Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows
► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted EDM method. ► Our proposed model can give more accurate and stable numerical results. ► A high density ratio can be handled by our proposed mo...
Saved in:
| Published in: | Computers & fluids Vol. 53; pp. 93 - 104 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
15.01.2012
Elsevier |
| Subjects: | |
| ISSN: | 0045-7930, 1879-0747 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted EDM method. ► Our proposed model can give more accurate and stable numerical results. ► A high density ratio can be handled by our proposed model.
An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this paper. It is shown that both the scheme for the interparticle interaction force term and the method of incorporating the force term are important for obtaining accurate and stable numerical results for simulations of single-component multiphase flows. A new scheme for the force term is proposed and simulation results of several non-ideal equation of state suggest that the proposed scheme can greatly improve the coexistence curves. Among several methods of incorporating the force term, the exact difference method is shown to have better accuracy and stability. Furthermore, it avoids the unphysical phenomenon of relaxation time dependence. Compared with existing models, the proposed model, consisting of the new force term scheme together with the exact different method to incorporate the force term, can give more accurate and stable numerical results in a wider temperature range with the spurious currents greatly reduced. Droplet motion and coalescence processes on surfaces with wettability gradients are numerically investigated based on the newly proposed model. The velocity field and mechanism of droplet motion are illustrated in details. |
|---|---|
| AbstractList | An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this paper. It is shown that both the scheme for the interparticle interaction force term and the method of incorporating the force term are important for obtaining accurate and stable numerical results for simulations of single-component multiphase flows. A new scheme for the force term is proposed and simulation results of several non-ideal equation of state suggest that the proposed scheme can greatly improve the coexistence curves. Among several methods of incorporating the force term, the exact difference method is shown to have better accuracy and stability. Furthermore, it avoids the unphysical phenomenon of relaxation time dependence. Compared with existing models, the proposed model, consisting of the new force term scheme together with the exact different method to incorporate the force term, can give more accurate and stable numerical results in a wider temperature range with the spurious currents greatly reduced. Droplet motion and coalescence processes on surfaces with wettability gradients are numerically investigated based on the newly proposed model. The velocity field and mechanism of droplet motion are illustrated in details. ► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted EDM method. ► Our proposed model can give more accurate and stable numerical results. ► A high density ratio can be handled by our proposed model. An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this paper. It is shown that both the scheme for the interparticle interaction force term and the method of incorporating the force term are important for obtaining accurate and stable numerical results for simulations of single-component multiphase flows. A new scheme for the force term is proposed and simulation results of several non-ideal equation of state suggest that the proposed scheme can greatly improve the coexistence curves. Among several methods of incorporating the force term, the exact difference method is shown to have better accuracy and stability. Furthermore, it avoids the unphysical phenomenon of relaxation time dependence. Compared with existing models, the proposed model, consisting of the new force term scheme together with the exact different method to incorporate the force term, can give more accurate and stable numerical results in a wider temperature range with the spurious currents greatly reduced. Droplet motion and coalescence processes on surfaces with wettability gradients are numerically investigated based on the newly proposed model. The velocity field and mechanism of droplet motion are illustrated in details. |
| Author | Gong, Shuai Cheng, Ping |
| Author_xml | – sequence: 1 givenname: Shuai surname: Gong fullname: Gong, Shuai – sequence: 2 givenname: Ping surname: Cheng fullname: Cheng, Ping email: pingcheng@sjtu.edu.cn |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25233191$$DView record in Pascal Francis |
| BookMark | eNqFUc1u1DAYtFCR2BaeAV8QXBLsOImdA4dSAa1UwQXOln_BK8cOtrOovAIvjbNbOHCgJ8ufZ-bzzJyDsxCDAeA5Ri1GeHy9b1WcF-tXp9sOYdyiqUWYPAI7zOjUINrTM7BDqB8aOhH0BJznvEf1Trp-B359XGeTnBIeunAwubivorgYYLRQp7h4U-AcjxMRNFRReJOVCcpAeVdH0M1LigejoReluDp-G335OYsQKk8bD21McPkmsoEliZDdppWPYvPqizs9WR9_5KfgsRU-m2f35wX48v7d56vr5vbTh5ury9tG9RiVpqNYUzkIOSqGJZa0VxZhwaTUk-qIHBnqO0GkGtEwCmttvaPqnAy41xhjcgFennTrz7-v1TOfXfXkvQgmrplPI2GMEEYr8tV_kZiiiTLGelShL-6hItc0bfWqXOZLcrNId7wbOkLwtC1_c8KpFHNOxnLlyjHyGo_zHCO-1cr3_G-tfKuVo4nXWiuf_sP_s-Jh5uWJaWq2B2cSz8ptTWqXjCpcR_egxm8whcdK |
| CODEN | CPFLBI |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2023_112040 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104430 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104950 crossref_primary_10_1088_1757_899X_751_1_012067 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_065 crossref_primary_10_1016_j_jcp_2020_110018 crossref_primary_10_1016_j_applthermaleng_2017_08_092 crossref_primary_10_1016_j_applthermaleng_2023_120310 crossref_primary_10_32604_cmes_2023_027280 crossref_primary_10_1080_00295639_2018_1504566 crossref_primary_10_1016_j_ces_2024_119946 crossref_primary_10_1016_j_apm_2021_10_012 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103290 crossref_primary_10_1016_j_ijthermalsci_2023_108170 crossref_primary_10_1016_j_camwa_2025_06_014 crossref_primary_10_1177_17568277231202030 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_027 crossref_primary_10_1016_j_ijheatmasstransfer_2016_01_044 crossref_primary_10_1016_j_ijheatmasstransfer_2015_02_008 crossref_primary_10_1016_j_applthermaleng_2019_114027 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105015 crossref_primary_10_1016_j_euromechflu_2018_01_007 crossref_primary_10_1016_j_icheatmasstransfer_2017_05_014 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120868 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_021 crossref_primary_10_1007_s10973_023_12292_0 crossref_primary_10_1016_j_ces_2023_118563 crossref_primary_10_1016_j_physa_2017_07_013 crossref_primary_10_1021_acs_iecr_5c01811 crossref_primary_10_1016_j_applthermaleng_2023_120535 crossref_primary_10_1016_j_powtec_2022_117558 crossref_primary_10_1016_j_applthermaleng_2025_127090 crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_036 crossref_primary_10_1063_5_0286483 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_124 crossref_primary_10_1021_acs_langmuir_4c04808 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122939 crossref_primary_10_1002_cjce_24604 crossref_primary_10_1016_j_ijheatfluidflow_2024_109357 crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_058 crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_028 crossref_primary_10_1016_j_camwa_2013_08_030 crossref_primary_10_1016_j_icheatmasstransfer_2025_109557 crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_032 crossref_primary_10_1016_j_ijheatfluidflow_2017_09_009 crossref_primary_10_1016_j_applthermaleng_2015_12_050 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_060 crossref_primary_10_1016_j_jcis_2018_01_063 crossref_primary_10_1016_j_icheatmasstransfer_2023_106640 crossref_primary_10_1002_fld_4971 crossref_primary_10_12677_mos_2024_134393 crossref_primary_10_1007_s12217_020_09841_9 crossref_primary_10_1016_j_ijthermalsci_2022_107913 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103923 crossref_primary_10_1080_19942060_2022_2116488 crossref_primary_10_1016_j_camwa_2018_07_022 crossref_primary_10_1063_5_0283877 crossref_primary_10_1016_j_ijhydene_2020_02_155 crossref_primary_10_1016_j_icheatmasstransfer_2024_108314 crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_029 crossref_primary_10_1134_S1990478923010088 crossref_primary_10_1016_j_ces_2023_118547 crossref_primary_10_3390_en16062622 crossref_primary_10_1016_j_icheatmasstransfer_2021_105567 crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_002 crossref_primary_10_1016_j_icheatmasstransfer_2017_08_019 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_096 crossref_primary_10_3390_coatings8080288 crossref_primary_10_3390_pr13030872 crossref_primary_10_1016_j_jngse_2021_104291 crossref_primary_10_1007_s12217_019_9681_6 crossref_primary_10_1002_aic_16451 crossref_primary_10_1016_j_ijthermalsci_2021_107393 crossref_primary_10_1016_j_cep_2014_08_006 crossref_primary_10_1063_5_0228546 crossref_primary_10_1016_j_asr_2016_08_029 crossref_primary_10_1016_j_ces_2022_118384 crossref_primary_10_1016_j_icheatmasstransfer_2020_104974 crossref_primary_10_1016_j_icheatmasstransfer_2022_106357 crossref_primary_10_1016_j_icheatmasstransfer_2024_107926 crossref_primary_10_3390_fractalfract8120719 crossref_primary_10_1016_j_compfluid_2022_105616 crossref_primary_10_1016_j_icheatmasstransfer_2024_107809 crossref_primary_10_1016_j_ijheatmasstransfer_2014_11_027 crossref_primary_10_1016_j_ijthermalsci_2020_106680 crossref_primary_10_1080_01457632_2018_1546964 crossref_primary_10_1016_j_ces_2023_119203 crossref_primary_10_1063_1_4962645 crossref_primary_10_1016_j_ijthermalsci_2021_107017 crossref_primary_10_1016_j_icheatmasstransfer_2020_104961 crossref_primary_10_1007_s00231_018_2329_z crossref_primary_10_1016_j_compfluid_2014_06_006 crossref_primary_10_1088_1742_6596_2441_1_012017 crossref_primary_10_1016_j_euromechflu_2018_12_004 crossref_primary_10_1103_5rjm_t6gb crossref_primary_10_1007_s12206_018_0521_1 crossref_primary_10_1016_j_ijheatmasstransfer_2014_01_060 crossref_primary_10_1080_19942060_2025_2499251 crossref_primary_10_1016_j_ijheatfluidflow_2017_12_001 crossref_primary_10_1016_j_ces_2021_116483 crossref_primary_10_1016_j_ijthermalsci_2024_109663 crossref_primary_10_1088_1755_1315_440_2_022043 crossref_primary_10_1016_j_compfluid_2022_105674 crossref_primary_10_1016_j_jpowsour_2018_05_008 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121264 crossref_primary_10_1007_s10483_020_2639_7 crossref_primary_10_1016_j_icheatmasstransfer_2019_104418 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103218 crossref_primary_10_1016_j_ijthermalsci_2021_107236 crossref_primary_10_1007_s10409_017_0667_6 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_146 crossref_primary_10_1007_s10973_022_11820_8 crossref_primary_10_1063_5_0069152 crossref_primary_10_1016_j_surfin_2024_104055 crossref_primary_10_1088_1873_7005_aaa213 crossref_primary_10_1088_1755_1315_94_1_012152 crossref_primary_10_1063_5_0218145 crossref_primary_10_1016_j_applthermaleng_2016_11_016 crossref_primary_10_3390_en18102540 crossref_primary_10_1016_j_cej_2021_129625 crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_092 crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_032 crossref_primary_10_1016_j_compfluid_2024_106418 crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_042 crossref_primary_10_1051_matecconf_201824001040 crossref_primary_10_1016_j_applthermaleng_2024_123256 crossref_primary_10_1016_j_enconman_2016_02_066 crossref_primary_10_1080_10407790_2024_2372353 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123618 crossref_primary_10_1016_j_icheatmasstransfer_2017_07_006 crossref_primary_10_1016_j_ijheatfluidflow_2015_08_001 crossref_primary_10_1016_j_physa_2019_123258 crossref_primary_10_3390_app8050798 crossref_primary_10_1016_j_applthermaleng_2024_125101 crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_026 crossref_primary_10_1016_j_icheatmasstransfer_2025_108744 crossref_primary_10_1016_j_ijthermalsci_2020_106643 crossref_primary_10_1016_j_compfluid_2018_03_082 crossref_primary_10_1016_j_ijthermalsci_2024_109476 crossref_primary_10_1016_j_icheatmasstransfer_2024_107295 crossref_primary_10_1080_10618562_2017_1400021 crossref_primary_10_1016_j_ijthermalsci_2022_107637 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105259 crossref_primary_10_1016_j_icheatmasstransfer_2022_106609 crossref_primary_10_1016_j_applthermaleng_2024_122621 crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_005 crossref_primary_10_1016_j_icheatmasstransfer_2015_03_002 crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_085 crossref_primary_10_1016_j_compfluid_2013_02_018 crossref_primary_10_1016_j_applthermaleng_2023_120515 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105320 crossref_primary_10_1016_j_advengsoft_2015_10_001 crossref_primary_10_1016_j_applthermaleng_2023_121600 crossref_primary_10_1016_j_applthermaleng_2016_08_209 crossref_primary_10_1016_j_ces_2022_118091 crossref_primary_10_1016_j_ijheatmasstransfer_2015_11_088 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_023 crossref_primary_10_1088_1742_5468_2012_10_P10005 crossref_primary_10_1016_j_ijthermalsci_2023_108525 crossref_primary_10_1007_s12217_022_09962_3 crossref_primary_10_1016_j_icheatmasstransfer_2024_108048 crossref_primary_10_1016_j_ijthermalsci_2024_108881 crossref_primary_10_1016_j_ces_2025_121253 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_088 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_096 crossref_primary_10_1016_j_tsep_2022_101586 crossref_primary_10_3390_en17164062 crossref_primary_10_1016_j_applthermaleng_2022_118705 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_002 crossref_primary_10_1016_j_icheatmasstransfer_2017_12_013 crossref_primary_10_1016_j_icheatmasstransfer_2017_06_023 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_140 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120198 crossref_primary_10_1080_10407782_2013_836025 crossref_primary_10_3390_pr10050986 crossref_primary_10_1080_10618562_2015_1119268 crossref_primary_10_1007_s00162_023_00652_3 crossref_primary_10_1016_j_compfluid_2024_106350 crossref_primary_10_1016_j_physrep_2023_07_003 crossref_primary_10_1016_j_compfluid_2016_03_003 crossref_primary_10_1016_j_compfluid_2019_104392 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119230 crossref_primary_10_1016_j_ijheatmasstransfer_2012_04_037 crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_033 crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_039 crossref_primary_10_12677_MOS_2021_103071 crossref_primary_10_1155_2021_5668743 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104026 crossref_primary_10_1088_1757_899X_301_1_012071 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_038 crossref_primary_10_1063_5_0266719 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119669 crossref_primary_10_1063_5_0026309 crossref_primary_10_1007_s00231_020_03005_6 crossref_primary_10_12677_MOS_2023_123266 crossref_primary_10_1016_j_tsep_2025_103726 |
| Cites_doi | 10.1063/1.2187070 10.1016/j.elstat.2005.10.012 10.1016/j.ijheatmasstransfer.2010.07.057 10.1017/S0022112005006956 10.2514/1.44032 10.1029/2003WR002333 10.4208/cicp.221209.160910a 10.1016/S0017-9310(00)00101-0 10.1080/10618560903369169 10.1016/S0065-2717(06)39005-3 10.1209/0295-5075/17/6/001 10.1103/PhysRevA.43.4320 10.1140/epjst/e2009-00898-6 10.1016/j.compfluid.2010.10.017 10.1016/j.ijheatmasstransfer.2004.04.012 10.1016/j.compfluid.2008.11.007 10.1016/j.compfluid.2010.06.006 10.1016/j.ijheatmasstransfer.2007.04.022 10.1016/j.compfluid.2008.05.001 10.1103/PhysRevE.57.R13 10.1103/PhysRevE.53.743 10.1103/PhysRevLett.75.830 10.1103/PhysRevE.67.066711 10.1016/j.jpowsour.2009.01.029 10.1103/PhysRevE.65.046308 10.1103/PhysRevE.47.1815 10.1007/s11434-009-0734-x 10.1007/BF02181482 10.1103/PhysRevE.58.6855 10.1063/1.1499125 10.1007/BF02179985 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7UA C1K F1W H96 L.G |
| DOI | 10.1016/j.compfluid.2011.09.013 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-0747 |
| EndPage | 104 |
| ExternalDocumentID | 25233191 10_1016_j_compfluid_2011_09_013 S0045793011002994 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSW SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7UA C1K F1W H96 L.G |
| ID | FETCH-LOGICAL-c410t-271d7b5ab6c81b1b74cf01a8bbd9c23b68042a3bc6056afff80409303514d1113 |
| ISICitedReferencesCount | 264 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298624800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7930 |
| IngestDate | Tue Oct 07 09:15:35 EDT 2025 Sun Sep 28 08:22:27 EDT 2025 Mon Jul 21 09:16:42 EDT 2025 Sat Nov 29 07:30:07 EST 2025 Tue Nov 18 21:49:53 EST 2025 Fri Feb 23 02:29:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiphase flows Wettability Lattice Boltzmann method Droplet movement Geometrical shape Boltzmann equation Particle motion Digital simulation Lattice model Droplets Modelling Velocity distribution Coalescence |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-271d7b5ab6c81b1b74cf01a8bbd9c23b68042a3bc6056afff80409303514d1113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1709788840 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_963883387 proquest_miscellaneous_1709788840 pascalfrancis_primary_25233191 crossref_citationtrail_10_1016_j_compfluid_2011_09_013 crossref_primary_10_1016_j_compfluid_2011_09_013 elsevier_sciencedirect_doi_10_1016_j_compfluid_2011_09_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-15 |
| PublicationDateYYYYMMDD | 2012-01-15 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Computers & fluids |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Yang Z, Dinh, Nourgaliev, Sehgal (b0155) 2001; 44 Cheng, Wu (b0005) 2006; 39 He, Zou, Luo, Dembo (b0075) 1997; 87 Gupta, Kumar (b0140) 2010; 39 Wu, Cheng (b0010) 2004; 47 Gunstensen, Rothman, Zaleski, Zanetti (b0030) 1991; 43 Hao, Cheng (b0125) 2009; 190 Kupershtokh, Medvedev (b0060) 2006; 64 Gupta, Kumar (b0145) 2011; 10 Lee, Son (b0040) 2011; 42 Kang, Zhang, Chen (b0095) 2002; 14 Zielke, Szymczyk (b0130) 2009; 166 Zhang, Chen (b0050) 2003; 67 Guo, Zheng, Shi (b0080) 2002; 65 Sukop, Thorne (b0160) 2006 Aminfar, Mohammadpourfard (b0165) 2010; 24 Frisch, d’Humières, Hasslacher, Lallemand, Pomeau, Rivet (b0115) 1987; 1 He, Shan, Doolen (b0070) 1998; 57 Gu, Gupta, Kumar (b0150) 2009; 23 Yuan, Schaefer (b0045) 2006; 18 Martys, Shan, Chen (b0065) 1998; 58 Nikolopoulos, Nikas, Bergeles (b0035) 2009; 38 Qian, D’Humières, Lallemand (b0085) 1992; 17 Shan, Chen (b0020) 1993; 47 Sukop, Or (b0105) 2004; 40 Martys, Chen (b0120) 1996; 53 Gong, Cheng, Quan (b0090) 2010; 53 Kang, Zhang, Chen (b0100) 2005; 545 Shan, Doolen (b0110) 1995; 81 Quan, Cheng, Wu (b0015) 2008; 51 Swift, Osborn, Yeomans (b0025) 1995; 75 Zeng, Li, Liao, Cui, Chen, Pan (b0055) 2009; 54 Manservisi, Scardovelli (b0135) 2009; 38 Shan (10.1016/j.compfluid.2011.09.013_b0110) 1995; 81 Gupta (10.1016/j.compfluid.2011.09.013_b0140) 2010; 39 Gunstensen (10.1016/j.compfluid.2011.09.013_b0030) 1991; 43 Kang (10.1016/j.compfluid.2011.09.013_b0100) 2005; 545 Swift (10.1016/j.compfluid.2011.09.013_b0025) 1995; 75 He (10.1016/j.compfluid.2011.09.013_b0075) 1997; 87 Yuan (10.1016/j.compfluid.2011.09.013_b0045) 2006; 18 Nikolopoulos (10.1016/j.compfluid.2011.09.013_b0035) 2009; 38 Gong (10.1016/j.compfluid.2011.09.013_b0090) 2010; 53 Gupta (10.1016/j.compfluid.2011.09.013_b0145) 2011; 10 Sukop (10.1016/j.compfluid.2011.09.013_b0160) 2006 Kupershtokh (10.1016/j.compfluid.2011.09.013_b0060) 2006; 64 Frisch (10.1016/j.compfluid.2011.09.013_b0115) 1987; 1 Hao (10.1016/j.compfluid.2011.09.013_b0125) 2009; 190 Yang Z (10.1016/j.compfluid.2011.09.013_b0155) 2001; 44 Lee (10.1016/j.compfluid.2011.09.013_b0040) 2011; 42 Zeng (10.1016/j.compfluid.2011.09.013_b0055) 2009; 54 Guo (10.1016/j.compfluid.2011.09.013_b0080) 2002; 65 Kang (10.1016/j.compfluid.2011.09.013_b0095) 2002; 14 Zhang (10.1016/j.compfluid.2011.09.013_b0050) 2003; 67 Manservisi (10.1016/j.compfluid.2011.09.013_b0135) 2009; 38 Wu (10.1016/j.compfluid.2011.09.013_b0010) 2004; 47 Martys (10.1016/j.compfluid.2011.09.013_b0065) 1998; 58 Quan (10.1016/j.compfluid.2011.09.013_b0015) 2008; 51 Zielke (10.1016/j.compfluid.2011.09.013_b0130) 2009; 166 Qian (10.1016/j.compfluid.2011.09.013_b0085) 1992; 17 Shan (10.1016/j.compfluid.2011.09.013_b0020) 1993; 47 Martys (10.1016/j.compfluid.2011.09.013_b0120) 1996; 53 Aminfar (10.1016/j.compfluid.2011.09.013_b0165) 2010; 24 Gu (10.1016/j.compfluid.2011.09.013_b0150) 2009; 23 Sukop (10.1016/j.compfluid.2011.09.013_b0105) 2004; 40 Cheng (10.1016/j.compfluid.2011.09.013_b0005) 2006; 39 He (10.1016/j.compfluid.2011.09.013_b0070) 1998; 57 |
| References_xml | – volume: 54 start-page: 4596 year: 2009 end-page: 4603 ident: b0055 article-title: Simulation of phase transition process using lattice Boltzmann method publication-title: Chinese Sci Bull – volume: 14 start-page: 3203 year: 2002 end-page: 3214 ident: b0095 article-title: Displacement of a two-dimensional immiscible droplet in a channel publication-title: Phys Fluids – volume: 190 start-page: 435 year: 2009 end-page: 446 ident: b0125 article-title: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel publication-title: J Power Sources – volume: 1 start-page: 649 year: 1987 end-page: 707 ident: b0115 article-title: Lattice gas hydrodynamics in two and three dimensions publication-title: Complex Syst – volume: 10 start-page: 767 year: 2011 end-page: 784 ident: b0145 article-title: Two-dimensional lattice Boltzmann model for droplet impingement and breakup in low density ratio liquids publication-title: Comm. Comp. Phys. – volume: 51 start-page: 707 year: 2008 end-page: 716 ident: b0015 article-title: Transition from annular flow to plug/slug flow in condensation of steam in microchannels publication-title: Int J Heat Mass Transfer – volume: 87 start-page: 115 year: 1997 end-page: 136 ident: b0075 article-title: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model publication-title: J Stat Phys – volume: 40 start-page: W01509 year: 2004 ident: b0105 article-title: Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media publication-title: Water Resour Res – volume: 44 start-page: 195 year: 2001 end-page: 206 ident: b0155 article-title: Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method publication-title: Int J Heat Mass Transfer – volume: 24 start-page: 143 year: 2010 end-page: 156 ident: b0165 article-title: Lattice Boltzmann simulation of droplet base electrowetting publication-title: Int J Comput Fluid Dyn – volume: 43 start-page: 4320 year: 1991 end-page: 4327 ident: b0030 article-title: Lattice Boltzmann model of immiscible fluids publication-title: Phys Rev A – volume: 53 start-page: 743 year: 1996 end-page: 750 ident: b0120 article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method publication-title: Phys Rev E – volume: 38 start-page: 1191 year: 2009 end-page: 1202 ident: b0035 article-title: A numerical investigation of central binary collision of droplets publication-title: Comput Fluids – volume: 39 start-page: 1696 year: 2010 end-page: 1703 ident: b0140 article-title: Droplet impingement and breakup on a dry surface publication-title: Comput Fluids – volume: 23 start-page: 773 year: 2009 end-page: 785 ident: b0150 article-title: Lattice Boltzmann simulation of surface impingement at high-density ratio publication-title: J Thermophys Heat Transfer – volume: 39 start-page: 461 year: 2006 end-page: 563 ident: b0005 article-title: Mesocale and microscale phase-change heat transfer publication-title: Adv Heat Transfer – volume: 47 start-page: 1815 year: 1993 end-page: 1819 ident: b0020 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Phys Rev E – volume: 64 start-page: 581 year: 2006 end-page: 585 ident: b0060 article-title: Lattice Boltzmann equation method in electrohydrodynamic problems publication-title: J Electrostat – volume: 166 start-page: 155 year: 2009 end-page: 158 ident: b0130 article-title: Experimental investigation of the motion and deformation of droplets on surfaces with a linear wettability gradient publication-title: Eur. Phys. J. Special Topics – volume: 38 start-page: 406 year: 2009 end-page: 424 ident: b0135 article-title: A variational approach to the contact angle dynamics of spreading droplets publication-title: Comput Fluids – volume: 17 start-page: 479 year: 1992 end-page: 484 ident: b0085 article-title: Lattice BGK models for Navier–Stokes equation publication-title: Europhys Lett – volume: 53 start-page: 5863 year: 2010 end-page: 5870 ident: b0090 article-title: Lattice Boltzmann simulation of droplet formation in microchannels under an electric field publication-title: Int J Heat Mass Transfer – volume: 58 start-page: 6855 year: 1998 end-page: 6857 ident: b0065 article-title: Evaluation of the external force term in the discrete Boltzmann equation publication-title: Phys Rev E – volume: 81 start-page: 379 year: 1995 end-page: 393 ident: b0110 article-title: Multi-component lattice-Boltzmann model with interparticle interaction publication-title: J Stat Phys – volume: 75 start-page: 830 year: 1995 end-page: 833 ident: b0025 article-title: Lattice Boltzmann simulation of nonideal fluids publication-title: Phys Rev Lett – volume: 47 start-page: 3631 year: 2004 end-page: 3641 ident: b0010 article-title: Boiling instability in parallel silicon microchannels at different heat flux publication-title: Int J Heat Mass Transfer – volume: 545 start-page: 41 year: 2005 end-page: 66 ident: b0100 article-title: Displacement of a three-dimensional immiscible droplet in a duct publication-title: J Fluid Mech – volume: 65 start-page: 046308 year: 2002 ident: b0080 article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method publication-title: Phys Rev E – year: 2006 ident: b0160 article-title: Lattice Boltzmann modeling: an introduction for geoscientists and engineers – volume: 18 start-page: 042101 year: 2006 ident: b0045 article-title: Equations of state in a lattice Boltzmann model publication-title: Phys Fluids – volume: 42 start-page: 26 year: 2011 end-page: 36 ident: b0040 article-title: Numerical study of droplet impact and coalescence in a microline patterning process publication-title: Comput Fluids – volume: 67 start-page: 066711 year: 2003 ident: b0050 article-title: Lattice Boltzmann method for simulations of liquid–vapor thermal flows publication-title: Phys Rev E – volume: 57 start-page: R13 year: 1998 end-page: R16 ident: b0070 article-title: Discrete Boltzmann equation model for nonideal gases publication-title: Phys Rev E – volume: 18 start-page: 042101 year: 2006 ident: 10.1016/j.compfluid.2011.09.013_b0045 article-title: Equations of state in a lattice Boltzmann model publication-title: Phys Fluids doi: 10.1063/1.2187070 – volume: 64 start-page: 581 year: 2006 ident: 10.1016/j.compfluid.2011.09.013_b0060 article-title: Lattice Boltzmann equation method in electrohydrodynamic problems publication-title: J Electrostat doi: 10.1016/j.elstat.2005.10.012 – volume: 53 start-page: 5863 year: 2010 ident: 10.1016/j.compfluid.2011.09.013_b0090 article-title: Lattice Boltzmann simulation of droplet formation in microchannels under an electric field publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.07.057 – volume: 545 start-page: 41 year: 2005 ident: 10.1016/j.compfluid.2011.09.013_b0100 article-title: Displacement of a three-dimensional immiscible droplet in a duct publication-title: J Fluid Mech doi: 10.1017/S0022112005006956 – volume: 23 start-page: 773 issue: 4 year: 2009 ident: 10.1016/j.compfluid.2011.09.013_b0150 article-title: Lattice Boltzmann simulation of surface impingement at high-density ratio publication-title: J Thermophys Heat Transfer doi: 10.2514/1.44032 – volume: 40 start-page: W01509 year: 2004 ident: 10.1016/j.compfluid.2011.09.013_b0105 article-title: Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media publication-title: Water Resour Res doi: 10.1029/2003WR002333 – volume: 10 start-page: 767 year: 2011 ident: 10.1016/j.compfluid.2011.09.013_b0145 article-title: Two-dimensional lattice Boltzmann model for droplet impingement and breakup in low density ratio liquids publication-title: Comm. Comp. Phys. doi: 10.4208/cicp.221209.160910a – volume: 44 start-page: 195 issue: 1 year: 2001 ident: 10.1016/j.compfluid.2011.09.013_b0155 article-title: Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method publication-title: Int J Heat Mass Transfer doi: 10.1016/S0017-9310(00)00101-0 – volume: 24 start-page: 143 issue: 5 year: 2010 ident: 10.1016/j.compfluid.2011.09.013_b0165 article-title: Lattice Boltzmann simulation of droplet base electrowetting publication-title: Int J Comput Fluid Dyn doi: 10.1080/10618560903369169 – volume: 39 start-page: 461 year: 2006 ident: 10.1016/j.compfluid.2011.09.013_b0005 article-title: Mesocale and microscale phase-change heat transfer publication-title: Adv Heat Transfer doi: 10.1016/S0065-2717(06)39005-3 – volume: 17 start-page: 479 year: 1992 ident: 10.1016/j.compfluid.2011.09.013_b0085 article-title: Lattice BGK models for Navier–Stokes equation publication-title: Europhys Lett doi: 10.1209/0295-5075/17/6/001 – volume: 43 start-page: 4320 year: 1991 ident: 10.1016/j.compfluid.2011.09.013_b0030 article-title: Lattice Boltzmann model of immiscible fluids publication-title: Phys Rev A doi: 10.1103/PhysRevA.43.4320 – volume: 166 start-page: 155 year: 2009 ident: 10.1016/j.compfluid.2011.09.013_b0130 article-title: Experimental investigation of the motion and deformation of droplets on surfaces with a linear wettability gradient publication-title: Eur. Phys. J. Special Topics doi: 10.1140/epjst/e2009-00898-6 – volume: 42 start-page: 26 issue: 1 year: 2011 ident: 10.1016/j.compfluid.2011.09.013_b0040 article-title: Numerical study of droplet impact and coalescence in a microline patterning process publication-title: Comput Fluids doi: 10.1016/j.compfluid.2010.10.017 – volume: 47 start-page: 3631 year: 2004 ident: 10.1016/j.compfluid.2011.09.013_b0010 article-title: Boiling instability in parallel silicon microchannels at different heat flux publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.04.012 – volume: 38 start-page: 1191 issue: 6 year: 2009 ident: 10.1016/j.compfluid.2011.09.013_b0035 article-title: A numerical investigation of central binary collision of droplets publication-title: Comput Fluids doi: 10.1016/j.compfluid.2008.11.007 – volume: 39 start-page: 1696 issue: 9 year: 2010 ident: 10.1016/j.compfluid.2011.09.013_b0140 article-title: Droplet impingement and breakup on a dry surface publication-title: Comput Fluids doi: 10.1016/j.compfluid.2010.06.006 – volume: 51 start-page: 707 year: 2008 ident: 10.1016/j.compfluid.2011.09.013_b0015 article-title: Transition from annular flow to plug/slug flow in condensation of steam in microchannels publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.04.022 – volume: 38 start-page: 406 issue: 2 year: 2009 ident: 10.1016/j.compfluid.2011.09.013_b0135 article-title: A variational approach to the contact angle dynamics of spreading droplets publication-title: Comput Fluids doi: 10.1016/j.compfluid.2008.05.001 – volume: 57 start-page: R13 year: 1998 ident: 10.1016/j.compfluid.2011.09.013_b0070 article-title: Discrete Boltzmann equation model for nonideal gases publication-title: Phys Rev E doi: 10.1103/PhysRevE.57.R13 – volume: 53 start-page: 743 year: 1996 ident: 10.1016/j.compfluid.2011.09.013_b0120 article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method publication-title: Phys Rev E doi: 10.1103/PhysRevE.53.743 – volume: 75 start-page: 830 year: 1995 ident: 10.1016/j.compfluid.2011.09.013_b0025 article-title: Lattice Boltzmann simulation of nonideal fluids publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.75.830 – volume: 67 start-page: 066711 year: 2003 ident: 10.1016/j.compfluid.2011.09.013_b0050 article-title: Lattice Boltzmann method for simulations of liquid–vapor thermal flows publication-title: Phys Rev E doi: 10.1103/PhysRevE.67.066711 – volume: 190 start-page: 435 issue: 2 year: 2009 ident: 10.1016/j.compfluid.2011.09.013_b0125 article-title: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.01.029 – volume: 1 start-page: 649 year: 1987 ident: 10.1016/j.compfluid.2011.09.013_b0115 article-title: Lattice gas hydrodynamics in two and three dimensions publication-title: Complex Syst – volume: 65 start-page: 046308 year: 2002 ident: 10.1016/j.compfluid.2011.09.013_b0080 article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method publication-title: Phys Rev E doi: 10.1103/PhysRevE.65.046308 – volume: 47 start-page: 1815 year: 1993 ident: 10.1016/j.compfluid.2011.09.013_b0020 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Phys Rev E doi: 10.1103/PhysRevE.47.1815 – volume: 54 start-page: 4596 year: 2009 ident: 10.1016/j.compfluid.2011.09.013_b0055 article-title: Simulation of phase transition process using lattice Boltzmann method publication-title: Chinese Sci Bull doi: 10.1007/s11434-009-0734-x – year: 2006 ident: 10.1016/j.compfluid.2011.09.013_b0160 – volume: 87 start-page: 115 year: 1997 ident: 10.1016/j.compfluid.2011.09.013_b0075 article-title: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model publication-title: J Stat Phys doi: 10.1007/BF02181482 – volume: 58 start-page: 6855 year: 1998 ident: 10.1016/j.compfluid.2011.09.013_b0065 article-title: Evaluation of the external force term in the discrete Boltzmann equation publication-title: Phys Rev E doi: 10.1103/PhysRevE.58.6855 – volume: 14 start-page: 3203 year: 2002 ident: 10.1016/j.compfluid.2011.09.013_b0095 article-title: Displacement of a two-dimensional immiscible droplet in a channel publication-title: Phys Fluids doi: 10.1063/1.1499125 – volume: 81 start-page: 379 year: 1995 ident: 10.1016/j.compfluid.2011.09.013_b0110 article-title: Multi-component lattice-Boltzmann model with interparticle interaction publication-title: J Stat Phys doi: 10.1007/BF02179985 |
| SSID | ssj0004324 |
| Score | 2.466908 |
| Snippet | ► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted... An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 93 |
| SubjectTerms | Coalescence Coalescing Computational methods in fluid dynamics Computer simulation Droplet movement Droplets Drops and bubbles Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Lattice Boltzmann method Lattices Mathematical models Multiphase flow Multiphase flows Nonhomogeneous flows Phase transformations Physics Wettability |
| Title | Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows |
| URI | https://dx.doi.org/10.1016/j.compfluid.2011.09.013 https://www.proquest.com/docview/1709788840 https://www.proquest.com/docview/963883387 |
| Volume | 53 |
| WOSCitedRecordID | wos000298624800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMIIa6iXCYjsacpKImTOOFtQMtFU5lEJ_XNspNY6xSS0CbV4C_wpzm-JG01psIDL1HrJE6U7_M5x_a5IPRKupIGXCROFKnVqjwIHUGSyEmI54OGomEUSF1sgk4m8WyWnA4GdRcLsypoWcaXl0n9X6GGNgBbhc7-A9x9p9AAvwF0OALscPwr4Cet2YRRyTT6HBrGKswWyl28OTKle2xIGzcZnWB8C5WLScVNLqoV2KEFb5Rn3NHbqmh-fuNlacrmaMfE-hy0n6ovUVqfL92Z8U7Up2RRWXO9S4Ngy0csNdlk0c6z3pz_YP2Cv563fL52OMhN62mnXe3ihPbycEx4ZidwA5UR0269WIEbkg2JaeojWt1rSxFfEetmheFCoVLrF7S5V5PXrkfWmqzbvZ98YeOzkxM2Hc2mh2Rcf3dUlTG1G39I3hvEb6B9n4YJyMH940-j2ed1LC3xTeZu--JbPoF_fP51Fs2dmi8BbGkKpFzR9dqAmd5Dd-3MAx8bxtxHg7x8gG5v5KN8iH713MFb3MGVxJY72HAHA9x4gztY_IAm3HEHW-7gnjtYcwcDd7AmCN7gju5szR2sufMInY1H03cfHVutw0kDz20cn3oZFSEXUQpTIU_QIJWux2MhsiT1iYhi0A-ciBQm0BGXUsJ_Fz6wCiXJQOOSx2ivrMr8CcIi9OKMwlxbgragKXSZiyD1fBGD6IhkMkRR98VZalPZq4oqBet8Fi9YDxVTUDE3YQDVELn9jbXJ5rL7ljcdpMwapcbYZEDO3TcfbJGgf6gf-gSUnzdELztWMJDrarOOl3nVLplHVYRVHAfuEOFrrlHKMyYkpk93X_IM3VoP0Odor1m0-Qt0M1018-XiwI6C3z6w2H8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+droplet+motion+and+coalescence+by+an+improved+lattice+Boltzmann+model+for+phase+transitions+and+multiphase+flows&rft.jtitle=Computers+%26+fluids&rft.au=Gong%2C+Shuai&rft.au=Cheng%2C+Ping&rft.date=2012-01-15&rft.issn=0045-7930&rft.volume=53&rft.spage=93&rft.epage=104&rft_id=info:doi/10.1016%2Fj.compfluid.2011.09.013&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |