a new approach to formulation of soil classification
  publication-title: Eng Comput
– volume: 49
  start-page: 4319
  year: 2016
  end-page: 4334
  ident: b0335
  article-title: Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques
  publication-title: Mater Struct
– year: 2017
  ident: b0325
  article-title: Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming
  publication-title: Structures
– reference: Das SK, et al., Incorporation of Ultrafine Rice Husk Ash (URHA) in Geopolymer Concrete. 2019.
– volume: 119
  start-page: 277
  year: 2016
  end-page: 287
  ident: b0345
  article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network
  publication-title: Constr Build Mater
– volume: 88
  start-page: 63
  year: 2015
  end-page: 72
  ident: b0545
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv Eng Softw
– volume: 86
  start-page: 105842
  year: 2020
  ident: b0505
  article-title: Consolidation assessment using multi expression programming
  publication-title: Appl Soft Comput
– volume: 202
  start-page: 54
  year: 2018
  end-page: 64
  ident: b0405
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J Cleaner Prod
– volume: 46
  start-page: 2109
  year: 2013
  end-page: 2119
  ident: b0430
  article-title: An evolutionary approach for modeling of shear strength of RC deep beams
  publication-title: Mater Struct
– volume: 5
  start-page: 74
  year: 2015
  end-page: 91
  ident: b0030
  article-title: Fly ash of thermal power plants: review of the problems and management options with special reference to the Bakreshwar thermal power plant, Eastern India
  publication-title: Int J Geol Earth Environ Sci
– volume: 41
  start-page: 6917
  year: 2006
  end-page: 6924
  ident: b0415
  article-title: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration
  publication-title: J Mater Sci
– volume: 29
  start-page: 373
  year: 2017
  end-page: 380
  ident: b0540
  article-title: Size and shape effect of specimen on the compressive strength of HPLWFC reinforced with glass fibres
  publication-title: J King Saud Univ-Eng Sci
– reference: Lloyd N, Rangan V. Geopolymer concrete with fly ash. In: Proceedings of the Second International Conference on sustainable construction Materials and Technologies. UWM Center for By-Products Utilization, 2010.
– volume: 10
  start-page: 741
  year: 2020
  ident: b0445
  article-title: New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach
  publication-title: Crystals
– volume: 111
  start-page: 637
  year: 2016
  end-page: 643
  ident: b0195
  article-title: Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates
  publication-title: Constr Build Mater
– volume: 24
  start-page: 1911
  year: 2010
  end-page: 1919
  ident: b0485
  article-title: Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash
  publication-title: Constr Build Mater
– volume: 39
  start-page: 174
  year: 2015
  end-page: 188
  ident: b0230
  article-title: Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures
  publication-title: Fire Mater
– year: 2020
  ident: b0420
  article-title: Semi-analytical model for compressive arch action capacity of RC frame structures
  publication-title: Structures
– start-page: 105
  year: 2020
  end-page: 117
  ident: b0070
  article-title: Shear strength of fly ash and GGBS based geopolymer concrete
  publication-title: Advances in Sustainable Construction Materials. Springer
– volume: 12
  start-page: 3404
  year: 2019
  ident: b0270
  article-title: Performance of fly ash geopolymer concrete incorporating bamboo ash at elevated temperature
  publication-title: Materials
– volume: 2021
  start-page: 6618407
  year: 2021
  ident: b0530
  article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest
  publication-title: Adv Civil Eng
– volume: 27
  start-page: 146
  year: 2017
  end-page: 153
  ident: b0180
  article-title: Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete
  publication-title: Sustainable Environ Res
– year: 2005
  ident: b0100
  article-title: Development and properties of low-calcium fly ash-based geopolymer concrete
  publication-title: Dissertation
– reference: Bayar T. Best practices for managing power plant coal ash. 2015 Mar, 18; Available from:
– volume: 168
  start-page: 660
  year: 2018
  end-page: 670
  ident: b0360
  article-title: Optimizing asphalt mix design process using artificial neural network and genetic algorithm
  publication-title: Constr Build Mater
– volume: 7
  start-page: 336
  year: 2017
  end-page: 347
  ident: b0035
  article-title: Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete
  publication-title: Case Stud Constr Mater
– volume: 237
  start-page: 20
  year: 2012
  end-page: 29
  ident: b0140
  article-title: Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete
  publication-title: J Hazard Mater
– volume: 22
  start-page: 1831
  year: 2008
  end-page: 1840
  ident: b0470
  article-title: Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming
  publication-title: Constr Build Mater
– volume: 110
  start-page: 55
  year: 2017
  end-page: 68
  ident: b0555
  article-title: New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach
  publication-title: Adv Eng Softw
– volume: 146
  start-page: 136
  year: 2017
  end-page: 143
  ident: b0170
  article-title: Sulfuric acid resistance of fly ash based geopolymer concrete
  publication-title: Constr Build Mater
– volume: 5
  start-page: 277
  year: 2016
  end-page: 287
  ident: b0200
  article-title: Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates
  publication-title: Int J Sustainable Built Environ
– volume: 23
  start-page: 2614
  year: 2009
  end-page: 2622
  ident: b0480
  article-title: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash
  publication-title: Constr Build Mater
– volume: 212
  start-page: 727
  year: 2019
  end-page: 740
  ident: b0375
  article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust
  publication-title: J Cleaner Prod
– volume: 115
  start-page: 70
  year: 2016
  end-page: 77
  ident: b0010
  article-title: Effect of palm oil clinker incorporation on properties of pervious concrete
  publication-title: Constr Build Mater
– volume: 92
  start-page: 1169
  year: 2010
  end-page: 1175
  ident: b0305
  article-title: Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement
  publication-title: Compos Struct
– volume: 42
  start-page: 205
  year: 2013
  end-page: 216
  ident: b0315
  article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS
  publication-title: Constr Build Mater
– year: 2013
  ident: b0095
  article-title: Strength and permeation properties of slag blended fly ash based geopolymer concrete
  publication-title: Advanced Materials Research
– volume: 70
  start-page: 388
  year: 2014
  end-page: 393
  ident: b0570
  article-title: Effect of the superplasticizer type on the properties of the fly ash blended cement
  publication-title: Constr Build Mater
– volume: 123
  start-page: 581
  year: 2016
  end-page: 593
  ident: b0210
  article-title: Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance
  publication-title: Constr Build Mater
– start-page: 121082
  year: 2020
  ident: b0410
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation
  publication-title: Constr Build Mater
– reference: Watts J. Concrete: the most destructive material on Earth. 2020; Available from:
– volume: 189
  start-page: 978
  year: 2018
  end-page: 992
  ident: b0455
  article-title: ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar
  publication-title: Constr Build Mater
– volume: 26
  start-page: 404
  year: 2012
  end-page: 410
  ident: b0460
  article-title: Gene expression programming based formulations for splitting tensile strength of concrete
  publication-title: Constr Build Mater
– volume: 14
  start-page: 285
  year: 2003
  end-page: 314
  ident: b0535
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst
– volume: 144
  start-page: 195
  year: 2017
  end-page: 206
  ident: b0365
  article-title: Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature
  publication-title: Constr Build Mater
– volume: 190
  start-page: 517
  year: 2018
  end-page: 525
  ident: b0400
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr Build Mater
– start-page: 571
  year: 2013
  end-page: 576
  ident: b0085
  article-title: Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature
  publication-title: New Develop Struct Eng Construct
– volume: 98
  start-page: 685
  year: 2015
  end-page: 691
  ident: b0215
  article-title: Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete
  publication-title: Constr Build Mater
– volume: 162
  start-page: 28
  year: 2016
  end-page: 37
  ident: b0300
  article-title: Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming
  publication-title: Comput Struct
– year: 2020
  ident: b0525
  article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques
  publication-title: Environ Sci Pollut Res
– volume: 3
  start-page: 1963
  year: 2014
  end-page: 1968
  ident: b0245
  article-title: An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams
  publication-title: Int J Eng Sci Res Technol
– year: 2020
  ident: b0440
  article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming
  publication-title: Structures
– volume: 10
  start-page: 35523
  year: 2015
  end-page: 35527
  ident: b0280
  article-title: Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity
  publication-title: Int J Appl Eng Res
– volume: 93
  start-page: 471
  year: 2015
  end-page: 476
  ident: b0220
  article-title: Durability characteristics of steel fibre reinforced geopolymer concrete
  publication-title: Constr Build Mater
– volume: 5
  start-page: 64
  year: 2011
  end-page: 70
  ident: b0080
  article-title: Compressive strength and workability characteristics of low-calcium fly ash-based self-compacting geopolymer concrete
  publication-title: Int J Civil Environ Eng
– volume: 38
  start-page: 1196
  year: 2011
  end-page: 1203
  ident: b0275
  article-title: Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete
  publication-title: Can J Civ Eng
– volume: 130
  start-page: 22
  year: 2017
  end-page: 31
  ident: b0125
  article-title: Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete
  publication-title: Constr Build Mater
– reference: Raijiwala D, Patil H. Geopolymer concrete a green concrete. In: 2010 2nd international conference on Chemical, Biological and Environmental Engineering. IEEE, 2010.
– reference: .
– volume: 176
  start-page: 250
  year: 2018
  end-page: 258
  ident: b0290
  article-title: Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar
  publication-title: Constr Build Mater
– reference: Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence. vol. 21. Springer, 2006.
– reference: Deb P, Nath P, Sarker P. Sulphate resistance of slag blended fly ash based geopolymer concrete. In: Concrete 2013: Proceedings of the 26th Biennial National Conference of the Concrete Institute of Australia. Concrete Institute of Australia, 2013.
– volume: 100
  start-page: 297
  year: 2017
  end-page: 310
  ident: b0185
  article-title: Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment
  publication-title: Cem Concr Res
– volume: 66
  start-page: 162
  year: 2014
  end-page: 173
  ident: b0310
  article-title: Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations
  publication-title: Compos B Eng
– reference: Galvin B, Lloyd N. Fly ash based geopolymer concrete with recycled concrete aggregate. In: Proceedings of the CONCRETE 2011 Conference. The Concrete Institute of Australia, 2011.
– volume: 44
  start-page: 580
  year: 2013
  end-page: 586
  ident: b0135
  article-title: Fracture behaviour of heat cured fly ash based geopolymer concrete
  publication-title: Mater Des
– volume: 1
  start-page: 118
  year: 2012
  end-page: 122
  ident: b0055
  article-title: Geopolymer concrete–a review
  publication-title: Int J Eng Sci Emerg Technol
– volume: 112
  start-page: 807
  year: 2016
  end-page: 815
  ident: b0225
  article-title: Investigation of early compressive strength of fly ash-based geopolymer concrete
  publication-title: Constr Build Mater
– year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0015
  article-title: Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete
– volume: 190
  start-page: 517
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0400
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.09.097
– volume: 115
  start-page: 70
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0010
  article-title: Effect of palm oil clinker incorporation on properties of pervious concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.03.181
– start-page: 2395
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0235
  article-title: Investigation of alkaline activators for fly ash-based geopolymer concrete
  publication-title: Int J Advance Res Innovative Ideas Educ (IJARIIE), ISSN
– volume: 24
  start-page: 1911
  issue: 10
  year: 2010
  ident: 10.1016/j.asej.2021.03.018_b0485
  article-title: Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2010.04.011
– volume: 93
  start-page: 471
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0220
  article-title: Durability characteristics of steel fibre reinforced geopolymer concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.06.014
– volume: 41
  start-page: 6917
  issue: 21
  year: 2006
  ident: 10.1016/j.asej.2021.03.018_b0415
  article-title: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0224-3
– volume: 51
  start-page: 210
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0150
  article-title: Parametric studies on compressive strength of geopolymer concrete
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2013.01.030
– volume: 24
  start-page: 1132
  issue: 9
  year: 2012
  ident: 10.1016/j.asej.2021.03.018_b0425
  article-title: Novel approach to strength modeling of concrete under triaxial compression
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0000494
– volume: 3
  start-page: 1963
  issue: 4
  year: 2014
  ident: 10.1016/j.asej.2021.03.018_b0245
  article-title: An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams
  publication-title: Int J Eng Sci Res Technol
– ident: 10.1016/j.asej.2021.03.018_b0515
– volume: 88
  start-page: 63
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0545
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 36
  start-page: 695
  year: 2012
  ident: 10.1016/j.asej.2021.03.018_b0110
  article-title: The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2012.06.064
– volume: 112
  start-page: 2300
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0190
  article-title: Influence of recycled aggregate on fly ash geopolymer concrete properties
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2015.10.109
– volume: 5
  start-page: 277
  issue: 2
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0200
  article-title: Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates
  publication-title: Int J Sustainable Built Environ
  doi: 10.1016/j.ijsbe.2016.05.009
– volume: 106
  start-page: 480
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0370
  article-title: Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.12.136
– ident: 10.1016/j.asej.2021.03.018_b0250
– volume: 378
  start-page: 120727
  year: 2019
  ident: 10.1016/j.asej.2021.03.018_b0385
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.06.004
– volume: 22
  start-page: 1831
  issue: 8
  year: 2008
  ident: 10.1016/j.asej.2021.03.018_b0470
  article-title: Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2007.04.021
– volume: 26
  start-page: 404
  issue: 1
  year: 2012
  ident: 10.1016/j.asej.2021.03.018_b0460
  article-title: Gene expression programming based formulations for splitting tensile strength of concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2011.06.039
– volume: 126
  start-page: 560
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0205
  article-title: Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.09.059
– year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0495
  article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming
– ident: 10.1016/j.asej.2021.03.018_b0090
– volume: 24
  start-page: 2612
  issue: 12
  year: 2010
  ident: 10.1016/j.asej.2021.03.018_b0475
  article-title: Modeling mechanical performance of lightweight concrete containing silica fume exposed to high temperature using genetic programming
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2010.05.001
– volume: 5
  start-page: 64
  issue: 2
  year: 2011
  ident: 10.1016/j.asej.2021.03.018_b0080
  article-title: Compressive strength and workability characteristics of low-calcium fly ash-based self-compacting geopolymer concrete
  publication-title: Int J Civil Environ Eng
– year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0075
– volume: 168
  start-page: 660
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0360
  article-title: Optimizing asphalt mix design process using artificial neural network and genetic algorithm
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.02.118
– volume: 36
  start-page: 191
  year: 2012
  ident: 10.1016/j.asej.2021.03.018_b0130
  article-title: Properties of fly ash geopolymer concrete designed by Taguchi method
  publication-title: Mater Des (1980-2015)
  doi: 10.1016/j.matdes.2011.10.036
– volume: 98
  start-page: 685
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0215
  article-title: Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.08.009
– volume: 14
  start-page: 794
  issue: 4
  year: 2021
  ident: 10.1016/j.asej.2021.03.018_b0565
  article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm
  publication-title: Materials
  doi: 10.3390/ma14040794
– ident: 10.1016/j.asej.2021.03.018_b0025
– volume: 10
  start-page: 35523
  issue: 15
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0280
  article-title: Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity
  publication-title: Int J Appl Eng Res
– ident: 10.1016/j.asej.2021.03.018_b0105
– volume: 14
  start-page: 285
  issue: 4
  year: 2003
  ident: 10.1016/j.asej.2021.03.018_b0535
  article-title: A comparison of several linear genetic programming techniques
  publication-title: Complex Syst
  doi: 10.25088/ComplexSystems.14.4.285
– volume: 143
  start-page: 272
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0155
  article-title: Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.03.153
– volume: 112
  start-page: 807
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0225
  article-title: Investigation of early compressive strength of fly ash-based geopolymer concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.03.008
– volume: 5
  start-page: 448
  issue: 6
  year: 2012
  ident: 10.1016/j.asej.2021.03.018_b0390
  article-title: Polymorphisms of CHRNA5-CHRNA3-CHRNB4 Gene cluster and NSCLC risk in Chinese population
  publication-title: Transl Oncol
  doi: 10.1593/tlo.12304
– volume: 35
  start-page: 111
  issue: 1–2
  year: 2008
  ident: 10.1016/j.asej.2021.03.018_b0320
  article-title: Prediction of compressive and tensile strength of limestone via genetic programming
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.06.006
– volume: 210
  start-page: 1496
  year: 2019
  ident: 10.1016/j.asej.2021.03.018_b0065
  article-title: Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.11.102
– year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0440
  article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming
– volume: 12
  start-page: 3404
  issue: 20
  year: 2019
  ident: 10.1016/j.asej.2021.03.018_b0270
  article-title: Performance of fly ash geopolymer concrete incorporating bamboo ash at elevated temperature
  publication-title: Materials
  doi: 10.3390/ma12203404
– volume: 116
  start-page: 15
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0020
  article-title: Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.04.080
– ident: 10.1016/j.asej.2021.03.018_b0060
– volume: 100
  start-page: 297
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0185
  article-title: Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2017.07.010
– volume: 29
  start-page: 873
  issue: 3
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0330
  article-title: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2492-4
– volume: 144
  start-page: 195
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0365
  article-title: Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.03.123
– volume: 7
  start-page: 336
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0035
  article-title: Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete
  publication-title: Case Stud Constr Mater
– year: 2002
  ident: 10.1016/j.asej.2021.03.018_b0490
  article-title: Multi expression programming
  publication-title: J Genetic Programm Evolvable Machines, Kluwer, Second Tour of Review
– volume: 86
  start-page: 105842
  year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0505
  article-title: Consolidation assessment using multi expression programming
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105842
– volume: 23
  start-page: 248
  issue: 3
  year: 2011
  ident: 10.1016/j.asej.2021.03.018_b0560
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0000154
– start-page: 105
  year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0070
  article-title: Shear strength of fly ash and GGBS based geopolymer concrete
– volume: 10
  start-page: 741
  issue: 9
  year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0445
  article-title: New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach
  publication-title: Crystals
  doi: 10.3390/cryst10090741
– volume: 23
  start-page: 455
  issue: 2
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0340
  article-title: Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0941-2
– volume: 2021
  start-page: 6618407
  year: 2021
  ident: 10.1016/j.asej.2021.03.018_b0530
  article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest
  publication-title: Adv Civil Eng
  doi: 10.1155/2021/6618407
– volume: 29
  start-page: 373
  issue: 4
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0540
  article-title: Size and shape effect of specimen on the compressive strength of HPLWFC reinforced with glass fibres
  publication-title: J King Saud Univ-Eng Sci
  doi: 10.1016/j.jksues.2015.09.003
– volume: 49
  start-page: 4319
  issue: 10
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0335
  article-title: Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques
  publication-title: Mater Struct
  doi: 10.1617/s11527-015-0790-4
– volume: 237
  start-page: 20
  year: 2012
  ident: 10.1016/j.asej.2021.03.018_b0140
  article-title: Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2012.07.070
– volume: 3
  start-page: 2395
  issue: 4
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0040
  article-title: Fly ash utilization: A brief review in Indian context
  publication-title: Int Res J Eng Technol (IRJET)
– volume: 38
  start-page: 717
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0350
  article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2012.09.026
– volume: 110
  start-page: 55
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0555
  article-title: New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.03.011
– volume: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0045
  article-title: Utilization of Fly ash waste as construction material
  publication-title: Int J Conservat Sci
– volume: 150
  start-page: 792
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0165
  article-title: Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.06.067
– volume: 44
  start-page: 580
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0135
  article-title: Fracture behaviour of heat cured fly ash based geopolymer concrete
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.08.005
– volume: 23
  start-page: 2614
  issue: 7
  year: 2009
  ident: 10.1016/j.asej.2021.03.018_b0480
  article-title: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2009.02.012
– volume: 36
  start-page: 759
  issue: 6
  year: 2010
  ident: 10.1016/j.asej.2021.03.018_b0550
  article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2010.36.6.759
– volume: 164
  start-page: 315
  issue: 6
  year: 2011
  ident: 10.1016/j.asej.2021.03.018_b0120
  article-title: Utilisation of waste material in geopolymeric concrete
  publication-title: Proc Inst Civil Eng-Construct Mater
– volume: 19
  start-page: 1445
  issue: 5
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0265
  article-title: Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-014-1254-z
– year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0525
  article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques
  publication-title: Environ Sci Pollut Res
– start-page: 121082
  year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0410
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation
  publication-title: Constr Build Mater
– volume: 42
  start-page: 205
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0315
  article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2013.01.016
– volume: 142
  start-page: 4178
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0005
  article-title: A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2015.12.115
– volume: 212
  start-page: 727
  year: 2019
  ident: 10.1016/j.asej.2021.03.018_b0375
  article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.12.059
– year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0095
  article-title: Strength and permeation properties of slag blended fly ash based geopolymer concrete
– volume: 202
  start-page: 54
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0405
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.08.065
– start-page: 571
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0085
  article-title: Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature
  publication-title: New Develop Struct Eng Construct
  doi: 10.3850/978-981-07-5354-2_M-55-433
– volume: 146
  start-page: 136
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0170
  article-title: Sulfuric acid resistance of fly ash based geopolymer concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.04.077
– volume: 130
  start-page: 22
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0125
  article-title: Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.11.034
– volume: 46
  start-page: 2109
  issue: 12
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0430
  article-title: An evolutionary approach for modeling of shear strength of RC deep beams
  publication-title: Mater Struct
  doi: 10.1617/s11527-013-0039-z
– volume: 14
  start-page: 1106
  issue: 5
  year: 2021
  ident: 10.1016/j.asej.2021.03.018_b0520
  article-title: Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete
  publication-title: Materials
  doi: 10.3390/ma14051106
– ident: 10.1016/j.asej.2021.03.018_b0240
  doi: 10.1007/s10853-006-0523-8
– ident: 10.1016/j.asej.2021.03.018_b0145
– volume: 92
  start-page: 1169
  issue: 5
  year: 2010
  ident: 10.1016/j.asej.2021.03.018_b0305
  article-title: Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2009.10.027
– volume: 5
  start-page: 74
  issue: 2
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0030
  article-title: Fly ash of thermal power plants: review of the problems and management options with special reference to the Bakreshwar thermal power plant, Eastern India
  publication-title: Int J Geol Earth Environ Sci
– volume: 1
  start-page: 118
  issue: 2
  year: 2012
  ident: 10.1016/j.asej.2021.03.018_b0055
  article-title: Geopolymer concrete–a review
  publication-title: Int J Eng Sci Emerg Technol
– volume: 21
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0510
  article-title: New design equations for elastic modulus of concrete using multi expression programming
  publication-title: J Civil Eng Manage
  doi: 10.3846/13923730.2014.893910
– volume: 38
  start-page: 1196
  issue: 11
  year: 2011
  ident: 10.1016/j.asej.2021.03.018_b0275
  article-title: Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete
  publication-title: Can J Civ Eng
  doi: 10.1139/l11-077
– year: 2020
  ident: 10.1016/j.asej.2021.03.018_b0420
  article-title: Semi-analytical model for compressive arch action capacity of RC frame structures
– volume: 119
  start-page: 277
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0345
  article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.05.034
– volume: 27
  start-page: 146
  issue: 3
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0180
  article-title: Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete
  publication-title: Sustainable Environ Res
  doi: 10.1016/j.serj.2017.03.005
– volume: 130
  start-page: 122
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0295
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.10.114
– volume: 4
  start-page: 2937
  issue: 2
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0175
  article-title: Mechanical properties of geopolymer concrete composites
  publication-title: Mater Today: Proc
– volume: 70
  start-page: 388
  year: 2014
  ident: 10.1016/j.asej.2021.03.018_b0570
  article-title: Effect of the superplasticizer type on the properties of the fly ash blended cement
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.07.096
– volume: 111
  start-page: 637
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0195
  article-title: Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.02.135
– volume: 325
  start-page: 301
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0380
  article-title: A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.12.010
– ident: 10.1016/j.asej.2021.03.018_b0050
– start-page: 1619
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0260
  article-title: Mix design of fly ash based geopolymer concrete
– volume: 2
  start-page: 79
  issue: 1
  year: 2013
  ident: 10.1016/j.asej.2021.03.018_b0255
  article-title: Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete
  publication-title: Int J Adv Technol Civ Eng
– year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0325
  article-title: Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming
– volume: 123
  start-page: 581
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0210
  article-title: Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.07.043
– volume: 138
  start-page: 1
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0355
  article-title: ANN prediction of cement mortar compressive strength, influence of cement strength class
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.01.132
– volume: 341
  start-page: 75
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0395
  article-title: Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN)
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2017.07.050
– ident: 10.1016/j.asej.2021.03.018_b0435
  doi: 10.1007/3-540-32498-4_2
– volume: 66
  start-page: 162
  year: 2014
  ident: 10.1016/j.asej.2021.03.018_b0310
  article-title: Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2014.05.001
– ident: 10.1016/j.asej.2021.03.018_b0285
  doi: 10.1109/ICBEE.2010.5649609
– volume: 26
  start-page: 111
  issue: 2
  year: 2010
  ident: 10.1016/j.asej.2021.03.018_b0500
  article-title: Multi expression programming: a new approach to formulation of soil classification
  publication-title: Eng Comput
  doi: 10.1007/s00366-009-0140-7
– volume: 176
  start-page: 250
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0290
  article-title: Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.05.060
– volume: 198
  start-page: 27
  year: 2019
  ident: 10.1016/j.asej.2021.03.018_b0450
  article-title: Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.11.265
– volume: 189
  start-page: 978
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0455
  article-title: ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.09.031
– volume: 139
  start-page: 93
  year: 2017
  ident: 10.1016/j.asej.2021.03.018_b0465
  article-title: Lightweight concrete design using gene expression programing
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.01.120
– volume: 166
  start-page: 472
  year: 2018
  ident: 10.1016/j.asej.2021.03.018_b0160
  article-title: Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.01.175
– ident: 10.1016/j.asej.2021.03.018_b0115
– year: 2005
  ident: 10.1016/j.asej.2021.03.018_b0100
  article-title: Development and properties of low-calcium fly ash-based geopolymer concrete
  publication-title: Dissertation
– volume: 39
  start-page: 174
  issue: 2
  year: 2015
  ident: 10.1016/j.asej.2021.03.018_b0230
  article-title: Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures
  publication-title: Fire Mater
  doi: 10.1002/fam.2240
– volume: 162
  start-page: 28
  year: 2016
  ident: 10.1016/j.asej.2021.03.018_b0300
  article-title: Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2015.09.005
SSID ssib044728585
Score 2.5245984
Snippet Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3603
SubjectTerms Artificial intelligence (AI)
Fly-ash
Gene expression programming (GEP)
Geopolymer concrete (GPC)
Multi expression programming (MEP)
Waste material
Title Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete
URI https://dx.doi.org/10.1016/j.asej.2021.03.018
https://doaj.org/article/5a4058d33bd748e8b41479e25320ab54
Volume 12
WOSCitedRecordID wos000721361200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2090-4479
  databaseCode: M~E
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044728585
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELKgLUbQH5wAGELOLYiZ3eAG3h0qoSVOrN8seYtmpTtJtW7aW_pz-TmSRbcml74ZBISfwReSaeZ-V5HmPvAwZlE20UZZ2T0LUy-EnlWkQPjbcYoIwPvdiE2duzh4fN_kTqizhhQ3rgYeA-Vx4hhU1KhWS0BRu01KaBkgQNfKj6TKCFaSaLKfQkrU1JP7xIWa5oCoHXzbhjZiB3YYQ4wcVhKfsMp6T4MYlKffL-SXCaBJyddfZ8RIr8y_CGL9gTaF-y25__NjzxiyXw88zz6bXwy6NtfjBco0uAgKuR4drykYJ1hkGKf_g-3__IfZt4zyS8t9guFUM8SwdEvyRyNEesyImC3te4BE77TNrf3RH2SFIL12ewwOct4tAOXrGDnfmvbz_EKLYgopZFJ1RQlfegwJa5jDHVOhtQwcZK56rWVpNMus7JJuOtjzUYCRKnqMoa5bWV6jVba89b2GC8LELRlLX3ISYdQo1TgqSGZfYyIWCcMbkabBfHTOQkiHHqVpSzE0cGcmQgVyiHBpqxT3d1_gx5OB4s_ZVseFeScmj3N9Cz3OhZ7jHPmrFq5QFuhCMDzMCmjh_ofPN_dL7FnlGTA3HmDVvrFhfwlj2Nl93xcvGud3Y8797M_wJ8CwUE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+use+of+fly-ash%3A+Use+of+gene-expression+programming+%28GEP%29+and+multi-expression+programming+%28MEP%29+for+forecasting+the+compressive+strength+geopolymer+concrete&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Hong-Hu+Chu&rft.au=Mohsin+Ali+Khan&rft.au=Muhammad+Javed&rft.au=Adeel+Zafar&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=2090-4479&rft.volume=12&rft.issue=4&rft.spage=3603&rft.epage=3617&rft_id=info:doi/10.1016%2Fj.asej.2021.03.018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5a4058d33bd748e8b41479e25320ab54
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon