Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete
Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA based geopolymer concrete (FGC). To accelerate the usage of FA in building industry, an innovative machine learning techniques namely gene expr...
Uložené v:
| Vydané v: | Ain Shams Engineering Journal Ročník 12; číslo 4; s. 3603 - 3617 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2021
Elsevier |
| Predmet: | |
| ISSN: | 2090-4479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA based geopolymer concrete (FGC). To accelerate the usage of FA in building industry, an innovative machine learning techniques namely gene expression programming (GEP) and multi expression programming (MEP) are employed for forecasting the compressive strength of FGC. The comprehensive database is constructed comprising of 311 compressive strength results. The obtained equations relate the compressive strength of FGC with eight most effective parameters i.e., curing regime (T), time for curing (t) in hours, age of samples (A) in days, percentage of total aggregate by volume (% Ag), molarity of sodium hydroxide (NaOH) solution (M), silica (SiO2) solids percentage in sodium silicate (Na2SiO3) solution (%S), superplasticizer (%P) and extra water (%EW) as percent FA. The accurateness and predictive capacity of both GEP and MEP model is assessed via statistical checks, external validation criteria suggested by different researcher and then compared with linear regression (LR) and non-linear regression (NLR) models. In comparison with MEP equation, the GEP equation has lesser statistical error and higher correlation coefficient. Also, the GEP equation is short and it would be easy to use in the field. So, the GEP model is further utilized for sensitivity and parametric study. This research will increase the re-usage of hazardous FA in the development of green concrete that would leads to environmental safety and monetarist reliefs. |
|---|---|
| AbstractList | Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA based geopolymer concrete (FGC). To accelerate the usage of FA in building industry, an innovative machine learning techniques namely gene expression programming (GEP) and multi expression programming (MEP) are employed for forecasting the compressive strength of FGC. The comprehensive database is constructed comprising of 311 compressive strength results. The obtained equations relate the compressive strength of FGC with eight most effective parameters i.e., curing regime (T), time for curing (t) in hours, age of samples (A) in days, percentage of total aggregate by volume (% Ag), molarity of sodium hydroxide (NaOH) solution (M), silica (SiO2) solids percentage in sodium silicate (Na2SiO3) solution (%S), superplasticizer (%P) and extra water (%EW) as percent FA. The accurateness and predictive capacity of both GEP and MEP model is assessed via statistical checks, external validation criteria suggested by different researcher and then compared with linear regression (LR) and non-linear regression (NLR) models. In comparison with MEP equation, the GEP equation has lesser statistical error and higher correlation coefficient. Also, the GEP equation is short and it would be easy to use in the field. So, the GEP model is further utilized for sensitivity and parametric study. This research will increase the re-usage of hazardous FA in the development of green concrete that would leads to environmental safety and monetarist reliefs. |
| Author | Khan, Mohsin Ali Zafar, Adeel Alabduljabbar, Hisham Javed, Muhammad Ijaz Khan, M. Chu, Hong-Hu Qayyum, Sumaira |
| Author_xml | – sequence: 1 givenname: Hong-Hu surname: Chu fullname: Chu, Hong-Hu organization: College of Civil Engineering, Hunan University, Changsha 410082, PR China – sequence: 2 givenname: Mohsin Ali surname: Khan fullname: Khan, Mohsin Ali organization: Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan – sequence: 3 givenname: Muhammad surname: Javed fullname: Javed, Muhammad organization: Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan – sequence: 4 givenname: Adeel surname: Zafar fullname: Zafar, Adeel organization: Department of Structural Engineering, Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan – sequence: 5 givenname: M. surname: Ijaz Khan fullname: Ijaz Khan, M. email: mikhan@math.qau.edu.pk organization: Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad 44000, Pakistan – sequence: 6 givenname: Hisham surname: Alabduljabbar fullname: Alabduljabbar, Hisham organization: Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia – sequence: 7 givenname: Sumaira surname: Qayyum fullname: Qayyum, Sumaira organization: Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad 44000, Pakistan |
| BookMark | eNp9kc1u1DAUhb0oEqX0BVh5CYsE_2XiQWxQVUqlIpCga-vGucl4lNgj21Mxb8Rj4hC6QWoXlu3r-x3b57wiZz54JOQNZzVnfPN-X0PCfS2Y4DWTNeP6jJwLtmWVUu32JblMyXWsrIVudHNOfv84pgzOQzchPSakYaDDdKog7T7Q-3U_oscKfx0iFjh4eohhjDDPzo_07c3193cUfE_n45Tdk21fl7YhxGWghZSXat4htWFeiQekKUf0Y96VG8MhTKcZYzn3NmLG1-TFAFPCy3_zBbn_fP3z6kt19-3m9urTXWUVZ7mSnWwAUKIWg7C236ihRdlp26ih2SitlNRbNfS6b0GD3WDLkTNdzGglKM3lBblddfsAe3OIboZ4MgGc-VsIcTQQs7MTmgYUa3QvZde3SqPuFC8eo2ikYNA1qmjpVcvGkFLEwViXIRdzcgQ3Gc7MEprZmyU0s4RmmDQltIKK_9DHpzwLfVwhLAY9OIwmWYfeYu-K6bn8wD2H_wGqgLe8 |
| CitedBy_id | crossref_primary_10_1038_s41598_024_54513_y crossref_primary_10_1061_JCCEE5_CPENG_5956 crossref_primary_10_1038_s41598_024_69271_0 crossref_primary_10_1038_s41598_024_69316_4 crossref_primary_10_3390_w14060947 crossref_primary_10_3390_ma14247530 crossref_primary_10_1016_j_conbuildmat_2024_137809 crossref_primary_10_1016_j_jobe_2024_110417 crossref_primary_10_1515_rams_2024_0050 crossref_primary_10_3390_ma15093077 crossref_primary_10_3390_ma15134386 crossref_primary_10_1007_s12145_024_01482_5 crossref_primary_10_1007_s43452_025_01254_y crossref_primary_10_1016_j_conbuildmat_2022_126508 crossref_primary_10_1016_j_conbuildmat_2024_137370 crossref_primary_10_3390_buildings12030314 crossref_primary_10_3390_ma15010039 crossref_primary_10_3390_app15031018 crossref_primary_10_1515_rams_2025_0113 crossref_primary_10_1016_j_jclepro_2021_129518 crossref_primary_10_1016_j_conbuildmat_2023_131014 crossref_primary_10_1016_j_istruc_2024_106837 crossref_primary_10_1515_rams_2024_0068 crossref_primary_10_1016_j_conbuildmat_2024_135519 crossref_primary_10_1016_j_cscm_2024_e03849 crossref_primary_10_3390_w14182858 crossref_primary_10_32604_cmes_2023_043384 crossref_primary_10_3390_ma15217412 crossref_primary_10_1016_j_conbuildmat_2023_134092 crossref_primary_10_32604_cmes_2024_052505 crossref_primary_10_1016_j_jobe_2023_107904 crossref_primary_10_1016_j_cplett_2022_139478 crossref_primary_10_1007_s41024_024_00461_z crossref_primary_10_1007_s41939_023_00355_6 crossref_primary_10_1108_ACMM_12_2023_2935 crossref_primary_10_1016_j_conbuildmat_2023_133309 crossref_primary_10_1016_j_heliyon_2023_e22036 crossref_primary_10_1108_JM2_12_2024_0410 crossref_primary_10_1016_j_heliyon_2024_e36841 crossref_primary_10_1016_j_cscm_2025_e04405 crossref_primary_10_1016_j_cscm_2022_e01610 crossref_primary_10_1016_j_istruc_2021_11_011 crossref_primary_10_1108_WJE_12_2023_0504 crossref_primary_10_32604_jpm_2024_053859 crossref_primary_10_1007_s41062_025_02212_6 crossref_primary_10_1515_rams_2024_0043 crossref_primary_10_1016_j_istruc_2025_108802 crossref_primary_10_1515_rams_2024_0042 crossref_primary_10_1038_s41598_024_65905_5 crossref_primary_10_1515_rams_2023_0187 crossref_primary_10_1002_suco_70302 crossref_primary_10_1108_EC_05_2024_0452 crossref_primary_10_3390_sym13112009 crossref_primary_10_1016_j_ijhydene_2023_12_227 crossref_primary_10_3390_polym13162750 crossref_primary_10_1515_rams_2025_0091 crossref_primary_10_1016_j_cscm_2022_e01446 crossref_primary_10_1016_j_jcou_2022_102237 crossref_primary_10_1016_j_cscm_2024_e04112 crossref_primary_10_1038_s41598_024_64486_7 crossref_primary_10_1016_j_cscm_2023_e02172 crossref_primary_10_1016_j_jobe_2024_109184 crossref_primary_10_3390_polym13193389 crossref_primary_10_3390_su142114388 crossref_primary_10_3390_ma15113808 crossref_primary_10_3390_app15094733 crossref_primary_10_3390_ma14237241 crossref_primary_10_1016_j_conbuildmat_2023_134101 crossref_primary_10_1038_s41598_025_02648_x crossref_primary_10_1016_j_mtcomm_2024_109222 crossref_primary_10_1016_j_jclepro_2022_131364 crossref_primary_10_1007_s11356_024_35388_y crossref_primary_10_1371_journal_pone_0296494 crossref_primary_10_1038_s41598_025_01327_1 crossref_primary_10_1016_j_seppur_2021_119880 crossref_primary_10_3390_mining2040034 crossref_primary_10_1016_j_cscm_2024_e03135 crossref_primary_10_1007_s40996_025_02029_4 crossref_primary_10_1016_j_conbuildmat_2022_129534 crossref_primary_10_1016_j_mtcomm_2025_112370 crossref_primary_10_1080_19648189_2023_2171141 crossref_primary_10_1016_j_advengsoft_2024_103611 crossref_primary_10_1016_j_cscm_2025_e04755 crossref_primary_10_1007_s42107_023_00908_7 crossref_primary_10_3390_polym14091789 crossref_primary_10_1063_5_0230832 crossref_primary_10_1016_j_conbuildmat_2023_132539 crossref_primary_10_1016_j_jobe_2025_114085 crossref_primary_10_3390_sym14112324 crossref_primary_10_1016_j_conbuildmat_2023_133078 crossref_primary_10_3390_jcs5100271 crossref_primary_10_1007_s41062_022_00826_8 crossref_primary_10_1016_j_conbuildmat_2021_125634 crossref_primary_10_1371_journal_pone_0310422 crossref_primary_10_1016_j_cscm_2022_e01536 crossref_primary_10_1016_j_wasman_2024_07_027 crossref_primary_10_3390_min14040366 crossref_primary_10_1007_s13202_024_01800_z crossref_primary_10_3390_coatings13010066 crossref_primary_10_3390_buildings14051347 crossref_primary_10_1002_suco_70063 crossref_primary_10_3390_fire8080289 crossref_primary_10_1016_j_heliyon_2024_e32856 crossref_primary_10_1002_suco_202200344 crossref_primary_10_1016_j_engappai_2025_110210 crossref_primary_10_1016_j_conbuildmat_2023_132012 crossref_primary_10_1155_2024_7854488 |
| Cites_doi | 10.1016/j.conbuildmat.2018.09.097 10.1016/j.conbuildmat.2016.03.181 10.1016/j.conbuildmat.2010.04.011 10.1016/j.conbuildmat.2015.06.014 10.1007/s10853-006-0224-3 10.1016/j.proeng.2013.01.030 10.1061/(ASCE)MT.1943-5533.0000494 10.1016/j.advengsoft.2015.05.007 10.1016/j.conbuildmat.2012.06.064 10.1016/j.jclepro.2015.10.109 10.1016/j.ijsbe.2016.05.009 10.1016/j.conbuildmat.2015.12.136 10.1016/j.jhazmat.2019.06.004 10.1016/j.conbuildmat.2007.04.021 10.1016/j.conbuildmat.2011.06.039 10.1016/j.conbuildmat.2016.09.059 10.1016/j.conbuildmat.2010.05.001 10.1016/j.conbuildmat.2018.02.118 10.1016/j.matdes.2011.10.036 10.1016/j.conbuildmat.2015.08.009 10.3390/ma14040794 10.25088/ComplexSystems.14.4.285 10.1016/j.conbuildmat.2017.03.153 10.1016/j.conbuildmat.2016.03.008 10.1593/tlo.12304 10.1016/j.eswa.2007.06.006 10.1016/j.jclepro.2018.11.102 10.3390/ma12203404 10.1016/j.conbuildmat.2016.04.080 10.1016/j.cemconres.2017.07.010 10.1007/s00521-016-2492-4 10.1016/j.conbuildmat.2017.03.123 10.1016/j.asoc.2019.105842 10.1061/(ASCE)MT.1943-5533.0000154 10.3390/cryst10090741 10.1007/s00521-012-0941-2 10.1155/2021/6618407 10.1016/j.jksues.2015.09.003 10.1617/s11527-015-0790-4 10.1016/j.jhazmat.2012.07.070 10.1016/j.conbuildmat.2012.09.026 10.1016/j.advengsoft.2017.03.011 10.1016/j.conbuildmat.2017.06.067 10.1016/j.matdes.2012.08.005 10.1016/j.conbuildmat.2009.02.012 10.12989/sem.2010.36.6.759 10.1007/s12205-014-1254-z 10.1016/j.conbuildmat.2013.01.016 10.1016/j.jclepro.2015.12.115 10.1016/j.jclepro.2018.12.059 10.1016/j.jclepro.2018.08.065 10.3850/978-981-07-5354-2_M-55-433 10.1016/j.conbuildmat.2017.04.077 10.1016/j.conbuildmat.2016.11.034 10.1617/s11527-013-0039-z 10.3390/ma14051106 10.1007/s10853-006-0523-8 10.1016/j.compstruct.2009.10.027 10.3846/13923730.2014.893910 10.1139/l11-077 10.1016/j.conbuildmat.2016.05.034 10.1016/j.serj.2017.03.005 10.1016/j.conbuildmat.2016.10.114 10.1016/j.conbuildmat.2014.07.096 10.1016/j.conbuildmat.2016.02.135 10.1016/j.jhazmat.2016.12.010 10.1016/j.conbuildmat.2016.07.043 10.1016/j.conbuildmat.2017.01.132 10.1016/j.jhazmat.2017.07.050 10.1007/3-540-32498-4_2 10.1016/j.compositesb.2014.05.001 10.1109/ICBEE.2010.5649609 10.1007/s00366-009-0140-7 10.1016/j.conbuildmat.2018.05.060 10.1016/j.conbuildmat.2018.11.265 10.1016/j.conbuildmat.2018.09.031 10.1016/j.conbuildmat.2017.01.120 10.1016/j.conbuildmat.2018.01.175 10.1002/fam.2240 10.1016/j.compstruc.2015.09.005 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.asej.2021.03.018 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 3617 |
| ExternalDocumentID | oai_doaj_org_article_5a4058d33bd748e8b41479e25320ab54 10_1016_j_asej_2021_03_018 S2090447921001830 |
| GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c410t-3b35aae3e82f2ccd64f7e3b8c54f5648443894fd8d7a8ac6e71e10885873a4813 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721361200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2090-4479 |
| IngestDate | Fri Oct 03 12:42:14 EDT 2025 Tue Nov 18 22:03:43 EST 2025 Wed Nov 05 20:54:57 EST 2025 Sat Apr 29 22:42:45 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Geopolymer concrete (GPC) Gene expression programming (GEP) Fly-ash Waste material Artificial intelligence (AI) Multi expression programming (MEP) |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-3b35aae3e82f2ccd64f7e3b8c54f5648443894fd8d7a8ac6e71e10885873a4813 |
| OpenAccessLink | https://doaj.org/article/5a4058d33bd748e8b41479e25320ab54 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5a4058d33bd748e8b41479e25320ab54 crossref_citationtrail_10_1016_j_asej_2021_03_018 crossref_primary_10_1016_j_asej_2021_03_018 elsevier_sciencedirect_doi_10_1016_j_asej_2021_03_018 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Ain Shams Engineering Journal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Nuaklong, Sata, Chindaprasirt (b0190) 2016; 112 Koza, JR, Koza JR. Genetic programming: on the programming of computers by means of natural selection. vol. 1. MIT Press, 1992. Sadowski (b0375) 2019; 212 Li (b0065) 2019; 210 Kusbiantoro (b0110) 2012; 36 Deb P, Nath P, Sarker P. Sulphate resistance of slag blended fly ash based geopolymer concrete. In: Concrete 2013: Proceedings of the 26th Biennial National Conference of the Concrete Institute of Australia. Concrete Institute of Australia, 2013. Aval, Ketabdari, Gharebaghi (b0325) 2017 Getahun, Shitote, Gariy (b0400) 2018; 190 Jafari, Mahini (b0465) 2017; 139 Rafieizonooz (b0020) 2016; 116 Lokuge (b0160) 2018; 166 Sadrmomtazi, Sobhani, Mirgozar (b0315) 2013; 42 Mahdinia, Eskandari-Naddaf, Shadnia (b0450) 2019; 198 Li (b0390) 2012; 5 Nadesan, Dinakar (b0035) 2017; 7 Mousavi (b0550) 2010; 36 Okoye, Durgaprasad, Singh (b0215) 2015; 98 Azimi-Pour, Eskandari-Naddaf (b0455) 2018; 189 Ahmed, Nuruddin, Shafiq (b0080) 2011; 5 Gandomi, Roke (b0545) 2015; 88 Ozbay, Gesoglu, Güneyisi (b0470) 2008; 22 Ishak (b0270) 2019; 12 Hsu, Chi, Huang (b0290) 2018; 176 Tkaczewska (b0570) 2014; 70 Kumar, Sen, Seshu (b0070) 2020 Shehab, Eisa, Wahba (b0205) 2016; 126 Ali Khan (b0520) 2021; 14 . Mehta, Siddique (b0165) 2017; 150 Sudin, Swamy (b0415) 2006; 41 Oltean, Dumitrescu (b0490) 2002 Shaikh (b0200) 2016; 5 Ahmad (b0565) 2021; 14 Das SK, et al., Incorporation of Ultrafine Rice Husk Ash (URHA) in Geopolymer Concrete. 2019. Dantas, Leite, de Jesus Nagahama (b0350) 2013; 38 Gandomi (b0425) 2012; 24 Sonebi, Cevik (b0480) 2009; 23 Behnood, Golafshani (b0405) 2018; 202 Gandomi, Yun, Alavi (b0430) 2013; 46 Sujatha T, Kannapiran K, Nagan S. Strength assessment of heat cured geopolymer concrete slender column. 2012. Baykasoğlu (b0320) 2008; 35 Patankar, Jamkar, Ghugal (b0255) 2013; 2 Patankar, Ghugal, Jamkar (b0260) 2015 Ibrahim, Razak (b0010) 2016; 115 Pasupathy (b0185) 2017; 100 Mashhadban, Kutanaei, Sayarinejad (b0345) 2016; 119 Ganesan, Abraham, Raj (b0220) 2015; 93 Kumar S, P. J, Ravindra PM, Rajendra S. Flexural behaviour of fly ash based reinforced geopolymer concrete beams. Int J Struct Civil Eng Res 2014;3(3). Özcan (b0460) 2012; 26 Eskandari-Naddaf, Kazemi (b0355) 2017; 138 Oltean, Grosan (b0535) 2003; 14 Azim (b0420) 2020 Raijiwala D, Patil H. Geopolymer concrete a green concrete. In: 2010 2nd international conference on Chemical, Biological and Environmental Engineering. IEEE, 2010. Mansouri (b0335) 2016; 49 Perera, Arteaga, De Diego (b0305) 2010; 92 Wardhono (b0155) 2017; 143 Nuruddin, Demie, Shafiq (b0275) 2011; 38 Sebaaly, Varma, Maina (b0360) 2018; 168 Alavi (b0500) 2010; 26 Assi (b0225) 2016; 112 Park (b0395) 2018; 341 Ghosh, Mukherjee, Saha (b0030) 2015; 5 Aleem, Arumairaj (b0055) 2012; 1 Tanyildizi, Çevik (b0475) 2010; 24 Wongsa (b0195) 2016; 111 Hamad (b0540) 2017; 29 Hardjito, Rangan (b0100) 2005 Shaikh, Vimonsatit (b0230) 2015; 39 Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence. vol. 21. Springer, 2006. Olivia, Nikraz (b0130) 2012; 36 Mehta, Siddique (b0170) 2017; 146 Aprianti (b0005) 2017; 142 Jalal (b0340) 2013; 23 Perera (b0310) 2014; 66 Javed (b0445) 2020; 10 Gholampour, Gandomi, Ozbakkaloglu (b0295) 2017; 130 Xie, Ni, Su (b0380) 2017; 325 Vora, Dave (b0150) 2013; 51 Lavanya, Jegan (b0280) 2015; 10 Sarker, Haque, Ramgolam (b0135) 2013; 44 Arabshahi, Gharaei-Moghaddam, Tavakkolizadeh (b0495) 2020 Galvin B, Lloyd N. Fly ash based geopolymer concrete with recycled concrete aggregate. In: Proceedings of the CONCRETE 2011 Conference. The Concrete Institute of Australia, 2011. Sumajouw M, Rangan BV. Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns. 2006. Joseph, Mathew (b0075) 2015 Liu (b0410) 2020 Sharifi, Abrishami, Gandomi (b0505) 2020; 86 Lloyd N, Rangan V. Geopolymer concrete with fly ash. In: Proceedings of the Second International Conference on sustainable construction Materials and Technologies. UWM Center for By-Products Utilization, 2010. Watts J. Concrete: the most destructive material on Earth. 2020; Available from Lim, Karakus, Ozbakkaloglu (b0300) 2016; 162 Sarıdemir (b0485) 2010; 24 Akmal (b0015) 2017 Mansouri (b0330) 2018; 29 Shah, Javed, Abunama (b0525) 2020 Nordin (b0045) 2016; 7 Srinivasan, Karthik, Nagan (b0245) 2014; 3 Aliabdo, Abd Elmoaty, Salem (b0210) 2016; 123 Bayar T. Best practices for managing power plant coal ash. 2015 Mar, 18; Available from Ramujee, PothaRaju (b0175) 2017; 4 Nath, Sarker (b0125) 2017; 130 Zhu, Wang, Ok (b0385) 2019; 378 Khan (b0530) 2021; 2021 Partha, Pradip, Prabir (b0095) 2013 Velay-Lizancos (b0365) 2017; 144 Shi (b0140) 2012; 237 Sathanandam (b0180) 2017; 27 Gandomi (b0560) 2011; 23 Satpute, Shirasath, Hake (b0235) 2016 González-Taboada (b0370) 2016; 106 Nuruddin (b0120) 2011; 164 Gandomi (b0510) 2015; 21 Azim (b0440) 2020 Babanajad, Gandomi, Alavi (b0555) 2017; 110 Deb, Nath, Sarker (b0085) 2013 Albitar (b0265) 2015; 19 Tiwari, Bajpai, Dewangan (b0040) 2016; 3 10.1016/j.asej.2021.03.018_b0090 Wardhono (10.1016/j.asej.2021.03.018_b0155) 2017; 143 Sebaaly (10.1016/j.asej.2021.03.018_b0360) 2018; 168 Ishak (10.1016/j.asej.2021.03.018_b0270) 2019; 12 Gandomi (10.1016/j.asej.2021.03.018_b0430) 2013; 46 Kusbiantoro (10.1016/j.asej.2021.03.018_b0110) 2012; 36 10.1016/j.asej.2021.03.018_b0250 Xie (10.1016/j.asej.2021.03.018_b0380) 2017; 325 Mashhadban (10.1016/j.asej.2021.03.018_b0345) 2016; 119 Khan (10.1016/j.asej.2021.03.018_b0530) 2021; 2021 Pasupathy (10.1016/j.asej.2021.03.018_b0185) 2017; 100 Oltean (10.1016/j.asej.2021.03.018_b0490) 2002 Ahmad (10.1016/j.asej.2021.03.018_b0565) 2021; 14 Alavi (10.1016/j.asej.2021.03.018_b0500) 2010; 26 Li (10.1016/j.asej.2021.03.018_b0065) 2019; 210 Lokuge (10.1016/j.asej.2021.03.018_b0160) 2018; 166 Joseph (10.1016/j.asej.2021.03.018_b0075) 2015 Sadrmomtazi (10.1016/j.asej.2021.03.018_b0315) 2013; 42 10.1016/j.asej.2021.03.018_b0145 10.1016/j.asej.2021.03.018_b0025 Gandomi (10.1016/j.asej.2021.03.018_b0560) 2011; 23 Assi (10.1016/j.asej.2021.03.018_b0225) 2016; 112 Getahun (10.1016/j.asej.2021.03.018_b0400) 2018; 190 Hsu (10.1016/j.asej.2021.03.018_b0290) 2018; 176 Mehta (10.1016/j.asej.2021.03.018_b0170) 2017; 146 Gandomi (10.1016/j.asej.2021.03.018_b0425) 2012; 24 Mansouri (10.1016/j.asej.2021.03.018_b0335) 2016; 49 Gholampour (10.1016/j.asej.2021.03.018_b0295) 2017; 130 Ali Khan (10.1016/j.asej.2021.03.018_b0520) 2021; 14 Gandomi (10.1016/j.asej.2021.03.018_b0510) 2015; 21 Rafieizonooz (10.1016/j.asej.2021.03.018_b0020) 2016; 116 Mehta (10.1016/j.asej.2021.03.018_b0165) 2017; 150 10.1016/j.asej.2021.03.018_b0435 Aprianti (10.1016/j.asej.2021.03.018_b0005) 2017; 142 Azim (10.1016/j.asej.2021.03.018_b0440) 2020 Kumar (10.1016/j.asej.2021.03.018_b0070) 2020 Albitar (10.1016/j.asej.2021.03.018_b0265) 2015; 19 Lim (10.1016/j.asej.2021.03.018_b0300) 2016; 162 Shaikh (10.1016/j.asej.2021.03.018_b0200) 2016; 5 Ramujee (10.1016/j.asej.2021.03.018_b0175) 2017; 4 10.1016/j.asej.2021.03.018_b0285 Vora (10.1016/j.asej.2021.03.018_b0150) 2013; 51 Shehab (10.1016/j.asej.2021.03.018_b0205) 2016; 126 Mahdinia (10.1016/j.asej.2021.03.018_b0450) 2019; 198 Nath (10.1016/j.asej.2021.03.018_b0125) 2017; 130 Baykasoğlu (10.1016/j.asej.2021.03.018_b0320) 2008; 35 Park (10.1016/j.asej.2021.03.018_b0395) 2018; 341 Liu (10.1016/j.asej.2021.03.018_b0410) 2020 Aval (10.1016/j.asej.2021.03.018_b0325) 2017 Velay-Lizancos (10.1016/j.asej.2021.03.018_b0365) 2017; 144 Ozbay (10.1016/j.asej.2021.03.018_b0470) 2008; 22 Arabshahi (10.1016/j.asej.2021.03.018_b0495) 2020 Eskandari-Naddaf (10.1016/j.asej.2021.03.018_b0355) 2017; 138 Mansouri (10.1016/j.asej.2021.03.018_b0330) 2018; 29 Perera (10.1016/j.asej.2021.03.018_b0310) 2014; 66 Ahmed (10.1016/j.asej.2021.03.018_b0080) 2011; 5 Lavanya (10.1016/j.asej.2021.03.018_b0280) 2015; 10 Ghosh (10.1016/j.asej.2021.03.018_b0030) 2015; 5 10.1016/j.asej.2021.03.018_b0050 Olivia (10.1016/j.asej.2021.03.018_b0130) 2012; 36 Aliabdo (10.1016/j.asej.2021.03.018_b0210) 2016; 123 Dantas (10.1016/j.asej.2021.03.018_b0350) 2013; 38 Okoye (10.1016/j.asej.2021.03.018_b0215) 2015; 98 Srinivasan (10.1016/j.asej.2021.03.018_b0245) 2014; 3 Ganesan (10.1016/j.asej.2021.03.018_b0220) 2015; 93 Javed (10.1016/j.asej.2021.03.018_b0445) 2020; 10 Shaikh (10.1016/j.asej.2021.03.018_b0230) 2015; 39 Tanyildizi (10.1016/j.asej.2021.03.018_b0475) 2010; 24 Nuaklong (10.1016/j.asej.2021.03.018_b0190) 2016; 112 Nordin (10.1016/j.asej.2021.03.018_b0045) 2016; 7 Babanajad (10.1016/j.asej.2021.03.018_b0555) 2017; 110 Patankar (10.1016/j.asej.2021.03.018_b0260) 2015 10.1016/j.asej.2021.03.018_b0060 Özcan (10.1016/j.asej.2021.03.018_b0460) 2012; 26 Gandomi (10.1016/j.asej.2021.03.018_b0545) 2015; 88 Sharifi (10.1016/j.asej.2021.03.018_b0505) 2020; 86 Jalal (10.1016/j.asej.2021.03.018_b0340) 2013; 23 Aleem (10.1016/j.asej.2021.03.018_b0055) 2012; 1 Zhu (10.1016/j.asej.2021.03.018_b0385) 2019; 378 10.1016/j.asej.2021.03.018_b0105 Satpute (10.1016/j.asej.2021.03.018_b0235) 2016 Jafari (10.1016/j.asej.2021.03.018_b0465) 2017; 139 Nuruddin (10.1016/j.asej.2021.03.018_b0120) 2011; 164 Tiwari (10.1016/j.asej.2021.03.018_b0040) 2016; 3 Deb (10.1016/j.asej.2021.03.018_b0085) 2013 Shah (10.1016/j.asej.2021.03.018_b0525) 2020 Sonebi (10.1016/j.asej.2021.03.018_b0480) 2009; 23 Akmal (10.1016/j.asej.2021.03.018_b0015) 2017 Sarker (10.1016/j.asej.2021.03.018_b0135) 2013; 44 Mousavi (10.1016/j.asej.2021.03.018_b0550) 2010; 36 Shi (10.1016/j.asej.2021.03.018_b0140) 2012; 237 Sathanandam (10.1016/j.asej.2021.03.018_b0180) 2017; 27 Sadowski (10.1016/j.asej.2021.03.018_b0375) 2019; 212 Patankar (10.1016/j.asej.2021.03.018_b0255) 2013; 2 Azimi-Pour (10.1016/j.asej.2021.03.018_b0455) 2018; 189 10.1016/j.asej.2021.03.018_b0115 Behnood (10.1016/j.asej.2021.03.018_b0405) 2018; 202 Partha (10.1016/j.asej.2021.03.018_b0095) 2013 10.1016/j.asej.2021.03.018_b0515 Ibrahim (10.1016/j.asej.2021.03.018_b0010) 2016; 115 Azim (10.1016/j.asej.2021.03.018_b0420) 2020 Perera (10.1016/j.asej.2021.03.018_b0305) 2010; 92 Sarıdemir (10.1016/j.asej.2021.03.018_b0485) 2010; 24 González-Taboada (10.1016/j.asej.2021.03.018_b0370) 2016; 106 Hardjito (10.1016/j.asej.2021.03.018_b0100) 2005 Wongsa (10.1016/j.asej.2021.03.018_b0195) 2016; 111 10.1016/j.asej.2021.03.018_b0240 Nuruddin (10.1016/j.asej.2021.03.018_b0275) 2011; 38 Li (10.1016/j.asej.2021.03.018_b0390) 2012; 5 Tkaczewska (10.1016/j.asej.2021.03.018_b0570) 2014; 70 Sudin (10.1016/j.asej.2021.03.018_b0415) 2006; 41 Hamad (10.1016/j.asej.2021.03.018_b0540) 2017; 29 Nadesan (10.1016/j.asej.2021.03.018_b0035) 2017; 7 Oltean (10.1016/j.asej.2021.03.018_b0535) 2003; 14 |
| References_xml | – volume: 14 start-page: 1106 year: 2021 ident: b0520 article-title: Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete publication-title: Materials – volume: 106 start-page: 480 year: 2016 end-page: 499 ident: b0370 article-title: Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming publication-title: Constr Build Mater – year: 2017 ident: b0015 article-title: Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete publication-title: IOP Conf. Series: Materials Science and Engineering – volume: 2 start-page: 79 year: 2013 end-page: 83 ident: b0255 article-title: Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete publication-title: Int J Adv Technol Civ Eng – volume: 19 start-page: 1445 year: 2015 end-page: 1455 ident: b0265 article-title: Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash publication-title: KSCE J Civ Eng – volume: 51 start-page: 210 year: 2013 end-page: 219 ident: b0150 article-title: Parametric studies on compressive strength of geopolymer concrete publication-title: Procedia Eng – volume: 126 start-page: 560 year: 2016 end-page: 565 ident: b0205 article-title: Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement publication-title: Constr Build Mater – volume: 21 start-page: 761 year: 2015 end-page: 774 ident: b0510 article-title: New design equations for elastic modulus of concrete using multi expression programming publication-title: J Civil Eng Manage – volume: 38 start-page: 717 year: 2013 end-page: 722 ident: b0350 article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks publication-title: Constr Build Mater – volume: 24 start-page: 1132 year: 2012 end-page: 1143 ident: b0425 article-title: Novel approach to strength modeling of concrete under triaxial compression publication-title: J Mater Civ Eng – start-page: 2395 year: 2016 end-page: 4396 ident: b0235 article-title: Investigation of alkaline activators for fly ash-based geopolymer concrete publication-title: Int J Advance Res Innovative Ideas Educ (IJARIIE), ISSN – volume: 4 start-page: 2937 year: 2017 end-page: 2945 ident: b0175 article-title: Mechanical properties of geopolymer concrete composites publication-title: Mater Today: Proc – volume: 138 start-page: 1 year: 2017 end-page: 11 ident: b0355 article-title: ANN prediction of cement mortar compressive strength, influence of cement strength class publication-title: Constr Build Mater – year: 2020 ident: b0495 article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming publication-title: Structures – year: 2015 ident: b0075 article-title: Behavior of geopolymer concrete exposed to elevated temperatures – volume: 164 start-page: 315 year: 2011 end-page: 327 ident: b0120 article-title: Utilisation of waste material in geopolymeric concrete publication-title: Proc Inst Civil Eng-Construct Mater – volume: 14 start-page: 794 year: 2021 ident: b0565 article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm publication-title: Materials – volume: 3 start-page: 2395 year: 2016 end-page: 10056 ident: b0040 article-title: Fly ash utilization: A brief review in Indian context publication-title: Int Res J Eng Technol (IRJET) – volume: 139 start-page: 93 year: 2017 end-page: 100 ident: b0465 article-title: Lightweight concrete design using gene expression programing publication-title: Constr Build Mater – volume: 198 start-page: 27 year: 2019 end-page: 41 ident: b0450 article-title: Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method publication-title: Constr Build Mater – volume: 36 start-page: 759 year: 2010 ident: b0550 article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders publication-title: Struct Eng Mech – volume: 150 start-page: 792 year: 2017 end-page: 807 ident: b0165 article-title: Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash publication-title: Constr Build Mater – reference: Sumajouw M, Rangan BV. Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns. 2006. – volume: 341 start-page: 75 year: 2018 end-page: 82 ident: b0395 article-title: Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN) publication-title: J Hazard Mater – year: 2002 ident: b0490 article-title: Multi expression programming publication-title: J Genetic Programm Evolvable Machines, Kluwer, Second Tour of Review – volume: 29 start-page: 873 year: 2018 end-page: 888 ident: b0330 article-title: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques publication-title: Neural Comput Appl – volume: 24 start-page: 2612 year: 2010 end-page: 2618 ident: b0475 article-title: Modeling mechanical performance of lightweight concrete containing silica fume exposed to high temperature using genetic programming publication-title: Constr Build Mater – volume: 130 start-page: 122 year: 2017 end-page: 145 ident: b0295 article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming publication-title: Constr Build Mater – volume: 378 start-page: 120727 year: 2019 ident: b0385 article-title: The application of machine learning methods for prediction of metal sorption onto biochars publication-title: J Hazard Mater – reference: Sujatha T, Kannapiran K, Nagan S. Strength assessment of heat cured geopolymer concrete slender column. 2012. – volume: 142 start-page: 4178 year: 2017 end-page: 4194 ident: b0005 article-title: A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II publication-title: J Cleaner Prod – volume: 36 start-page: 695 year: 2012 end-page: 703 ident: b0110 article-title: The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete publication-title: Constr Build Mater – volume: 325 start-page: 301 year: 2017 end-page: 309 ident: b0380 article-title: A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system publication-title: J Hazard Mater – reference: Kumar S, P. J, Ravindra PM, Rajendra S. Flexural behaviour of fly ash based reinforced geopolymer concrete beams. Int J Struct Civil Eng Res 2014;3(3). – volume: 7 year: 2016 ident: b0045 article-title: Utilization of Fly ash waste as construction material publication-title: Int J Conservat Sci – reference: Koza, JR, Koza JR. Genetic programming: on the programming of computers by means of natural selection. vol. 1. MIT Press, 1992. – volume: 35 start-page: 111 year: 2008 end-page: 123 ident: b0320 article-title: Prediction of compressive and tensile strength of limestone via genetic programming publication-title: Expert Syst Appl – volume: 112 start-page: 2300 year: 2016 end-page: 2307 ident: b0190 article-title: Influence of recycled aggregate on fly ash geopolymer concrete properties publication-title: J Cleaner Prod – volume: 116 start-page: 15 year: 2016 end-page: 24 ident: b0020 article-title: Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement publication-title: Constr Build Mater – volume: 5 start-page: 448 year: 2012 ident: b0390 article-title: Polymorphisms of CHRNA5-CHRNA3-CHRNB4 Gene cluster and NSCLC risk in Chinese population publication-title: Transl Oncol – volume: 210 start-page: 1496 year: 2019 end-page: 1506 ident: b0065 article-title: Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China publication-title: J Cleaner Prod – volume: 36 start-page: 191 year: 2012 end-page: 198 ident: b0130 article-title: Properties of fly ash geopolymer concrete designed by Taguchi method publication-title: Mater Des (1980-2015) – start-page: 1619 year: 2015 end-page: 1634 ident: b0260 article-title: Mix design of fly ash based geopolymer concrete publication-title: Advances in Structural Engineering – volume: 143 start-page: 272 year: 2017 end-page: 279 ident: b0155 article-title: Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes publication-title: Constr Build Mater – volume: 23 start-page: 248 year: 2011 end-page: 263 ident: b0560 article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures publication-title: J Mater Civ Eng – volume: 23 start-page: 455 year: 2013 end-page: 470 ident: b0340 article-title: Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders publication-title: Neural Comput Appl – volume: 166 start-page: 472 year: 2018 end-page: 481 ident: b0160 article-title: Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model publication-title: Constr Build Mater – volume: 26 start-page: 111 year: 2010 end-page: 118 ident: b0500 article-title: Multi expression programming: a new approach to formulation of soil classification publication-title: Eng Comput – volume: 49 start-page: 4319 year: 2016 end-page: 4334 ident: b0335 article-title: Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques publication-title: Mater Struct – year: 2017 ident: b0325 article-title: Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming publication-title: Structures – reference: Das SK, et al., Incorporation of Ultrafine Rice Husk Ash (URHA) in Geopolymer Concrete. 2019. – volume: 119 start-page: 277 year: 2016 end-page: 287 ident: b0345 article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network publication-title: Constr Build Mater – volume: 88 start-page: 63 year: 2015 end-page: 72 ident: b0545 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv Eng Softw – volume: 86 start-page: 105842 year: 2020 ident: b0505 article-title: Consolidation assessment using multi expression programming publication-title: Appl Soft Comput – volume: 202 start-page: 54 year: 2018 end-page: 64 ident: b0405 article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves publication-title: J Cleaner Prod – volume: 46 start-page: 2109 year: 2013 end-page: 2119 ident: b0430 article-title: An evolutionary approach for modeling of shear strength of RC deep beams publication-title: Mater Struct – volume: 5 start-page: 74 year: 2015 end-page: 91 ident: b0030 article-title: Fly ash of thermal power plants: review of the problems and management options with special reference to the Bakreshwar thermal power plant, Eastern India publication-title: Int J Geol Earth Environ Sci – volume: 41 start-page: 6917 year: 2006 end-page: 6924 ident: b0415 article-title: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration publication-title: J Mater Sci – volume: 29 start-page: 373 year: 2017 end-page: 380 ident: b0540 article-title: Size and shape effect of specimen on the compressive strength of HPLWFC reinforced with glass fibres publication-title: J King Saud Univ-Eng Sci – reference: Lloyd N, Rangan V. Geopolymer concrete with fly ash. In: Proceedings of the Second International Conference on sustainable construction Materials and Technologies. UWM Center for By-Products Utilization, 2010. – volume: 10 start-page: 741 year: 2020 ident: b0445 article-title: New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach publication-title: Crystals – volume: 111 start-page: 637 year: 2016 end-page: 643 ident: b0195 article-title: Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates publication-title: Constr Build Mater – volume: 24 start-page: 1911 year: 2010 end-page: 1919 ident: b0485 article-title: Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash publication-title: Constr Build Mater – volume: 39 start-page: 174 year: 2015 end-page: 188 ident: b0230 article-title: Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures publication-title: Fire Mater – year: 2020 ident: b0420 article-title: Semi-analytical model for compressive arch action capacity of RC frame structures publication-title: Structures – start-page: 105 year: 2020 end-page: 117 ident: b0070 article-title: Shear strength of fly ash and GGBS based geopolymer concrete publication-title: Advances in Sustainable Construction Materials. Springer – volume: 12 start-page: 3404 year: 2019 ident: b0270 article-title: Performance of fly ash geopolymer concrete incorporating bamboo ash at elevated temperature publication-title: Materials – volume: 2021 start-page: 6618407 year: 2021 ident: b0530 article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest publication-title: Adv Civil Eng – volume: 27 start-page: 146 year: 2017 end-page: 153 ident: b0180 article-title: Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete publication-title: Sustainable Environ Res – year: 2005 ident: b0100 article-title: Development and properties of low-calcium fly ash-based geopolymer concrete publication-title: Dissertation – reference: Bayar T. Best practices for managing power plant coal ash. 2015 Mar, 18; Available from: – volume: 168 start-page: 660 year: 2018 end-page: 670 ident: b0360 article-title: Optimizing asphalt mix design process using artificial neural network and genetic algorithm publication-title: Constr Build Mater – volume: 7 start-page: 336 year: 2017 end-page: 347 ident: b0035 article-title: Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete publication-title: Case Stud Constr Mater – volume: 237 start-page: 20 year: 2012 end-page: 29 ident: b0140 article-title: Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete publication-title: J Hazard Mater – volume: 22 start-page: 1831 year: 2008 end-page: 1840 ident: b0470 article-title: Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming publication-title: Constr Build Mater – volume: 110 start-page: 55 year: 2017 end-page: 68 ident: b0555 article-title: New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach publication-title: Adv Eng Softw – volume: 146 start-page: 136 year: 2017 end-page: 143 ident: b0170 article-title: Sulfuric acid resistance of fly ash based geopolymer concrete publication-title: Constr Build Mater – volume: 5 start-page: 277 year: 2016 end-page: 287 ident: b0200 article-title: Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates publication-title: Int J Sustainable Built Environ – volume: 23 start-page: 2614 year: 2009 end-page: 2622 ident: b0480 article-title: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash publication-title: Constr Build Mater – volume: 212 start-page: 727 year: 2019 end-page: 740 ident: b0375 article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust publication-title: J Cleaner Prod – volume: 115 start-page: 70 year: 2016 end-page: 77 ident: b0010 article-title: Effect of palm oil clinker incorporation on properties of pervious concrete publication-title: Constr Build Mater – volume: 92 start-page: 1169 year: 2010 end-page: 1175 ident: b0305 article-title: Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement publication-title: Compos Struct – volume: 42 start-page: 205 year: 2013 end-page: 216 ident: b0315 article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS publication-title: Constr Build Mater – year: 2013 ident: b0095 article-title: Strength and permeation properties of slag blended fly ash based geopolymer concrete publication-title: Advanced Materials Research – volume: 70 start-page: 388 year: 2014 end-page: 393 ident: b0570 article-title: Effect of the superplasticizer type on the properties of the fly ash blended cement publication-title: Constr Build Mater – volume: 123 start-page: 581 year: 2016 end-page: 593 ident: b0210 article-title: Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance publication-title: Constr Build Mater – start-page: 121082 year: 2020 ident: b0410 article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation publication-title: Constr Build Mater – reference: Watts J. Concrete: the most destructive material on Earth. 2020; Available from: – volume: 189 start-page: 978 year: 2018 end-page: 992 ident: b0455 article-title: ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar publication-title: Constr Build Mater – volume: 26 start-page: 404 year: 2012 end-page: 410 ident: b0460 article-title: Gene expression programming based formulations for splitting tensile strength of concrete publication-title: Constr Build Mater – volume: 14 start-page: 285 year: 2003 end-page: 314 ident: b0535 article-title: A comparison of several linear genetic programming techniques publication-title: Complex Syst – volume: 144 start-page: 195 year: 2017 end-page: 206 ident: b0365 article-title: Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature publication-title: Constr Build Mater – volume: 190 start-page: 517 year: 2018 end-page: 525 ident: b0400 article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes publication-title: Constr Build Mater – start-page: 571 year: 2013 end-page: 576 ident: b0085 article-title: Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature publication-title: New Develop Struct Eng Construct – volume: 98 start-page: 685 year: 2015 end-page: 691 ident: b0215 article-title: Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete publication-title: Constr Build Mater – volume: 162 start-page: 28 year: 2016 end-page: 37 ident: b0300 article-title: Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming publication-title: Comput Struct – year: 2020 ident: b0525 article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques publication-title: Environ Sci Pollut Res – volume: 3 start-page: 1963 year: 2014 end-page: 1968 ident: b0245 article-title: An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams publication-title: Int J Eng Sci Res Technol – year: 2020 ident: b0440 article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming publication-title: Structures – volume: 10 start-page: 35523 year: 2015 end-page: 35527 ident: b0280 article-title: Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity publication-title: Int J Appl Eng Res – volume: 93 start-page: 471 year: 2015 end-page: 476 ident: b0220 article-title: Durability characteristics of steel fibre reinforced geopolymer concrete publication-title: Constr Build Mater – volume: 5 start-page: 64 year: 2011 end-page: 70 ident: b0080 article-title: Compressive strength and workability characteristics of low-calcium fly ash-based self-compacting geopolymer concrete publication-title: Int J Civil Environ Eng – volume: 38 start-page: 1196 year: 2011 end-page: 1203 ident: b0275 article-title: Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete publication-title: Can J Civ Eng – volume: 130 start-page: 22 year: 2017 end-page: 31 ident: b0125 article-title: Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete publication-title: Constr Build Mater – reference: Raijiwala D, Patil H. Geopolymer concrete a green concrete. In: 2010 2nd international conference on Chemical, Biological and Environmental Engineering. IEEE, 2010. – reference: . – volume: 176 start-page: 250 year: 2018 end-page: 258 ident: b0290 article-title: Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar publication-title: Constr Build Mater – reference: Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence. vol. 21. Springer, 2006. – reference: Deb P, Nath P, Sarker P. Sulphate resistance of slag blended fly ash based geopolymer concrete. In: Concrete 2013: Proceedings of the 26th Biennial National Conference of the Concrete Institute of Australia. Concrete Institute of Australia, 2013. – volume: 100 start-page: 297 year: 2017 end-page: 310 ident: b0185 article-title: Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment publication-title: Cem Concr Res – volume: 66 start-page: 162 year: 2014 end-page: 173 ident: b0310 article-title: Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations publication-title: Compos B Eng – reference: Galvin B, Lloyd N. Fly ash based geopolymer concrete with recycled concrete aggregate. In: Proceedings of the CONCRETE 2011 Conference. The Concrete Institute of Australia, 2011. – volume: 44 start-page: 580 year: 2013 end-page: 586 ident: b0135 article-title: Fracture behaviour of heat cured fly ash based geopolymer concrete publication-title: Mater Des – volume: 1 start-page: 118 year: 2012 end-page: 122 ident: b0055 article-title: Geopolymer concrete–a review publication-title: Int J Eng Sci Emerg Technol – volume: 112 start-page: 807 year: 2016 end-page: 815 ident: b0225 article-title: Investigation of early compressive strength of fly ash-based geopolymer concrete publication-title: Constr Build Mater – year: 2017 ident: 10.1016/j.asej.2021.03.018_b0015 article-title: Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete – volume: 190 start-page: 517 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0400 article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.09.097 – volume: 115 start-page: 70 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0010 article-title: Effect of palm oil clinker incorporation on properties of pervious concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.03.181 – start-page: 2395 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0235 article-title: Investigation of alkaline activators for fly ash-based geopolymer concrete publication-title: Int J Advance Res Innovative Ideas Educ (IJARIIE), ISSN – volume: 24 start-page: 1911 issue: 10 year: 2010 ident: 10.1016/j.asej.2021.03.018_b0485 article-title: Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2010.04.011 – volume: 93 start-page: 471 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0220 article-title: Durability characteristics of steel fibre reinforced geopolymer concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.06.014 – volume: 41 start-page: 6917 issue: 21 year: 2006 ident: 10.1016/j.asej.2021.03.018_b0415 article-title: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration publication-title: J Mater Sci doi: 10.1007/s10853-006-0224-3 – volume: 51 start-page: 210 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0150 article-title: Parametric studies on compressive strength of geopolymer concrete publication-title: Procedia Eng doi: 10.1016/j.proeng.2013.01.030 – volume: 24 start-page: 1132 issue: 9 year: 2012 ident: 10.1016/j.asej.2021.03.018_b0425 article-title: Novel approach to strength modeling of concrete under triaxial compression publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0000494 – volume: 3 start-page: 1963 issue: 4 year: 2014 ident: 10.1016/j.asej.2021.03.018_b0245 article-title: An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams publication-title: Int J Eng Sci Res Technol – ident: 10.1016/j.asej.2021.03.018_b0515 – volume: 88 start-page: 63 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0545 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.05.007 – volume: 36 start-page: 695 year: 2012 ident: 10.1016/j.asej.2021.03.018_b0110 article-title: The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2012.06.064 – volume: 112 start-page: 2300 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0190 article-title: Influence of recycled aggregate on fly ash geopolymer concrete properties publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2015.10.109 – volume: 5 start-page: 277 issue: 2 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0200 article-title: Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates publication-title: Int J Sustainable Built Environ doi: 10.1016/j.ijsbe.2016.05.009 – volume: 106 start-page: 480 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0370 article-title: Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.12.136 – ident: 10.1016/j.asej.2021.03.018_b0250 – volume: 378 start-page: 120727 year: 2019 ident: 10.1016/j.asej.2021.03.018_b0385 article-title: The application of machine learning methods for prediction of metal sorption onto biochars publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.06.004 – volume: 22 start-page: 1831 issue: 8 year: 2008 ident: 10.1016/j.asej.2021.03.018_b0470 article-title: Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2007.04.021 – volume: 26 start-page: 404 issue: 1 year: 2012 ident: 10.1016/j.asej.2021.03.018_b0460 article-title: Gene expression programming based formulations for splitting tensile strength of concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2011.06.039 – volume: 126 start-page: 560 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0205 article-title: Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.09.059 – year: 2020 ident: 10.1016/j.asej.2021.03.018_b0495 article-title: Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming – ident: 10.1016/j.asej.2021.03.018_b0090 – volume: 24 start-page: 2612 issue: 12 year: 2010 ident: 10.1016/j.asej.2021.03.018_b0475 article-title: Modeling mechanical performance of lightweight concrete containing silica fume exposed to high temperature using genetic programming publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2010.05.001 – volume: 5 start-page: 64 issue: 2 year: 2011 ident: 10.1016/j.asej.2021.03.018_b0080 article-title: Compressive strength and workability characteristics of low-calcium fly ash-based self-compacting geopolymer concrete publication-title: Int J Civil Environ Eng – year: 2015 ident: 10.1016/j.asej.2021.03.018_b0075 – volume: 168 start-page: 660 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0360 article-title: Optimizing asphalt mix design process using artificial neural network and genetic algorithm publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.02.118 – volume: 36 start-page: 191 year: 2012 ident: 10.1016/j.asej.2021.03.018_b0130 article-title: Properties of fly ash geopolymer concrete designed by Taguchi method publication-title: Mater Des (1980-2015) doi: 10.1016/j.matdes.2011.10.036 – volume: 98 start-page: 685 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0215 article-title: Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.08.009 – volume: 14 start-page: 794 issue: 4 year: 2021 ident: 10.1016/j.asej.2021.03.018_b0565 article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm publication-title: Materials doi: 10.3390/ma14040794 – ident: 10.1016/j.asej.2021.03.018_b0025 – volume: 10 start-page: 35523 issue: 15 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0280 article-title: Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity publication-title: Int J Appl Eng Res – ident: 10.1016/j.asej.2021.03.018_b0105 – volume: 14 start-page: 285 issue: 4 year: 2003 ident: 10.1016/j.asej.2021.03.018_b0535 article-title: A comparison of several linear genetic programming techniques publication-title: Complex Syst doi: 10.25088/ComplexSystems.14.4.285 – volume: 143 start-page: 272 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0155 article-title: Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.03.153 – volume: 112 start-page: 807 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0225 article-title: Investigation of early compressive strength of fly ash-based geopolymer concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.03.008 – volume: 5 start-page: 448 issue: 6 year: 2012 ident: 10.1016/j.asej.2021.03.018_b0390 article-title: Polymorphisms of CHRNA5-CHRNA3-CHRNB4 Gene cluster and NSCLC risk in Chinese population publication-title: Transl Oncol doi: 10.1593/tlo.12304 – volume: 35 start-page: 111 issue: 1–2 year: 2008 ident: 10.1016/j.asej.2021.03.018_b0320 article-title: Prediction of compressive and tensile strength of limestone via genetic programming publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.06.006 – volume: 210 start-page: 1496 year: 2019 ident: 10.1016/j.asej.2021.03.018_b0065 article-title: Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2018.11.102 – year: 2020 ident: 10.1016/j.asej.2021.03.018_b0440 article-title: Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming – volume: 12 start-page: 3404 issue: 20 year: 2019 ident: 10.1016/j.asej.2021.03.018_b0270 article-title: Performance of fly ash geopolymer concrete incorporating bamboo ash at elevated temperature publication-title: Materials doi: 10.3390/ma12203404 – volume: 116 start-page: 15 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0020 article-title: Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.04.080 – ident: 10.1016/j.asej.2021.03.018_b0060 – volume: 100 start-page: 297 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0185 article-title: Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2017.07.010 – volume: 29 start-page: 873 issue: 3 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0330 article-title: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2492-4 – volume: 144 start-page: 195 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0365 article-title: Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.03.123 – volume: 7 start-page: 336 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0035 article-title: Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete publication-title: Case Stud Constr Mater – year: 2002 ident: 10.1016/j.asej.2021.03.018_b0490 article-title: Multi expression programming publication-title: J Genetic Programm Evolvable Machines, Kluwer, Second Tour of Review – volume: 86 start-page: 105842 year: 2020 ident: 10.1016/j.asej.2021.03.018_b0505 article-title: Consolidation assessment using multi expression programming publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105842 – volume: 23 start-page: 248 issue: 3 year: 2011 ident: 10.1016/j.asej.2021.03.018_b0560 article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0000154 – start-page: 105 year: 2020 ident: 10.1016/j.asej.2021.03.018_b0070 article-title: Shear strength of fly ash and GGBS based geopolymer concrete – volume: 10 start-page: 741 issue: 9 year: 2020 ident: 10.1016/j.asej.2021.03.018_b0445 article-title: New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach publication-title: Crystals doi: 10.3390/cryst10090741 – volume: 23 start-page: 455 issue: 2 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0340 article-title: Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0941-2 – volume: 2021 start-page: 6618407 year: 2021 ident: 10.1016/j.asej.2021.03.018_b0530 article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest publication-title: Adv Civil Eng doi: 10.1155/2021/6618407 – volume: 29 start-page: 373 issue: 4 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0540 article-title: Size and shape effect of specimen on the compressive strength of HPLWFC reinforced with glass fibres publication-title: J King Saud Univ-Eng Sci doi: 10.1016/j.jksues.2015.09.003 – volume: 49 start-page: 4319 issue: 10 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0335 article-title: Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques publication-title: Mater Struct doi: 10.1617/s11527-015-0790-4 – volume: 237 start-page: 20 year: 2012 ident: 10.1016/j.asej.2021.03.018_b0140 article-title: Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2012.07.070 – volume: 3 start-page: 2395 issue: 4 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0040 article-title: Fly ash utilization: A brief review in Indian context publication-title: Int Res J Eng Technol (IRJET) – volume: 38 start-page: 717 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0350 article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2012.09.026 – volume: 110 start-page: 55 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0555 article-title: New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.03.011 – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0045 article-title: Utilization of Fly ash waste as construction material publication-title: Int J Conservat Sci – volume: 150 start-page: 792 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0165 article-title: Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.06.067 – volume: 44 start-page: 580 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0135 article-title: Fracture behaviour of heat cured fly ash based geopolymer concrete publication-title: Mater Des doi: 10.1016/j.matdes.2012.08.005 – volume: 23 start-page: 2614 issue: 7 year: 2009 ident: 10.1016/j.asej.2021.03.018_b0480 article-title: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2009.02.012 – volume: 36 start-page: 759 issue: 6 year: 2010 ident: 10.1016/j.asej.2021.03.018_b0550 article-title: A data mining approach to compressive strength of CFRP-confined concrete cylinders publication-title: Struct Eng Mech doi: 10.12989/sem.2010.36.6.759 – volume: 164 start-page: 315 issue: 6 year: 2011 ident: 10.1016/j.asej.2021.03.018_b0120 article-title: Utilisation of waste material in geopolymeric concrete publication-title: Proc Inst Civil Eng-Construct Mater – volume: 19 start-page: 1445 issue: 5 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0265 article-title: Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash publication-title: KSCE J Civ Eng doi: 10.1007/s12205-014-1254-z – year: 2020 ident: 10.1016/j.asej.2021.03.018_b0525 article-title: Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques publication-title: Environ Sci Pollut Res – start-page: 121082 year: 2020 ident: 10.1016/j.asej.2021.03.018_b0410 article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation publication-title: Constr Build Mater – volume: 42 start-page: 205 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0315 article-title: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2013.01.016 – volume: 142 start-page: 4178 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0005 article-title: A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2015.12.115 – volume: 212 start-page: 727 year: 2019 ident: 10.1016/j.asej.2021.03.018_b0375 article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2018.12.059 – year: 2013 ident: 10.1016/j.asej.2021.03.018_b0095 article-title: Strength and permeation properties of slag blended fly ash based geopolymer concrete – volume: 202 start-page: 54 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0405 article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2018.08.065 – start-page: 571 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0085 article-title: Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature publication-title: New Develop Struct Eng Construct doi: 10.3850/978-981-07-5354-2_M-55-433 – volume: 146 start-page: 136 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0170 article-title: Sulfuric acid resistance of fly ash based geopolymer concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.04.077 – volume: 130 start-page: 22 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0125 article-title: Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.11.034 – volume: 46 start-page: 2109 issue: 12 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0430 article-title: An evolutionary approach for modeling of shear strength of RC deep beams publication-title: Mater Struct doi: 10.1617/s11527-013-0039-z – volume: 14 start-page: 1106 issue: 5 year: 2021 ident: 10.1016/j.asej.2021.03.018_b0520 article-title: Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete publication-title: Materials doi: 10.3390/ma14051106 – ident: 10.1016/j.asej.2021.03.018_b0240 doi: 10.1007/s10853-006-0523-8 – ident: 10.1016/j.asej.2021.03.018_b0145 – volume: 92 start-page: 1169 issue: 5 year: 2010 ident: 10.1016/j.asej.2021.03.018_b0305 article-title: Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement publication-title: Compos Struct doi: 10.1016/j.compstruct.2009.10.027 – volume: 5 start-page: 74 issue: 2 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0030 article-title: Fly ash of thermal power plants: review of the problems and management options with special reference to the Bakreshwar thermal power plant, Eastern India publication-title: Int J Geol Earth Environ Sci – volume: 1 start-page: 118 issue: 2 year: 2012 ident: 10.1016/j.asej.2021.03.018_b0055 article-title: Geopolymer concrete–a review publication-title: Int J Eng Sci Emerg Technol – volume: 21 start-page: 761 issue: 6 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0510 article-title: New design equations for elastic modulus of concrete using multi expression programming publication-title: J Civil Eng Manage doi: 10.3846/13923730.2014.893910 – volume: 38 start-page: 1196 issue: 11 year: 2011 ident: 10.1016/j.asej.2021.03.018_b0275 article-title: Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete publication-title: Can J Civ Eng doi: 10.1139/l11-077 – year: 2020 ident: 10.1016/j.asej.2021.03.018_b0420 article-title: Semi-analytical model for compressive arch action capacity of RC frame structures – volume: 119 start-page: 277 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0345 article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.05.034 – volume: 27 start-page: 146 issue: 3 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0180 article-title: Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete publication-title: Sustainable Environ Res doi: 10.1016/j.serj.2017.03.005 – volume: 130 start-page: 122 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0295 article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.10.114 – volume: 4 start-page: 2937 issue: 2 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0175 article-title: Mechanical properties of geopolymer concrete composites publication-title: Mater Today: Proc – volume: 70 start-page: 388 year: 2014 ident: 10.1016/j.asej.2021.03.018_b0570 article-title: Effect of the superplasticizer type on the properties of the fly ash blended cement publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.07.096 – volume: 111 start-page: 637 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0195 article-title: Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.02.135 – volume: 325 start-page: 301 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0380 article-title: A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.12.010 – ident: 10.1016/j.asej.2021.03.018_b0050 – start-page: 1619 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0260 article-title: Mix design of fly ash based geopolymer concrete – volume: 2 start-page: 79 issue: 1 year: 2013 ident: 10.1016/j.asej.2021.03.018_b0255 article-title: Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete publication-title: Int J Adv Technol Civ Eng – year: 2017 ident: 10.1016/j.asej.2021.03.018_b0325 article-title: Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming – volume: 123 start-page: 581 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0210 article-title: Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.07.043 – volume: 138 start-page: 1 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0355 article-title: ANN prediction of cement mortar compressive strength, influence of cement strength class publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.01.132 – volume: 341 start-page: 75 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0395 article-title: Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN) publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2017.07.050 – ident: 10.1016/j.asej.2021.03.018_b0435 doi: 10.1007/3-540-32498-4_2 – volume: 66 start-page: 162 year: 2014 ident: 10.1016/j.asej.2021.03.018_b0310 article-title: Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations publication-title: Compos B Eng doi: 10.1016/j.compositesb.2014.05.001 – ident: 10.1016/j.asej.2021.03.018_b0285 doi: 10.1109/ICBEE.2010.5649609 – volume: 26 start-page: 111 issue: 2 year: 2010 ident: 10.1016/j.asej.2021.03.018_b0500 article-title: Multi expression programming: a new approach to formulation of soil classification publication-title: Eng Comput doi: 10.1007/s00366-009-0140-7 – volume: 176 start-page: 250 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0290 article-title: Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.05.060 – volume: 198 start-page: 27 year: 2019 ident: 10.1016/j.asej.2021.03.018_b0450 article-title: Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.11.265 – volume: 189 start-page: 978 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0455 article-title: ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.09.031 – volume: 139 start-page: 93 year: 2017 ident: 10.1016/j.asej.2021.03.018_b0465 article-title: Lightweight concrete design using gene expression programing publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.01.120 – volume: 166 start-page: 472 year: 2018 ident: 10.1016/j.asej.2021.03.018_b0160 article-title: Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.01.175 – ident: 10.1016/j.asej.2021.03.018_b0115 – year: 2005 ident: 10.1016/j.asej.2021.03.018_b0100 article-title: Development and properties of low-calcium fly ash-based geopolymer concrete publication-title: Dissertation – volume: 39 start-page: 174 issue: 2 year: 2015 ident: 10.1016/j.asej.2021.03.018_b0230 article-title: Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures publication-title: Fire Mater doi: 10.1002/fam.2240 – volume: 162 start-page: 28 year: 2016 ident: 10.1016/j.asej.2021.03.018_b0300 article-title: Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming publication-title: Comput Struct doi: 10.1016/j.compstruc.2015.09.005 |
| SSID | ssib044728585 |
| Score | 2.5245984 |
| Snippet | Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 3603 |
| SubjectTerms | Artificial intelligence (AI) Fly-ash Gene expression programming (GEP) Geopolymer concrete (GPC) Multi expression programming (MEP) Waste material |
| Title | Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete |
| URI | https://dx.doi.org/10.1016/j.asej.2021.03.018 https://doaj.org/article/5a4058d33bd748e8b41479e25320ab54 |
| Volume | 12 |
| WOSCitedRecordID | wos000721361200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2090-4479 databaseCode: M~E dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib044728585 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELKgLUbQH5wAGELOLYiZ3eAG3h0qoSVOrN8seYtmpTtJtW7aW_pz-TmSRbcml74ZBISfwReSaeZ-V5HmPvAwZlE20UZZ2T0LUy-EnlWkQPjbcYoIwPvdiE2duzh4fN_kTqizhhQ3rgYeA-Vx4hhU1KhWS0BRu01KaBkgQNfKj6TKCFaSaLKfQkrU1JP7xIWa5oCoHXzbhjZiB3YYQ4wcVhKfsMp6T4MYlKffL-SXCaBJyddfZ8RIr8y_CGL9gTaF-y25__NjzxiyXw88zz6bXwy6NtfjBco0uAgKuR4drykYJ1hkGKf_g-3__IfZt4zyS8t9guFUM8SwdEvyRyNEesyImC3te4BE77TNrf3RH2SFIL12ewwOct4tAOXrGDnfmvbz_EKLYgopZFJ1RQlfegwJa5jDHVOhtQwcZK56rWVpNMus7JJuOtjzUYCRKnqMoa5bWV6jVba89b2GC8LELRlLX3ISYdQo1TgqSGZfYyIWCcMbkabBfHTOQkiHHqVpSzE0cGcmQgVyiHBpqxT3d1_gx5OB4s_ZVseFeScmj3N9Cz3OhZ7jHPmrFq5QFuhCMDzMCmjh_ofPN_dL7FnlGTA3HmDVvrFhfwlj2Nl93xcvGud3Y8797M_wJ8CwUE |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+use+of+fly-ash%3A+Use+of+gene-expression+programming+%28GEP%29+and+multi-expression+programming+%28MEP%29+for+forecasting+the+compressive+strength+geopolymer+concrete&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Hong-Hu+Chu&rft.au=Mohsin+Ali+Khan&rft.au=Muhammad+Javed&rft.au=Adeel+Zafar&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=2090-4479&rft.volume=12&rft.issue=4&rft.spage=3603&rft.epage=3617&rft_id=info:doi/10.1016%2Fj.asej.2021.03.018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5a4058d33bd748e8b41479e25320ab54 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon |