Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows

► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted EDM method. ► Our proposed model can give more accurate and stable numerical results. ► A high density ratio can be handled by our proposed mo...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids Vol. 53; pp. 93 - 104
Main Authors: Gong, Shuai, Cheng, Ping
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 15.01.2012
Elsevier
Subjects:
ISSN:0045-7930, 1879-0747
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted EDM method. ► Our proposed model can give more accurate and stable numerical results. ► A high density ratio can be handled by our proposed model. An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this paper. It is shown that both the scheme for the interparticle interaction force term and the method of incorporating the force term are important for obtaining accurate and stable numerical results for simulations of single-component multiphase flows. A new scheme for the force term is proposed and simulation results of several non-ideal equation of state suggest that the proposed scheme can greatly improve the coexistence curves. Among several methods of incorporating the force term, the exact difference method is shown to have better accuracy and stability. Furthermore, it avoids the unphysical phenomenon of relaxation time dependence. Compared with existing models, the proposed model, consisting of the new force term scheme together with the exact different method to incorporate the force term, can give more accurate and stable numerical results in a wider temperature range with the spurious currents greatly reduced. Droplet motion and coalescence processes on surfaces with wettability gradients are numerically investigated based on the newly proposed model. The velocity field and mechanism of droplet motion are illustrated in details.
AbstractList An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this paper. It is shown that both the scheme for the interparticle interaction force term and the method of incorporating the force term are important for obtaining accurate and stable numerical results for simulations of single-component multiphase flows. A new scheme for the force term is proposed and simulation results of several non-ideal equation of state suggest that the proposed scheme can greatly improve the coexistence curves. Among several methods of incorporating the force term, the exact difference method is shown to have better accuracy and stability. Furthermore, it avoids the unphysical phenomenon of relaxation time dependence. Compared with existing models, the proposed model, consisting of the new force term scheme together with the exact different method to incorporate the force term, can give more accurate and stable numerical results in a wider temperature range with the spurious currents greatly reduced. Droplet motion and coalescence processes on surfaces with wettability gradients are numerically investigated based on the newly proposed model. The velocity field and mechanism of droplet motion are illustrated in details.
► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted EDM method. ► Our proposed model can give more accurate and stable numerical results. ► A high density ratio can be handled by our proposed model. An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this paper. It is shown that both the scheme for the interparticle interaction force term and the method of incorporating the force term are important for obtaining accurate and stable numerical results for simulations of single-component multiphase flows. A new scheme for the force term is proposed and simulation results of several non-ideal equation of state suggest that the proposed scheme can greatly improve the coexistence curves. Among several methods of incorporating the force term, the exact difference method is shown to have better accuracy and stability. Furthermore, it avoids the unphysical phenomenon of relaxation time dependence. Compared with existing models, the proposed model, consisting of the new force term scheme together with the exact different method to incorporate the force term, can give more accurate and stable numerical results in a wider temperature range with the spurious currents greatly reduced. Droplet motion and coalescence processes on surfaces with wettability gradients are numerically investigated based on the newly proposed model. The velocity field and mechanism of droplet motion are illustrated in details.
Author Gong, Shuai
Cheng, Ping
Author_xml – sequence: 1
  givenname: Shuai
  surname: Gong
  fullname: Gong, Shuai
– sequence: 2
  givenname: Ping
  surname: Cheng
  fullname: Cheng, Ping
  email: pingcheng@sjtu.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25233191$$DView record in Pascal Francis
BookMark eNqFUc1u1DAYtFCR2BaeAV8QXBLsOImdA4dSAa1UwQXOln_BK8cOtrOovAIvjbNbOHCgJ8ufZ-bzzJyDsxCDAeA5Ri1GeHy9b1WcF-tXp9sOYdyiqUWYPAI7zOjUINrTM7BDqB8aOhH0BJznvEf1Trp-B359XGeTnBIeunAwubivorgYYLRQp7h4U-AcjxMRNFRReJOVCcpAeVdH0M1LigejoReluDp-G335OYsQKk8bD21McPkmsoEliZDdppWPYvPqizs9WR9_5KfgsRU-m2f35wX48v7d56vr5vbTh5ury9tG9RiVpqNYUzkIOSqGJZa0VxZhwaTUk-qIHBnqO0GkGtEwCmttvaPqnAy41xhjcgFennTrz7-v1TOfXfXkvQgmrplPI2GMEEYr8tV_kZiiiTLGelShL-6hItc0bfWqXOZLcrNId7wbOkLwtC1_c8KpFHNOxnLlyjHyGo_zHCO-1cr3_G-tfKuVo4nXWiuf_sP_s-Jh5uWJaWq2B2cSz8ptTWqXjCpcR_egxm8whcdK
CODEN CPFLBI
CitedBy_id crossref_primary_10_1016_j_jcp_2023_112040
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104430
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104950
crossref_primary_10_1088_1757_899X_751_1_012067
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_065
crossref_primary_10_1016_j_jcp_2020_110018
crossref_primary_10_1016_j_applthermaleng_2017_08_092
crossref_primary_10_1016_j_applthermaleng_2023_120310
crossref_primary_10_32604_cmes_2023_027280
crossref_primary_10_1080_00295639_2018_1504566
crossref_primary_10_1016_j_ces_2024_119946
crossref_primary_10_1016_j_apm_2021_10_012
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103290
crossref_primary_10_1016_j_ijthermalsci_2023_108170
crossref_primary_10_1016_j_camwa_2025_06_014
crossref_primary_10_1177_17568277231202030
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_027
crossref_primary_10_1016_j_ijheatmasstransfer_2016_01_044
crossref_primary_10_1016_j_ijheatmasstransfer_2015_02_008
crossref_primary_10_1016_j_applthermaleng_2019_114027
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105015
crossref_primary_10_1016_j_euromechflu_2018_01_007
crossref_primary_10_1016_j_icheatmasstransfer_2017_05_014
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120868
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_021
crossref_primary_10_1007_s10973_023_12292_0
crossref_primary_10_1016_j_ces_2023_118563
crossref_primary_10_1016_j_physa_2017_07_013
crossref_primary_10_1021_acs_iecr_5c01811
crossref_primary_10_1016_j_applthermaleng_2023_120535
crossref_primary_10_1016_j_powtec_2022_117558
crossref_primary_10_1016_j_applthermaleng_2025_127090
crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_036
crossref_primary_10_1063_5_0286483
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_124
crossref_primary_10_1021_acs_langmuir_4c04808
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122939
crossref_primary_10_1002_cjce_24604
crossref_primary_10_1016_j_ijheatfluidflow_2024_109357
crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_058
crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_028
crossref_primary_10_1016_j_camwa_2013_08_030
crossref_primary_10_1016_j_icheatmasstransfer_2025_109557
crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_032
crossref_primary_10_1016_j_ijheatfluidflow_2017_09_009
crossref_primary_10_1016_j_applthermaleng_2015_12_050
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_060
crossref_primary_10_1016_j_jcis_2018_01_063
crossref_primary_10_1016_j_icheatmasstransfer_2023_106640
crossref_primary_10_1002_fld_4971
crossref_primary_10_12677_mos_2024_134393
crossref_primary_10_1007_s12217_020_09841_9
crossref_primary_10_1016_j_ijthermalsci_2022_107913
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103923
crossref_primary_10_1080_19942060_2022_2116488
crossref_primary_10_1016_j_camwa_2018_07_022
crossref_primary_10_1063_5_0283877
crossref_primary_10_1016_j_ijhydene_2020_02_155
crossref_primary_10_1016_j_icheatmasstransfer_2024_108314
crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_029
crossref_primary_10_1134_S1990478923010088
crossref_primary_10_1016_j_ces_2023_118547
crossref_primary_10_3390_en16062622
crossref_primary_10_1016_j_icheatmasstransfer_2021_105567
crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_002
crossref_primary_10_1016_j_icheatmasstransfer_2017_08_019
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_096
crossref_primary_10_3390_coatings8080288
crossref_primary_10_3390_pr13030872
crossref_primary_10_1016_j_jngse_2021_104291
crossref_primary_10_1007_s12217_019_9681_6
crossref_primary_10_1002_aic_16451
crossref_primary_10_1016_j_ijthermalsci_2021_107393
crossref_primary_10_1016_j_cep_2014_08_006
crossref_primary_10_1063_5_0228546
crossref_primary_10_1016_j_asr_2016_08_029
crossref_primary_10_1016_j_ces_2022_118384
crossref_primary_10_1016_j_icheatmasstransfer_2020_104974
crossref_primary_10_1016_j_icheatmasstransfer_2022_106357
crossref_primary_10_1016_j_icheatmasstransfer_2024_107926
crossref_primary_10_3390_fractalfract8120719
crossref_primary_10_1016_j_compfluid_2022_105616
crossref_primary_10_1016_j_icheatmasstransfer_2024_107809
crossref_primary_10_1016_j_ijheatmasstransfer_2014_11_027
crossref_primary_10_1016_j_ijthermalsci_2020_106680
crossref_primary_10_1080_01457632_2018_1546964
crossref_primary_10_1016_j_ces_2023_119203
crossref_primary_10_1063_1_4962645
crossref_primary_10_1016_j_ijthermalsci_2021_107017
crossref_primary_10_1016_j_icheatmasstransfer_2020_104961
crossref_primary_10_1007_s00231_018_2329_z
crossref_primary_10_1016_j_compfluid_2014_06_006
crossref_primary_10_1088_1742_6596_2441_1_012017
crossref_primary_10_1016_j_euromechflu_2018_12_004
crossref_primary_10_1103_5rjm_t6gb
crossref_primary_10_1007_s12206_018_0521_1
crossref_primary_10_1016_j_ijheatmasstransfer_2014_01_060
crossref_primary_10_1080_19942060_2025_2499251
crossref_primary_10_1016_j_ijheatfluidflow_2017_12_001
crossref_primary_10_1016_j_ces_2021_116483
crossref_primary_10_1016_j_ijthermalsci_2024_109663
crossref_primary_10_1088_1755_1315_440_2_022043
crossref_primary_10_1016_j_compfluid_2022_105674
crossref_primary_10_1016_j_jpowsour_2018_05_008
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121264
crossref_primary_10_1007_s10483_020_2639_7
crossref_primary_10_1016_j_icheatmasstransfer_2019_104418
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103218
crossref_primary_10_1016_j_ijthermalsci_2021_107236
crossref_primary_10_1007_s10409_017_0667_6
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_146
crossref_primary_10_1007_s10973_022_11820_8
crossref_primary_10_1063_5_0069152
crossref_primary_10_1016_j_surfin_2024_104055
crossref_primary_10_1088_1873_7005_aaa213
crossref_primary_10_1088_1755_1315_94_1_012152
crossref_primary_10_1063_5_0218145
crossref_primary_10_1016_j_applthermaleng_2016_11_016
crossref_primary_10_3390_en18102540
crossref_primary_10_1016_j_cej_2021_129625
crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_092
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_032
crossref_primary_10_1016_j_compfluid_2024_106418
crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_042
crossref_primary_10_1051_matecconf_201824001040
crossref_primary_10_1016_j_applthermaleng_2024_123256
crossref_primary_10_1016_j_enconman_2016_02_066
crossref_primary_10_1080_10407790_2024_2372353
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123618
crossref_primary_10_1016_j_icheatmasstransfer_2017_07_006
crossref_primary_10_1016_j_ijheatfluidflow_2015_08_001
crossref_primary_10_1016_j_physa_2019_123258
crossref_primary_10_3390_app8050798
crossref_primary_10_1016_j_applthermaleng_2024_125101
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_026
crossref_primary_10_1016_j_icheatmasstransfer_2025_108744
crossref_primary_10_1016_j_ijthermalsci_2020_106643
crossref_primary_10_1016_j_compfluid_2018_03_082
crossref_primary_10_1016_j_ijthermalsci_2024_109476
crossref_primary_10_1016_j_icheatmasstransfer_2024_107295
crossref_primary_10_1080_10618562_2017_1400021
crossref_primary_10_1016_j_ijthermalsci_2022_107637
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105259
crossref_primary_10_1016_j_icheatmasstransfer_2022_106609
crossref_primary_10_1016_j_applthermaleng_2024_122621
crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_005
crossref_primary_10_1016_j_icheatmasstransfer_2015_03_002
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_085
crossref_primary_10_1016_j_compfluid_2013_02_018
crossref_primary_10_1016_j_applthermaleng_2023_120515
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105320
crossref_primary_10_1016_j_advengsoft_2015_10_001
crossref_primary_10_1016_j_applthermaleng_2023_121600
crossref_primary_10_1016_j_applthermaleng_2016_08_209
crossref_primary_10_1016_j_ces_2022_118091
crossref_primary_10_1016_j_ijheatmasstransfer_2015_11_088
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_023
crossref_primary_10_1088_1742_5468_2012_10_P10005
crossref_primary_10_1016_j_ijthermalsci_2023_108525
crossref_primary_10_1007_s12217_022_09962_3
crossref_primary_10_1016_j_icheatmasstransfer_2024_108048
crossref_primary_10_1016_j_ijthermalsci_2024_108881
crossref_primary_10_1016_j_ces_2025_121253
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_088
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_096
crossref_primary_10_1016_j_tsep_2022_101586
crossref_primary_10_3390_en17164062
crossref_primary_10_1016_j_applthermaleng_2022_118705
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_002
crossref_primary_10_1016_j_icheatmasstransfer_2017_12_013
crossref_primary_10_1016_j_icheatmasstransfer_2017_06_023
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_140
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120198
crossref_primary_10_1080_10407782_2013_836025
crossref_primary_10_3390_pr10050986
crossref_primary_10_1080_10618562_2015_1119268
crossref_primary_10_1007_s00162_023_00652_3
crossref_primary_10_1016_j_compfluid_2024_106350
crossref_primary_10_1016_j_physrep_2023_07_003
crossref_primary_10_1016_j_compfluid_2016_03_003
crossref_primary_10_1016_j_compfluid_2019_104392
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119230
crossref_primary_10_1016_j_ijheatmasstransfer_2012_04_037
crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_033
crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_039
crossref_primary_10_12677_MOS_2021_103071
crossref_primary_10_1155_2021_5668743
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104026
crossref_primary_10_1088_1757_899X_301_1_012071
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_038
crossref_primary_10_1063_5_0266719
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119669
crossref_primary_10_1063_5_0026309
crossref_primary_10_1007_s00231_020_03005_6
crossref_primary_10_12677_MOS_2023_123266
crossref_primary_10_1016_j_tsep_2025_103726
Cites_doi 10.1063/1.2187070
10.1016/j.elstat.2005.10.012
10.1016/j.ijheatmasstransfer.2010.07.057
10.1017/S0022112005006956
10.2514/1.44032
10.1029/2003WR002333
10.4208/cicp.221209.160910a
10.1016/S0017-9310(00)00101-0
10.1080/10618560903369169
10.1016/S0065-2717(06)39005-3
10.1209/0295-5075/17/6/001
10.1103/PhysRevA.43.4320
10.1140/epjst/e2009-00898-6
10.1016/j.compfluid.2010.10.017
10.1016/j.ijheatmasstransfer.2004.04.012
10.1016/j.compfluid.2008.11.007
10.1016/j.compfluid.2010.06.006
10.1016/j.ijheatmasstransfer.2007.04.022
10.1016/j.compfluid.2008.05.001
10.1103/PhysRevE.57.R13
10.1103/PhysRevE.53.743
10.1103/PhysRevLett.75.830
10.1103/PhysRevE.67.066711
10.1016/j.jpowsour.2009.01.029
10.1103/PhysRevE.65.046308
10.1103/PhysRevE.47.1815
10.1007/s11434-009-0734-x
10.1007/BF02181482
10.1103/PhysRevE.58.6855
10.1063/1.1499125
10.1007/BF02179985
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7UA
C1K
F1W
H96
L.G
DOI 10.1016/j.compfluid.2011.09.013
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0747
EndPage 104
ExternalDocumentID 25233191
10_1016_j_compfluid_2011_09_013
S0045793011002994
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-c410t-271d7b5ab6c81b1b74cf01a8bbd9c23b68042a3bc6056afff80409303514d1113
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298624800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7930
IngestDate Tue Oct 07 09:15:35 EDT 2025
Sun Sep 28 08:22:27 EDT 2025
Mon Jul 21 09:16:42 EDT 2025
Sat Nov 29 07:30:07 EST 2025
Tue Nov 18 21:49:53 EST 2025
Fri Feb 23 02:29:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiphase flows
Wettability
Lattice Boltzmann method
Droplet movement
Geometrical shape
Boltzmann equation
Particle motion
Digital simulation
Lattice model
Droplets
Modelling
Velocity distribution
Coalescence
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-271d7b5ab6c81b1b74cf01a8bbd9c23b68042a3bc6056afff80409303514d1113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1709788840
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_963883387
proquest_miscellaneous_1709788840
pascalfrancis_primary_25233191
crossref_citationtrail_10_1016_j_compfluid_2011_09_013
crossref_primary_10_1016_j_compfluid_2011_09_013
elsevier_sciencedirect_doi_10_1016_j_compfluid_2011_09_013
PublicationCentury 2000
PublicationDate 2012-01-15
PublicationDateYYYYMMDD 2012-01-15
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Computers & fluids
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yang Z, Dinh, Nourgaliev, Sehgal (b0155) 2001; 44
Cheng, Wu (b0005) 2006; 39
He, Zou, Luo, Dembo (b0075) 1997; 87
Gupta, Kumar (b0140) 2010; 39
Wu, Cheng (b0010) 2004; 47
Gunstensen, Rothman, Zaleski, Zanetti (b0030) 1991; 43
Hao, Cheng (b0125) 2009; 190
Kupershtokh, Medvedev (b0060) 2006; 64
Gupta, Kumar (b0145) 2011; 10
Lee, Son (b0040) 2011; 42
Kang, Zhang, Chen (b0095) 2002; 14
Zielke, Szymczyk (b0130) 2009; 166
Zhang, Chen (b0050) 2003; 67
Guo, Zheng, Shi (b0080) 2002; 65
Sukop, Thorne (b0160) 2006
Aminfar, Mohammadpourfard (b0165) 2010; 24
Frisch, d’Humières, Hasslacher, Lallemand, Pomeau, Rivet (b0115) 1987; 1
He, Shan, Doolen (b0070) 1998; 57
Gu, Gupta, Kumar (b0150) 2009; 23
Yuan, Schaefer (b0045) 2006; 18
Martys, Shan, Chen (b0065) 1998; 58
Nikolopoulos, Nikas, Bergeles (b0035) 2009; 38
Qian, D’Humières, Lallemand (b0085) 1992; 17
Shan, Chen (b0020) 1993; 47
Sukop, Or (b0105) 2004; 40
Martys, Chen (b0120) 1996; 53
Gong, Cheng, Quan (b0090) 2010; 53
Kang, Zhang, Chen (b0100) 2005; 545
Shan, Doolen (b0110) 1995; 81
Quan, Cheng, Wu (b0015) 2008; 51
Swift, Osborn, Yeomans (b0025) 1995; 75
Zeng, Li, Liao, Cui, Chen, Pan (b0055) 2009; 54
Manservisi, Scardovelli (b0135) 2009; 38
Shan (10.1016/j.compfluid.2011.09.013_b0110) 1995; 81
Gupta (10.1016/j.compfluid.2011.09.013_b0140) 2010; 39
Gunstensen (10.1016/j.compfluid.2011.09.013_b0030) 1991; 43
Kang (10.1016/j.compfluid.2011.09.013_b0100) 2005; 545
Swift (10.1016/j.compfluid.2011.09.013_b0025) 1995; 75
He (10.1016/j.compfluid.2011.09.013_b0075) 1997; 87
Yuan (10.1016/j.compfluid.2011.09.013_b0045) 2006; 18
Nikolopoulos (10.1016/j.compfluid.2011.09.013_b0035) 2009; 38
Gong (10.1016/j.compfluid.2011.09.013_b0090) 2010; 53
Gupta (10.1016/j.compfluid.2011.09.013_b0145) 2011; 10
Sukop (10.1016/j.compfluid.2011.09.013_b0160) 2006
Kupershtokh (10.1016/j.compfluid.2011.09.013_b0060) 2006; 64
Frisch (10.1016/j.compfluid.2011.09.013_b0115) 1987; 1
Hao (10.1016/j.compfluid.2011.09.013_b0125) 2009; 190
Yang Z (10.1016/j.compfluid.2011.09.013_b0155) 2001; 44
Lee (10.1016/j.compfluid.2011.09.013_b0040) 2011; 42
Zeng (10.1016/j.compfluid.2011.09.013_b0055) 2009; 54
Guo (10.1016/j.compfluid.2011.09.013_b0080) 2002; 65
Kang (10.1016/j.compfluid.2011.09.013_b0095) 2002; 14
Zhang (10.1016/j.compfluid.2011.09.013_b0050) 2003; 67
Manservisi (10.1016/j.compfluid.2011.09.013_b0135) 2009; 38
Wu (10.1016/j.compfluid.2011.09.013_b0010) 2004; 47
Martys (10.1016/j.compfluid.2011.09.013_b0065) 1998; 58
Quan (10.1016/j.compfluid.2011.09.013_b0015) 2008; 51
Zielke (10.1016/j.compfluid.2011.09.013_b0130) 2009; 166
Qian (10.1016/j.compfluid.2011.09.013_b0085) 1992; 17
Shan (10.1016/j.compfluid.2011.09.013_b0020) 1993; 47
Martys (10.1016/j.compfluid.2011.09.013_b0120) 1996; 53
Aminfar (10.1016/j.compfluid.2011.09.013_b0165) 2010; 24
Gu (10.1016/j.compfluid.2011.09.013_b0150) 2009; 23
Sukop (10.1016/j.compfluid.2011.09.013_b0105) 2004; 40
Cheng (10.1016/j.compfluid.2011.09.013_b0005) 2006; 39
He (10.1016/j.compfluid.2011.09.013_b0070) 1998; 57
References_xml – volume: 54
  start-page: 4596
  year: 2009
  end-page: 4603
  ident: b0055
  article-title: Simulation of phase transition process using lattice Boltzmann method
  publication-title: Chinese Sci Bull
– volume: 14
  start-page: 3203
  year: 2002
  end-page: 3214
  ident: b0095
  article-title: Displacement of a two-dimensional immiscible droplet in a channel
  publication-title: Phys Fluids
– volume: 190
  start-page: 435
  year: 2009
  end-page: 446
  ident: b0125
  article-title: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel
  publication-title: J Power Sources
– volume: 1
  start-page: 649
  year: 1987
  end-page: 707
  ident: b0115
  article-title: Lattice gas hydrodynamics in two and three dimensions
  publication-title: Complex Syst
– volume: 10
  start-page: 767
  year: 2011
  end-page: 784
  ident: b0145
  article-title: Two-dimensional lattice Boltzmann model for droplet impingement and breakup in low density ratio liquids
  publication-title: Comm. Comp. Phys.
– volume: 51
  start-page: 707
  year: 2008
  end-page: 716
  ident: b0015
  article-title: Transition from annular flow to plug/slug flow in condensation of steam in microchannels
  publication-title: Int J Heat Mass Transfer
– volume: 87
  start-page: 115
  year: 1997
  end-page: 136
  ident: b0075
  article-title: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model
  publication-title: J Stat Phys
– volume: 40
  start-page: W01509
  year: 2004
  ident: b0105
  article-title: Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media
  publication-title: Water Resour Res
– volume: 44
  start-page: 195
  year: 2001
  end-page: 206
  ident: b0155
  article-title: Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method
  publication-title: Int J Heat Mass Transfer
– volume: 24
  start-page: 143
  year: 2010
  end-page: 156
  ident: b0165
  article-title: Lattice Boltzmann simulation of droplet base electrowetting
  publication-title: Int J Comput Fluid Dyn
– volume: 43
  start-page: 4320
  year: 1991
  end-page: 4327
  ident: b0030
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys Rev A
– volume: 53
  start-page: 743
  year: 1996
  end-page: 750
  ident: b0120
  article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method
  publication-title: Phys Rev E
– volume: 38
  start-page: 1191
  year: 2009
  end-page: 1202
  ident: b0035
  article-title: A numerical investigation of central binary collision of droplets
  publication-title: Comput Fluids
– volume: 39
  start-page: 1696
  year: 2010
  end-page: 1703
  ident: b0140
  article-title: Droplet impingement and breakup on a dry surface
  publication-title: Comput Fluids
– volume: 23
  start-page: 773
  year: 2009
  end-page: 785
  ident: b0150
  article-title: Lattice Boltzmann simulation of surface impingement at high-density ratio
  publication-title: J Thermophys Heat Transfer
– volume: 39
  start-page: 461
  year: 2006
  end-page: 563
  ident: b0005
  article-title: Mesocale and microscale phase-change heat transfer
  publication-title: Adv Heat Transfer
– volume: 47
  start-page: 1815
  year: 1993
  end-page: 1819
  ident: b0020
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys Rev E
– volume: 64
  start-page: 581
  year: 2006
  end-page: 585
  ident: b0060
  article-title: Lattice Boltzmann equation method in electrohydrodynamic problems
  publication-title: J Electrostat
– volume: 166
  start-page: 155
  year: 2009
  end-page: 158
  ident: b0130
  article-title: Experimental investigation of the motion and deformation of droplets on surfaces with a linear wettability gradient
  publication-title: Eur. Phys. J. Special Topics
– volume: 38
  start-page: 406
  year: 2009
  end-page: 424
  ident: b0135
  article-title: A variational approach to the contact angle dynamics of spreading droplets
  publication-title: Comput Fluids
– volume: 17
  start-page: 479
  year: 1992
  end-page: 484
  ident: b0085
  article-title: Lattice BGK models for Navier–Stokes equation
  publication-title: Europhys Lett
– volume: 53
  start-page: 5863
  year: 2010
  end-page: 5870
  ident: b0090
  article-title: Lattice Boltzmann simulation of droplet formation in microchannels under an electric field
  publication-title: Int J Heat Mass Transfer
– volume: 58
  start-page: 6855
  year: 1998
  end-page: 6857
  ident: b0065
  article-title: Evaluation of the external force term in the discrete Boltzmann equation
  publication-title: Phys Rev E
– volume: 81
  start-page: 379
  year: 1995
  end-page: 393
  ident: b0110
  article-title: Multi-component lattice-Boltzmann model with interparticle interaction
  publication-title: J Stat Phys
– volume: 75
  start-page: 830
  year: 1995
  end-page: 833
  ident: b0025
  article-title: Lattice Boltzmann simulation of nonideal fluids
  publication-title: Phys Rev Lett
– volume: 47
  start-page: 3631
  year: 2004
  end-page: 3641
  ident: b0010
  article-title: Boiling instability in parallel silicon microchannels at different heat flux
  publication-title: Int J Heat Mass Transfer
– volume: 545
  start-page: 41
  year: 2005
  end-page: 66
  ident: b0100
  article-title: Displacement of a three-dimensional immiscible droplet in a duct
  publication-title: J Fluid Mech
– volume: 65
  start-page: 046308
  year: 2002
  ident: b0080
  article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method
  publication-title: Phys Rev E
– year: 2006
  ident: b0160
  article-title: Lattice Boltzmann modeling: an introduction for geoscientists and engineers
– volume: 18
  start-page: 042101
  year: 2006
  ident: b0045
  article-title: Equations of state in a lattice Boltzmann model
  publication-title: Phys Fluids
– volume: 42
  start-page: 26
  year: 2011
  end-page: 36
  ident: b0040
  article-title: Numerical study of droplet impact and coalescence in a microline patterning process
  publication-title: Comput Fluids
– volume: 67
  start-page: 066711
  year: 2003
  ident: b0050
  article-title: Lattice Boltzmann method for simulations of liquid–vapor thermal flows
  publication-title: Phys Rev E
– volume: 57
  start-page: R13
  year: 1998
  end-page: R16
  ident: b0070
  article-title: Discrete Boltzmann equation model for nonideal gases
  publication-title: Phys Rev E
– volume: 18
  start-page: 042101
  year: 2006
  ident: 10.1016/j.compfluid.2011.09.013_b0045
  article-title: Equations of state in a lattice Boltzmann model
  publication-title: Phys Fluids
  doi: 10.1063/1.2187070
– volume: 64
  start-page: 581
  year: 2006
  ident: 10.1016/j.compfluid.2011.09.013_b0060
  article-title: Lattice Boltzmann equation method in electrohydrodynamic problems
  publication-title: J Electrostat
  doi: 10.1016/j.elstat.2005.10.012
– volume: 53
  start-page: 5863
  year: 2010
  ident: 10.1016/j.compfluid.2011.09.013_b0090
  article-title: Lattice Boltzmann simulation of droplet formation in microchannels under an electric field
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.07.057
– volume: 545
  start-page: 41
  year: 2005
  ident: 10.1016/j.compfluid.2011.09.013_b0100
  article-title: Displacement of a three-dimensional immiscible droplet in a duct
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112005006956
– volume: 23
  start-page: 773
  issue: 4
  year: 2009
  ident: 10.1016/j.compfluid.2011.09.013_b0150
  article-title: Lattice Boltzmann simulation of surface impingement at high-density ratio
  publication-title: J Thermophys Heat Transfer
  doi: 10.2514/1.44032
– volume: 40
  start-page: W01509
  year: 2004
  ident: 10.1016/j.compfluid.2011.09.013_b0105
  article-title: Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media
  publication-title: Water Resour Res
  doi: 10.1029/2003WR002333
– volume: 10
  start-page: 767
  year: 2011
  ident: 10.1016/j.compfluid.2011.09.013_b0145
  article-title: Two-dimensional lattice Boltzmann model for droplet impingement and breakup in low density ratio liquids
  publication-title: Comm. Comp. Phys.
  doi: 10.4208/cicp.221209.160910a
– volume: 44
  start-page: 195
  issue: 1
  year: 2001
  ident: 10.1016/j.compfluid.2011.09.013_b0155
  article-title: Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/S0017-9310(00)00101-0
– volume: 24
  start-page: 143
  issue: 5
  year: 2010
  ident: 10.1016/j.compfluid.2011.09.013_b0165
  article-title: Lattice Boltzmann simulation of droplet base electrowetting
  publication-title: Int J Comput Fluid Dyn
  doi: 10.1080/10618560903369169
– volume: 39
  start-page: 461
  year: 2006
  ident: 10.1016/j.compfluid.2011.09.013_b0005
  article-title: Mesocale and microscale phase-change heat transfer
  publication-title: Adv Heat Transfer
  doi: 10.1016/S0065-2717(06)39005-3
– volume: 17
  start-page: 479
  year: 1992
  ident: 10.1016/j.compfluid.2011.09.013_b0085
  article-title: Lattice BGK models for Navier–Stokes equation
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/17/6/001
– volume: 43
  start-page: 4320
  year: 1991
  ident: 10.1016/j.compfluid.2011.09.013_b0030
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.43.4320
– volume: 166
  start-page: 155
  year: 2009
  ident: 10.1016/j.compfluid.2011.09.013_b0130
  article-title: Experimental investigation of the motion and deformation of droplets on surfaces with a linear wettability gradient
  publication-title: Eur. Phys. J. Special Topics
  doi: 10.1140/epjst/e2009-00898-6
– volume: 42
  start-page: 26
  issue: 1
  year: 2011
  ident: 10.1016/j.compfluid.2011.09.013_b0040
  article-title: Numerical study of droplet impact and coalescence in a microline patterning process
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2010.10.017
– volume: 47
  start-page: 3631
  year: 2004
  ident: 10.1016/j.compfluid.2011.09.013_b0010
  article-title: Boiling instability in parallel silicon microchannels at different heat flux
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.04.012
– volume: 38
  start-page: 1191
  issue: 6
  year: 2009
  ident: 10.1016/j.compfluid.2011.09.013_b0035
  article-title: A numerical investigation of central binary collision of droplets
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2008.11.007
– volume: 39
  start-page: 1696
  issue: 9
  year: 2010
  ident: 10.1016/j.compfluid.2011.09.013_b0140
  article-title: Droplet impingement and breakup on a dry surface
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2010.06.006
– volume: 51
  start-page: 707
  year: 2008
  ident: 10.1016/j.compfluid.2011.09.013_b0015
  article-title: Transition from annular flow to plug/slug flow in condensation of steam in microchannels
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.04.022
– volume: 38
  start-page: 406
  issue: 2
  year: 2009
  ident: 10.1016/j.compfluid.2011.09.013_b0135
  article-title: A variational approach to the contact angle dynamics of spreading droplets
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2008.05.001
– volume: 57
  start-page: R13
  year: 1998
  ident: 10.1016/j.compfluid.2011.09.013_b0070
  article-title: Discrete Boltzmann equation model for nonideal gases
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.57.R13
– volume: 53
  start-page: 743
  year: 1996
  ident: 10.1016/j.compfluid.2011.09.013_b0120
  article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.53.743
– volume: 75
  start-page: 830
  year: 1995
  ident: 10.1016/j.compfluid.2011.09.013_b0025
  article-title: Lattice Boltzmann simulation of nonideal fluids
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.75.830
– volume: 67
  start-page: 066711
  year: 2003
  ident: 10.1016/j.compfluid.2011.09.013_b0050
  article-title: Lattice Boltzmann method for simulations of liquid–vapor thermal flows
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.67.066711
– volume: 190
  start-page: 435
  issue: 2
  year: 2009
  ident: 10.1016/j.compfluid.2011.09.013_b0125
  article-title: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.01.029
– volume: 1
  start-page: 649
  year: 1987
  ident: 10.1016/j.compfluid.2011.09.013_b0115
  article-title: Lattice gas hydrodynamics in two and three dimensions
  publication-title: Complex Syst
– volume: 65
  start-page: 046308
  year: 2002
  ident: 10.1016/j.compfluid.2011.09.013_b0080
  article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.65.046308
– volume: 47
  start-page: 1815
  year: 1993
  ident: 10.1016/j.compfluid.2011.09.013_b0020
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.47.1815
– volume: 54
  start-page: 4596
  year: 2009
  ident: 10.1016/j.compfluid.2011.09.013_b0055
  article-title: Simulation of phase transition process using lattice Boltzmann method
  publication-title: Chinese Sci Bull
  doi: 10.1007/s11434-009-0734-x
– year: 2006
  ident: 10.1016/j.compfluid.2011.09.013_b0160
– volume: 87
  start-page: 115
  year: 1997
  ident: 10.1016/j.compfluid.2011.09.013_b0075
  article-title: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model
  publication-title: J Stat Phys
  doi: 10.1007/BF02181482
– volume: 58
  start-page: 6855
  year: 1998
  ident: 10.1016/j.compfluid.2011.09.013_b0065
  article-title: Evaluation of the external force term in the discrete Boltzmann equation
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.58.6855
– volume: 14
  start-page: 3203
  year: 2002
  ident: 10.1016/j.compfluid.2011.09.013_b0095
  article-title: Displacement of a two-dimensional immiscible droplet in a channel
  publication-title: Phys Fluids
  doi: 10.1063/1.1499125
– volume: 81
  start-page: 379
  year: 1995
  ident: 10.1016/j.compfluid.2011.09.013_b0110
  article-title: Multi-component lattice-Boltzmann model with interparticle interaction
  publication-title: J Stat Phys
  doi: 10.1007/BF02179985
SSID ssj0004324
Score 2.466908
Snippet ► An improved LBM multiphase model is proposed. ► A new scheme for the force term is proposed. ► We compared existing force incorporation methods and adopted...
An improved model for simulation of phase transitions and single-component multiphase flows by lattice Boltzmann method is proposed and developed in this...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 93
SubjectTerms Coalescence
Coalescing
Computational methods in fluid dynamics
Computer simulation
Droplet movement
Droplets
Drops and bubbles
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Lattice Boltzmann method
Lattices
Mathematical models
Multiphase flow
Multiphase flows
Nonhomogeneous flows
Phase transformations
Physics
Wettability
Title Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows
URI https://dx.doi.org/10.1016/j.compfluid.2011.09.013
https://www.proquest.com/docview/1709788840
https://www.proquest.com/docview/963883387
Volume 53
WOSCitedRecordID wos000298624800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMIIa6iXCYjsacpKImTOOFtQMtFU5lEJ_XNspNY6xSS0CbV4C_wpzm-JG01psIDL1HrJE6U7_M5x_a5IPRKupIGXCROFKnVqjwIHUGSyEmI54OGomEUSF1sgk4m8WyWnA4GdRcLsypoWcaXl0n9X6GGNgBbhc7-A9x9p9AAvwF0OALscPwr4Cet2YRRyTT6HBrGKswWyl28OTKle2xIGzcZnWB8C5WLScVNLqoV2KEFb5Rn3NHbqmh-fuNlacrmaMfE-hy0n6ovUVqfL92Z8U7Up2RRWXO9S4Ngy0csNdlk0c6z3pz_YP2Cv563fL52OMhN62mnXe3ihPbycEx4ZidwA5UR0269WIEbkg2JaeojWt1rSxFfEetmheFCoVLrF7S5V5PXrkfWmqzbvZ98YeOzkxM2Hc2mh2Rcf3dUlTG1G39I3hvEb6B9n4YJyMH940-j2ed1LC3xTeZu--JbPoF_fP51Fs2dmi8BbGkKpFzR9dqAmd5Dd-3MAx8bxtxHg7x8gG5v5KN8iH713MFb3MGVxJY72HAHA9x4gztY_IAm3HEHW-7gnjtYcwcDd7AmCN7gju5szR2sufMInY1H03cfHVutw0kDz20cn3oZFSEXUQpTIU_QIJWux2MhsiT1iYhi0A-ciBQm0BGXUsJ_Fz6wCiXJQOOSx2ivrMr8CcIi9OKMwlxbgragKXSZiyD1fBGD6IhkMkRR98VZalPZq4oqBet8Fi9YDxVTUDE3YQDVELn9jbXJ5rL7ljcdpMwapcbYZEDO3TcfbJGgf6gf-gSUnzdELztWMJDrarOOl3nVLplHVYRVHAfuEOFrrlHKMyYkpk93X_IM3VoP0Odor1m0-Qt0M1018-XiwI6C3z6w2H8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+droplet+motion+and+coalescence+by+an+improved+lattice+Boltzmann+model+for+phase+transitions+and+multiphase+flows&rft.jtitle=Computers+%26+fluids&rft.au=Gong%2C+Shuai&rft.au=Cheng%2C+Ping&rft.date=2012-01-15&rft.issn=0045-7930&rft.volume=53&rft.spage=93&rft.epage=104&rft_id=info:doi/10.1016%2Fj.compfluid.2011.09.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon