Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study

The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 3; s. 417 - 435
Hlavní autoři: Garcia, Salvador, Derrac, Joaquin, Cano, Jose Ramon, Herrera, Francisco
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Alamitos, CA IEEE 01.03.2012
IEEE Computer Society
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification.
AbstractList The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification.
The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification.The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification.
Author Derrac, Joaquin
Garcia, Salvador
Herrera, Francisco
Cano, Jose Ramon
Author_xml – sequence: 1
  givenname: Salvador
  surname: Garcia
  fullname: Garcia, Salvador
  email: sglopez@ujaen.es
  organization: Campus las Lagunillas, EPS, Univ. of Jaen, Jaen, Spain
– sequence: 2
  givenname: Joaquin
  surname: Derrac
  fullname: Derrac, Joaquin
  email: jderrac@decsai.ugr.es
  organization: CITIC-UGR, Univ. of Granada, Granada, Spain
– sequence: 3
  givenname: Jose Ramon
  surname: Cano
  fullname: Cano, Jose Ramon
  email: jrcano@ujaen.es
  organization: EPS Linares, Univ. of Jae'n, Linares, Spain
– sequence: 4
  givenname: Francisco
  surname: Herrera
  fullname: Herrera, Francisco
  email: herrera@decsai.ugr.es
  organization: ETSII, Univ. of Granada, Granada, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25862366$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21768651$$D View this record in MEDLINE/PubMed
BookMark eNp1kctrGzEQxkVJqR23114KYS8hp3U1eu2qt2DygrQNxD4LWSu1KrsrR1pD_N9HfiUQ6Glg5vcN38x3ik760FuEvgKeAmD5ff5w-fNuSjDAFBj5gMYEBC4lkeQEjTEIUtY1qUfoNKV_GAPjmH5CIwKVqAWHMVo8xDCEYbOyxaNtrRl86AsXYvHL6mjTkKv_83eZG7NWp-SdN3rL_Cjm-jn0odsUum-Kq27lYx61xeOwbjaf0Uen22S_HOoELa6v5rPb8v73zd3s8r40DPBQgnEGqMEUwBlOuHZVw5kz9ZLwqmJCUAl4aZjBjWCUaIax1JXUtDHSyqaiE3Sx37uK4Wmd7arOJ2PbVvc2rJOSgoGUgvNMnh3I9bKzjVpF3-m4UcdPZOD8AOiU73BR98anN47XgtDsaILYnjMxpBStU8YPu5cMUftWAVbbYNQuGLUNRuVgsmz6Tnbc_F_Bt73AW2tfYQE0m-X0BUC2lzY
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_patrec_2016_03_011
crossref_primary_10_3390_e22030291
crossref_primary_10_1016_j_knosys_2022_108451
crossref_primary_10_3390_e20100746
crossref_primary_10_1007_s13748_019_00172_4
crossref_primary_10_2478_amcs_2018_0055
crossref_primary_10_1007_s00500_016_2148_4
crossref_primary_10_1016_j_ins_2017_04_025
crossref_primary_10_1016_j_aiopen_2025_08_004
crossref_primary_10_1016_j_cviu_2016_10_012
crossref_primary_10_1007_s11704_014_3038_5
crossref_primary_10_1080_1062936X_2017_1423376
crossref_primary_10_1016_j_patcog_2014_06_012
crossref_primary_10_3390_app10155164
crossref_primary_10_1007_s00500_012_0888_3
crossref_primary_10_1007_s11042_022_14136_9
crossref_primary_10_1007_s10044_017_0620_0
crossref_primary_10_1016_j_asoc_2020_106568
crossref_primary_10_1016_j_eswa_2014_02_017
crossref_primary_10_1109_JIOT_2019_2946500
crossref_primary_10_1016_j_knosys_2017_08_020
crossref_primary_10_1007_s10586_016_0598_1
crossref_primary_10_1016_j_inffus_2015_12_002
crossref_primary_10_1109_MSMC_2019_2950534
crossref_primary_10_3390_info14100572
crossref_primary_10_1007_s10489_013_0433_9
crossref_primary_10_3233_AIS_180486
crossref_primary_10_3390_signals2020021
crossref_primary_10_1109_TCYB_2020_3001158
crossref_primary_10_1016_j_patcog_2014_10_001
crossref_primary_10_3390_pr13072187
crossref_primary_10_1016_j_asoc_2019_105803
crossref_primary_10_1109_COMST_2016_2537748
crossref_primary_10_1007_s00521_022_07506_9
crossref_primary_10_1186_s40537_021_00518_7
crossref_primary_10_1007_s12530_017_9203_y
crossref_primary_10_1016_j_ins_2012_10_006
crossref_primary_10_1007_s10472_015_9472_8
crossref_primary_10_1016_j_ref_2020_06_005
crossref_primary_10_1007_s10489_022_04447_7
crossref_primary_10_3390_w15183222
crossref_primary_10_1017_dce_2023_4
crossref_primary_10_1016_j_eswa_2020_113269
crossref_primary_10_1016_j_patcog_2019_07_004
crossref_primary_10_1007_s11053_019_09525_1
crossref_primary_10_1007_s10846_023_01831_4
crossref_primary_10_1016_j_media_2024_103281
crossref_primary_10_1109_TNNLS_2015_2437901
crossref_primary_10_1016_j_neunet_2019_06_013
crossref_primary_10_1016_j_engappai_2017_02_006
crossref_primary_10_1007_s00521_024_10333_9
crossref_primary_10_3233_JIFS_169137
crossref_primary_10_1016_j_neucom_2012_06_009
crossref_primary_10_1016_j_asoc_2015_09_006
crossref_primary_10_1016_j_engappai_2013_10_003
crossref_primary_10_1007_s11704_016_5306_z
crossref_primary_10_1016_j_patcog_2016_11_013
crossref_primary_10_1109_TCSVT_2014_2359098
crossref_primary_10_3390_rs5041809
crossref_primary_10_1016_j_patrec_2013_08_022
crossref_primary_10_1016_j_patcog_2013_04_016
crossref_primary_10_1016_j_patcog_2013_04_018
crossref_primary_10_3390_rs16244742
crossref_primary_10_1108_DTA_01_2021_0027
crossref_primary_10_1016_j_inffus_2021_10_015
crossref_primary_10_1007_s12667_019_00347_x
crossref_primary_10_1109_TKDE_2023_3328952
crossref_primary_10_3390_s21196652
crossref_primary_10_1016_j_patrec_2017_08_016
crossref_primary_10_3233_AIC_160710
crossref_primary_10_1007_s10115_018_1220_z
crossref_primary_10_1038_s41598_022_23036_9
crossref_primary_10_1109_TIP_2024_3463412
crossref_primary_10_1016_j_patcog_2013_03_004
crossref_primary_10_1016_j_patcog_2014_11_005
crossref_primary_10_1016_j_ymssp_2012_08_021
crossref_primary_10_1016_j_cola_2024_101301
crossref_primary_10_1016_j_asoc_2018_11_037
crossref_primary_10_3390_e23020149
crossref_primary_10_3390_electronics10151757
crossref_primary_10_3390_j4030024
crossref_primary_10_1016_j_ins_2020_07_065
crossref_primary_10_1016_j_neucom_2018_04_017
crossref_primary_10_1016_j_swevo_2018_02_022
crossref_primary_10_59277_PRA_SER_A_25_4_08
crossref_primary_10_1016_j_inffus_2016_11_004
crossref_primary_10_4018_IJDWM_2020070109
crossref_primary_10_1016_j_knosys_2014_07_020
crossref_primary_10_1007_s11042_016_3572_2
crossref_primary_10_3233_JIFS_200124
crossref_primary_10_1016_j_inffus_2020_08_011
crossref_primary_10_1016_j_neucom_2013_05_055
crossref_primary_10_1109_TCYB_2021_3105696
crossref_primary_10_1007_s42979_021_00839_7
crossref_primary_10_1016_j_jappgeo_2019_103936
crossref_primary_10_1016_j_marpetgeo_2019_07_026
crossref_primary_10_1016_j_patcog_2018_07_037
crossref_primary_10_1142_S0219649224500813
crossref_primary_10_3390_app10103356
crossref_primary_10_1016_j_eswa_2013_06_053
crossref_primary_10_1016_j_knosys_2014_07_013
crossref_primary_10_1016_j_neunet_2018_07_014
crossref_primary_10_1109_TSMC_2016_2622247
crossref_primary_10_3390_info13120572
crossref_primary_10_1016_j_jvcir_2018_02_010
crossref_primary_10_3390_electronics12102239
crossref_primary_10_3390_computers9040096
crossref_primary_10_1109_ACCESS_2020_2997387
crossref_primary_10_3390_cryptography1030022
crossref_primary_10_1002_widm_1289
crossref_primary_10_1007_s00521_016_2278_8
crossref_primary_10_1109_TNNLS_2021_3057270
crossref_primary_10_1109_TCBB_2019_2917429
crossref_primary_10_1016_j_tcs_2022_08_021
crossref_primary_10_1016_j_swevo_2021_100991
crossref_primary_10_1016_j_neucom_2019_02_024
crossref_primary_10_1007_s13042_018_0877_7
crossref_primary_10_1016_j_ijar_2023_108923
crossref_primary_10_3390_sym13050818
crossref_primary_10_1016_j_asoc_2018_04_016
crossref_primary_10_1007_s10462_013_9411_1
crossref_primary_10_1007_s11517_023_02917_9
crossref_primary_10_1007_s00521_024_10237_8
crossref_primary_10_3233_IDA_150475
crossref_primary_10_1016_j_neucom_2014_04_078
crossref_primary_10_1007_s10844_021_00650_z
crossref_primary_10_1016_j_neucom_2018_01_056
crossref_primary_10_1002_widm_1078
crossref_primary_10_1016_j_patcog_2016_10_014
crossref_primary_10_1016_j_ins_2015_08_021
crossref_primary_10_1007_s10044_015_0452_8
crossref_primary_10_1016_j_patcog_2017_06_030
crossref_primary_10_1109_ACCESS_2021_3053778
crossref_primary_10_1016_j_asoc_2018_05_029
crossref_primary_10_1109_ACCESS_2024_3490778
crossref_primary_10_1016_j_neucom_2013_01_050
crossref_primary_10_1016_j_neunet_2019_11_019
crossref_primary_10_1016_j_patcog_2014_11_015
crossref_primary_10_1007_s42979_024_03007_9
crossref_primary_10_1016_j_ins_2014_01_007
crossref_primary_10_1016_j_neucom_2025_131320
crossref_primary_10_3390_su14074053
crossref_primary_10_1007_s00500_016_2176_0
crossref_primary_10_1109_TEVC_2017_2688863
crossref_primary_10_1007_s10489_022_03761_4
crossref_primary_10_3390_e19110583
crossref_primary_10_1016_j_ins_2017_02_016
crossref_primary_10_1016_j_ins_2021_04_039
crossref_primary_10_1007_s12559_019_09638_y
crossref_primary_10_3390_ijgi10040246
crossref_primary_10_1016_j_eswa_2022_119365
crossref_primary_10_3390_app10113933
crossref_primary_10_1016_j_knosys_2019_105196
crossref_primary_10_1016_j_patrec_2016_05_007
crossref_primary_10_1007_s00500_022_07439_4
crossref_primary_10_1016_j_comgeo_2020_101732
crossref_primary_10_1109_TGRS_2023_3292919
crossref_primary_10_7717_peerj_cs_464
crossref_primary_10_1007_s11042_024_18422_6
crossref_primary_10_1016_j_jfranklin_2024_107014
crossref_primary_10_1016_j_neucom_2018_01_062
crossref_primary_10_3233_IDA_160844
crossref_primary_10_1007_s13042_014_0239_z
crossref_primary_10_1109_TNNLS_2018_2875347
crossref_primary_10_1016_j_ins_2018_10_029
crossref_primary_10_1049_el_2018_7980
crossref_primary_10_1109_TNNLS_2012_2198832
crossref_primary_10_1038_srep27988
crossref_primary_10_1016_j_knosys_2016_05_058
crossref_primary_10_1016_j_neucom_2017_01_078
crossref_primary_10_1016_j_cageo_2022_105208
crossref_primary_10_1109_JSEN_2018_2885323
crossref_primary_10_1016_j_knosys_2016_05_056
crossref_primary_10_1515_jaiscr_2017_0011
crossref_primary_10_1016_j_techfore_2024_123386
crossref_primary_10_1016_j_ijepes_2014_01_016
crossref_primary_10_1007_s10651_024_00634_6
crossref_primary_10_1016_j_neucom_2018_05_131
crossref_primary_10_1016_j_neunet_2017_08_002
crossref_primary_10_1016_j_asoc_2020_107033
crossref_primary_10_1016_j_petrol_2019_106587
crossref_primary_10_1016_j_ins_2019_06_033
crossref_primary_10_1016_j_patcog_2025_112390
crossref_primary_10_1016_j_procs_2014_08_119
crossref_primary_10_1016_j_ins_2024_121738
crossref_primary_10_1016_j_asoc_2015_08_060
crossref_primary_10_1007_s13042_021_01327_3
crossref_primary_10_1007_s00521_023_09155_y
crossref_primary_10_1016_j_compind_2021_103434
crossref_primary_10_1016_j_jocs_2022_101614
crossref_primary_10_1016_j_neucom_2023_01_004
crossref_primary_10_1016_j_compbiomed_2025_110050
crossref_primary_10_1007_s00521_022_07974_z
crossref_primary_10_1016_j_inffus_2015_09_004
crossref_primary_10_1016_j_neucom_2017_08_076
crossref_primary_10_1016_j_is_2025_102564
crossref_primary_10_3233_JCS_171060
crossref_primary_10_3390_app12030950
crossref_primary_10_1108_PROG_02_2016_0014
crossref_primary_10_1016_j_patcog_2013_02_006
crossref_primary_10_1016_j_knosys_2015_02_015
crossref_primary_10_1016_j_jss_2015_04_038
crossref_primary_10_1016_j_procs_2021_08_240
crossref_primary_10_1016_j_patcog_2025_111884
crossref_primary_10_1016_j_inffus_2017_09_010
crossref_primary_10_1007_s00521_022_07647_x
crossref_primary_10_1016_j_asoc_2020_106716
crossref_primary_10_1016_j_patcog_2021_108356
crossref_primary_10_1002_sec_724
crossref_primary_10_1016_j_patcog_2012_07_004
crossref_primary_10_1016_j_ins_2011_09_027
crossref_primary_10_1109_ACCESS_2022_3233598
crossref_primary_10_1145_3459665
crossref_primary_10_1016_j_eswa_2012_05_075
crossref_primary_10_1177_03611981241278354
crossref_primary_10_1007_s10462_022_10186_5
crossref_primary_10_1017_S026988891800036X
crossref_primary_10_1007_s10044_015_0454_6
crossref_primary_10_1016_j_ins_2013_10_038
crossref_primary_10_1016_j_eswa_2014_05_037
crossref_primary_10_1016_j_patcog_2016_05_028
crossref_primary_10_1109_TPAMI_2020_3035599
crossref_primary_10_3390_e18060222
crossref_primary_10_1016_j_neucom_2014_05_006
crossref_primary_10_1155_2018_1817479
crossref_primary_10_1186_s41044_016_0014_0
crossref_primary_10_1007_s43069_022_00177_1
crossref_primary_10_1016_j_ins_2023_01_090
crossref_primary_10_1016_j_ins_2021_07_015
crossref_primary_10_1145_3371153
crossref_primary_10_1016_j_neucom_2016_04_003
crossref_primary_10_1109_TCYB_2018_2877663
crossref_primary_10_3390_met9050557
crossref_primary_10_1007_s40808_018_0543_9
crossref_primary_10_1016_j_jss_2016_09_007
crossref_primary_10_1016_j_knosys_2012_11_005
crossref_primary_10_1016_j_patcog_2015_05_018
crossref_primary_10_1111_exsy_13217
crossref_primary_10_1016_j_patcog_2017_09_038
crossref_primary_10_3233_IDA_184190
crossref_primary_10_1002_smr_2710
crossref_primary_10_1007_s12530_022_09476_8
crossref_primary_10_1016_j_neucom_2016_08_026
crossref_primary_10_3390_electronics8050592
crossref_primary_10_1016_j_patcog_2014_07_023
crossref_primary_10_1016_j_patcog_2019_107024
crossref_primary_10_1109_TFUZZ_2022_3216990
crossref_primary_10_1155_2022_7409171
crossref_primary_10_1007_s00521_016_2458_6
crossref_primary_10_1016_j_neucom_2015_01_030
crossref_primary_10_1007_s10044_014_0393_7
crossref_primary_10_1016_j_neucom_2016_04_018
crossref_primary_10_1016_j_neucom_2017_04_018
crossref_primary_10_1016_j_eswa_2018_05_017
crossref_primary_10_1016_j_infsof_2025_107874
crossref_primary_10_1016_j_neucom_2014_01_033
crossref_primary_10_1016_j_neucom_2019_05_055
crossref_primary_10_1109_TGRS_2024_3478385
crossref_primary_10_1016_j_eswa_2015_12_046
crossref_primary_10_1016_j_datak_2017_10_003
crossref_primary_10_1016_j_asoc_2012_06_013
crossref_primary_10_1016_j_knosys_2015_07_034
crossref_primary_10_1016_j_ins_2016_03_012
crossref_primary_10_1016_j_compeleceng_2020_106957
crossref_primary_10_1111_exsy_12254
crossref_primary_10_1007_s40866_019_0074_0
crossref_primary_10_1016_j_jbusres_2021_03_018
crossref_primary_10_1007_s00521_023_08630_w
crossref_primary_10_1016_j_ijar_2021_08_006
crossref_primary_10_3390_su9050813
crossref_primary_10_1109_TPAMI_2015_2511748
crossref_primary_10_1145_3582000
crossref_primary_10_1007_s40808_019_00583_1
crossref_primary_10_1109_ACCESS_2021_3127195
crossref_primary_10_1016_j_patcog_2017_10_029
crossref_primary_10_1016_j_asoc_2015_12_015
crossref_primary_10_3233_JIFS_235290
crossref_primary_10_1007_s10618_022_00836_1
crossref_primary_10_1007_s13748_017_0117_5
crossref_primary_10_1007_s10462_024_10971_4
crossref_primary_10_1016_j_enconman_2019_05_114
crossref_primary_10_1016_j_jss_2013_12_034
crossref_primary_10_1007_s13042_020_01228_x
crossref_primary_10_1016_j_jss_2016_08_093
crossref_primary_10_1109_ACCESS_2020_3042453
crossref_primary_10_3390_app10020515
crossref_primary_10_1016_j_patcog_2022_108553
crossref_primary_10_3233_ICA_180581
crossref_primary_10_1109_TNNLS_2019_2920864
crossref_primary_10_1016_j_asoc_2019_04_013
crossref_primary_10_1016_j_patcog_2019_107122
crossref_primary_10_1016_j_asoc_2014_05_023
crossref_primary_10_1109_ACCESS_2025_3584709
crossref_primary_10_1016_j_eswa_2022_118203
crossref_primary_10_1007_s11269_025_04146_1
crossref_primary_10_1016_j_asoc_2016_03_015
crossref_primary_10_15446_ing_investig_v41n3_79308
crossref_primary_10_1016_j_knosys_2018_02_022
crossref_primary_10_1109_TPAMI_2024_3387116
crossref_primary_10_1155_2014_324742
crossref_primary_10_1016_j_neucom_2020_01_049
crossref_primary_10_3390_app10093089
crossref_primary_10_1109_TSMCB_2012_2227470
crossref_primary_10_1016_j_inffus_2025_103133
crossref_primary_10_1016_j_jvcir_2018_10_013
crossref_primary_10_1016_j_knosys_2013_07_011
crossref_primary_10_1016_j_neucom_2016_10_035
crossref_primary_10_1016_j_patcog_2013_05_006
crossref_primary_10_1016_j_knosys_2016_10_031
crossref_primary_10_1007_s10472_023_09882_x
crossref_primary_10_1016_j_asoc_2015_02_036
crossref_primary_10_1016_j_bspc_2024_106763
crossref_primary_10_1111_exsy_12155
crossref_primary_10_1016_j_engappai_2014_11_011
crossref_primary_10_1016_j_asoc_2015_07_046
crossref_primary_10_1016_j_jestch_2021_05_015
crossref_primary_10_1016_j_knosys_2015_12_006
crossref_primary_10_1007_s00138_015_0744_4
crossref_primary_10_1016_j_neucom_2015_03_078
crossref_primary_10_2478_amcs_2019_0012
crossref_primary_10_1007_s00500_015_1690_9
Cites_doi 10.1109/TPAMI.2009.69
10.1023/A:1022686102325
10.1109/T-C.1974.223827
10.1002/int.1068
10.1016/S0167-8655(98)00075-0
10.1023/A:1014043630878
10.1109/TKDE.2008.178
10.1002/int.10132
10.1016/S0167-8655(99)00082-3
10.7551/mitpress/4908.001.0001
10.1162/evco.2009.17.3.275
10.1007/11492542_4
10.1109/TIT.1968.1054155
10.1007/s10044-008-0142-x
10.1109/ICMLC.2008.4620384
10.1142/S0218001405004332
10.1109/TNN.2009.2018547
10.1109/TPAMI.1986.4767859
10.1201/9781420089653
10.1016/j.eswa.2005.10.007
10.1016/j.patcog.2007.03.006
10.1109/TSMC.1972.4309137
10.1016/j.patcog.2009.04.019
10.1016/0167-8655(86)90066-8
10.1109/TIT.1975.1055464
10.1109/TKDE.2009.159
10.1109/TPAMI.2007.1182
10.1016/j.patcog.2010.10.020
10.1016/S0031-3203(01)00132-7
10.1016/S0031-3203(01)00137-6
10.1016/j.patcog.2008.02.006
10.1109/TPAMI.2009.164
10.1145/1327452.1327494
10.1109/TNN.2008.2005496
10.1016/S0167-8655(97)00035-4
10.1016/j.csda.2005.06.007
10.1016/S0031-3203(99)00068-0
10.1142/S0129065708001725
10.1016/0167-8655(95)00047-K
10.1016/B978-1-55860-335-6.50043-X
10.1145/1007730.1007735
10.1109/TPAMI.2006.145
10.1007/s00500-008-0323-y
10.1016/j.patcog.2009.12.012
10.1016/j.patcog.2005.06.001
10.1016/j.asoc.2010.11.030
10.1016/j.eswa.2007.08.083
10.1109/TEVC.2003.819265
10.1007/978-3-540-24844-6_90
10.1109/TSMCB.2008.2011816
10.1016/S0167-8655(02)00109-5
10.1007/11539087_68
10.1016/j.ins.2009.12.010
10.1016/j.patrec.2008.08.001
10.1016/S0031-3203(00)00184-9
10.1109/TKDE.2008.227
10.1109/34.615448
10.1007/11492542_5
10.1109/21.278999
10.1007/s10044-003-0191-0
10.1142/S0218001407005752
10.1162/neco.1995.7.1.72
10.1109/TSMC.1976.4309523
10.1007/978-94-017-2053-3
10.1109/TPAMI.2002.1023804
10.1016/j.patcog.2006.04.005
10.1016/S0031-3203(02)00119-X
10.1109/TPAMI.2006.248
10.1109/TNN.2010.2087415
10.1016/j.patcog.2005.06.012
10.1109/TKDE.2007.190665
10.1142/S0218001409007727
10.1016/B978-0-934613-41-5.50006-4
10.1109/34.506411
10.1016/j.patrec.2004.09.043
10.1109/TSMC.1976.4309452
10.1016/j.artint.2010.01.001
10.1109/TIT.1972.1054809
10.1023/A:1006593614256
10.1109/TKDE.2007.190645
10.1016/S0031-3203(96)00098-2
10.1109/TPAMI.2007.70714
10.1109/TNN.2007.902955
10.1613/jair.346
10.1533/9780857099440
10.1016/j.datak.2006.01.008
10.1016/S0167-8655(02)00225-8
10.5555/1248547.1248548
10.2307/3001968
10.1109/TIT.1967.1053964
10.1023/A:1007626913721
10.1177/001316446002000104
10.1109/ICMLC.2003.1264449
10.1007/BF00058656
10.1007/springerreference_62523
10.1145/293347.293348
10.1007/s10994-009-5161-3
10.1109/TPAMI.2010.155
10.1007/s10618-008-0087-0
10.1016/j.engappai.2007.01.001
10.1198/106186007X208380
10.1109/5.58325
10.1023/A:1006563312922
10.1007/3-540-48229-6_3
10.1007/11578079_38
10.1007/s10618-008-0121-2
10.1109/TIT.1974.1055252
10.1109/3477.931531
10.1109/TIT.1979.1056066
10.1007/BF00153759
10.1109/TPAMI.2002.1033219
10.1007/978-3-540-25945-9_61
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1109/TPAMI.2011.142
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 435
ExternalDocumentID 21768651
25862366
10_1109_TPAMI_2011_142
6136515
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
NPM
PKN
RIC
Z5M
7X8
ID FETCH-LOGICAL-c410t-1cfc13c0311fc525af7d54fc8b25774663910bc4c0d6432a4009a79a3dc9e9d73
IEDL.DBID RIE
ISICitedReferencesCount 538
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299381600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Mon Sep 29 06:21:40 EDT 2025
Wed Feb 19 01:57:57 EST 2025
Mon Jul 21 09:14:37 EDT 2025
Sat Nov 29 08:10:38 EST 2025
Tue Nov 18 22:26:32 EST 2025
Wed Aug 27 02:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Performance evaluation
Capability index
Nearest neighbour
Data analysis
Taxonomy
Empirical method
edition
Data mining
classification
Condensation
Supervised classification
Recommendation
Prototype selection
Statistical test
nearest neighbor
Efficiency
Categorization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-1cfc13c0311fc525af7d54fc8b25774663910bc4c0d6432a4009a79a3dc9e9d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21768651
PQID 964199655
PQPubID 23479
PageCount 19
ParticipantIDs ieee_primary_6136515
crossref_citationtrail_10_1109_TPAMI_2011_142
crossref_primary_10_1109_TPAMI_2011_142
proquest_miscellaneous_964199655
pascalfrancis_primary_25862366
pubmed_primary_21768651
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2012
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Chang (ref105) 2006; 7
García (ref120) 2008; 9
Marchiori (ref109) 2008; 9
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Sebban (ref93) 2002; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Sebban (ref92)
ref29
ref13
ref12
Mitchell (ref8) 1997
ref15
ref14
Cameron-Jones (ref79)
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
Devijver (ref74) 1982
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref108
ref78
ref106
ref107
ref75
ref104
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
Asuncion (ref115) 2007
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref69
ref118
ref64
ref63
ref116
ref66
ref113
ref65
ref114
Witten (ref117) 2005
ref60
ref122
ref62
ref61
ref121
References_xml – ident: ref14
  doi: 10.1109/TPAMI.2009.69
– ident: ref80
  doi: 10.1023/A:1022686102325
– ident: ref32
  doi: 10.1109/T-C.1974.223827
– ident: ref29
  doi: 10.1002/int.1068
– ident: ref83
  doi: 10.1016/S0167-8655(98)00075-0
– ident: ref89
  doi: 10.1023/A:1014043630878
– ident: ref16
  doi: 10.1109/TKDE.2008.178
– ident: ref38
  doi: 10.1002/int.10132
– ident: ref85
  doi: 10.1016/S0167-8655(99)00082-3
– ident: ref4
  doi: 10.7551/mitpress/4908.001.0001
– ident: ref62
  doi: 10.1162/evco.2009.17.3.275
– ident: ref64
  doi: 10.1007/11492542_4
– start-page: 855
  volume-title: Proc. 17th Int’l Conf. Machine Learning
  ident: ref92
  article-title: Instance Pruning as an Information Preserving Problem
– ident: ref66
  doi: 10.1109/TIT.1968.1054155
– volume: 9
  start-page: 997
  year: 2008
  ident: ref109
  article-title: Hit Miss Networks with Applications to Instance Selection
  publication-title: J. Machine Learning Research
– ident: ref111
  doi: 10.1007/s10044-008-0142-x
– ident: ref106
  doi: 10.1109/ICMLC.2008.4620384
– ident: ref104
  doi: 10.1142/S0218001405004332
– ident: ref110
  doi: 10.1109/TNN.2009.2018547
– ident: ref17
  doi: 10.1109/TPAMI.1986.4767859
– ident: ref5
  doi: 10.1201/9781420089653
– ident: ref55
  doi: 10.1016/j.eswa.2005.10.007
– ident: ref50
  doi: 10.1016/j.patcog.2007.03.006
– ident: ref68
  doi: 10.1109/TSMC.1972.4309137
– ident: ref63
  doi: 10.1016/j.patcog.2009.04.019
– ident: ref75
  doi: 10.1016/0167-8655(86)90066-8
– ident: ref70
  doi: 10.1109/TIT.1975.1055464
– ident: ref7
  doi: 10.1109/TKDE.2009.159
– ident: ref19
  doi: 10.1109/TPAMI.2007.1182
– ident: ref36
  doi: 10.1016/j.patcog.2010.10.020
– ident: ref94
  doi: 10.1016/S0031-3203(01)00132-7
– ident: ref95
  doi: 10.1016/S0031-3203(01)00137-6
– volume-title: Machine Learning
  year: 1997
  ident: ref8
– ident: ref108
  doi: 10.1016/j.patcog.2008.02.006
– ident: ref112
  doi: 10.1109/TPAMI.2009.164
– ident: ref22
  doi: 10.1145/1327452.1327494
– ident: ref46
  doi: 10.1109/TNN.2008.2005496
– ident: ref82
  doi: 10.1016/S0167-8655(97)00035-4
– ident: ref9
  doi: 10.1016/j.csda.2005.06.007
– ident: ref86
  doi: 10.1016/S0031-3203(99)00068-0
– ident: ref107
  doi: 10.1142/S0129065708001725
– ident: ref84
  doi: 10.1016/0167-8655(95)00047-K
– ident: ref40
  doi: 10.1016/B978-1-55860-335-6.50043-X
– ident: ref61
  doi: 10.1145/1007730.1007735
– ident: ref43
  doi: 10.1109/TPAMI.2006.145
– ident: ref114
  doi: 10.1007/s00500-008-0323-y
– ident: ref41
  doi: 10.1016/j.patcog.2009.12.012
– ident: ref48
  doi: 10.1016/j.patcog.2005.06.001
– ident: ref39
  doi: 10.1016/j.asoc.2010.11.030
– ident: ref56
  doi: 10.1016/j.eswa.2007.08.083
– ident: ref98
  doi: 10.1109/TEVC.2003.819265
– ident: ref24
  doi: 10.1007/978-3-540-24844-6_90
– ident: ref34
  doi: 10.1109/TSMCB.2008.2011816
– ident: ref91
  doi: 10.1016/S0167-8655(02)00109-5
– ident: ref102
  doi: 10.1007/11539087_68
– ident: ref121
  doi: 10.1016/j.ins.2009.12.010
– ident: ref57
  doi: 10.1016/j.patrec.2008.08.001
– ident: ref90
  doi: 10.1016/S0031-3203(00)00184-9
– ident: ref15
  doi: 10.1109/TKDE.2008.227
– ident: ref18
  doi: 10.1109/34.615448
– ident: ref101
  doi: 10.1007/11492542_5
– ident: ref78
  doi: 10.1109/21.278999
– ident: ref30
  doi: 10.1007/s10044-003-0191-0
– ident: ref49
  doi: 10.1142/S0218001407005752
– ident: ref81
  doi: 10.1162/neco.1995.7.1.72
– ident: ref71
  doi: 10.1109/TSMC.1976.4309523
– ident: ref6
  doi: 10.1007/978-94-017-2053-3
– ident: ref26
  doi: 10.1109/TPAMI.2002.1023804
– volume-title: Pattern Recognition, A Statistical Approach
  year: 1982
  ident: ref74
– ident: ref27
  doi: 10.1016/j.patcog.2006.04.005
– ident: ref99
  doi: 10.1016/S0031-3203(02)00119-X
– ident: ref58
  doi: 10.1109/TPAMI.2006.248
– ident: ref35
  doi: 10.1109/TNN.2010.2087415
– ident: ref25
  doi: 10.1016/j.patcog.2005.06.012
– ident: ref53
  doi: 10.1109/TKDE.2007.190665
– ident: ref65
  doi: 10.1142/S0218001409007727
– ident: ref76
  doi: 10.1016/B978-0-934613-41-5.50006-4
– ident: ref10
  doi: 10.1109/34.506411
– ident: ref31
  doi: 10.1016/j.patrec.2004.09.043
– ident: ref72
  doi: 10.1109/TSMC.1976.4309452
– ident: ref52
  doi: 10.1016/j.artint.2010.01.001
– ident: ref67
  doi: 10.1109/TIT.1972.1054809
– ident: ref42
  doi: 10.1023/A:1006593614256
– ident: ref28
  doi: 10.1109/TKDE.2007.190645
– year: 2005
  ident: ref117
  publication-title: Data Mining: Practical Machine Learning Tools and Techniques
– ident: ref20
  doi: 10.1016/S0031-3203(96)00098-2
– ident: ref13
  doi: 10.1109/TPAMI.2007.70714
– ident: ref44
  doi: 10.1109/TNN.2007.902955
– ident: ref47
  doi: 10.1613/jair.346
– ident: ref2
  doi: 10.1533/9780857099440
– ident: ref54
  doi: 10.1016/j.datak.2006.01.008
– ident: ref100
  doi: 10.1016/S0167-8655(02)00225-8
– ident: ref119
  doi: 10.5555/1248547.1248548
– ident: ref122
  doi: 10.2307/3001968
– ident: ref1
  doi: 10.1109/TIT.1967.1053964
– volume: 7
  start-page: 2125
  year: 2006
  ident: ref105
  article-title: Adaptive Prototype Learning Algorithms: Theoretical and Experimental Studies
  publication-title: J. Machine Learning Research
– ident: ref23
  doi: 10.1023/A:1007626913721
– start-page: 99
  volume-title: Proc. Eighth Australian Joint Conf. Artificial Intelligence
  ident: ref79
  article-title: Instance Selection by Encoding Length Heuristic with Random Mutation Hill Climbing
– ident: ref116
  doi: 10.1177/001316446002000104
– ident: ref97
  doi: 10.1109/ICMLC.2003.1264449
– ident: ref37
  doi: 10.1007/BF00058656
– ident: ref3
  doi: 10.1007/springerreference_62523
– ident: ref21
  doi: 10.1145/293347.293348
– ident: ref113
  doi: 10.1007/s10994-009-5161-3
– ident: ref59
  doi: 10.1109/TPAMI.2010.155
– ident: ref60
  doi: 10.1007/s10618-008-0087-0
– ident: ref118
  doi: 10.1016/j.engappai.2007.01.001
– ident: ref11
  doi: 10.1198/106186007X208380
– ident: ref33
  doi: 10.1109/5.58325
– ident: ref45
  doi: 10.1023/A:1006563312922
– ident: ref87
  doi: 10.1007/3-540-48229-6_3
– ident: ref103
  doi: 10.1007/11578079_38
– year: 2007
  ident: ref115
  article-title: UCI Machine Learning Repository
– ident: ref51
  doi: 10.1007/s10618-008-0121-2
– ident: ref69
  doi: 10.1109/TIT.1974.1055252
– ident: ref88
  doi: 10.1109/3477.931531
– ident: ref73
  doi: 10.1109/TIT.1979.1056066
– ident: ref77
  doi: 10.1007/BF00153759
– volume: 9
  start-page: 2677
  year: 2008
  ident: ref120
  article-title: An Extension on ’Statistical Comparisons of Classifiers over Multiple Data Sets’ for All Pairwise Comparisons
  publication-title: J. Machine Learning Research
– ident: ref12
  doi: 10.1109/TPAMI.2002.1033219
– volume: 3
  start-page: 863
  year: 2002
  ident: ref93
  article-title: Stopping Criterion for Boosting-Based Data Reduction Techniques: From Binary to Multiclass Problems
  publication-title: J. Machine Learning Research
– ident: ref96
  doi: 10.1007/978-3-540-25945-9_61
SSID ssj0014503
Score 2.5799646
Snippet The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 417
SubjectTerms Accuracy
Applied sciences
classification
Classification algorithms
Computer science; control theory; systems
condensation
Data processing. List processing. Character string processing
edition
Exact sciences and technology
Memory organisation. Data processing
nearest neighbor
Noise
Noise measurement
Prototype selection
Prototypes
Software
Taxonomy
Training
Title Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study
URI https://ieeexplore.ieee.org/document/6136515
https://www.ncbi.nlm.nih.gov/pubmed/21768651
https://www.proquest.com/docview/964199655
Volume 34
WOSCitedRecordID wos000299381600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD6ouNCFz3t1fAxZCHdzq5M2aRp3IoouHAYcYXYlzQOEayszHdF_70naqQrXhasWmrah3znNd5KT8wGcFCxRmRMyktLxCH94PCrSwkU8s7HJlB9SXRCbEMNhNpnI0RL87fbCWGtD8pk99adhLd9Ueu6nys5Sn5Pld5QvCyGavVrdigHjQQUZGQx6OIYRbYFGOpBn49HF3W1TrZOyOJT_RZKdcvplLAriKj41Us3w67hG1uJ73hnGn-vNn_V8CzZankkuGsPYhiVb7sDmQsOBtC69A-ufChLuwsNoWtWVn5Yl90EgB1EjSGvJ0Je6ndV4xGAezYYEMU2fZhSQPSdj9Rq2RxBVGnL19PwYSo8Qn6b49gserq_GlzdRK7wQaUYHdUS10zTR6O_UaR5z5YThzOmsQAcXDEkKkoxCMz0wSGhihf8BqYRUidHSSiOS37BSVqXdByJ5gSSNaskSxww1SjFnipRqzi1X1vYgWkCQ67YquRfH-JeH6GQg84Be7tHDMCXuwZ-u_XNTj-Pblrseh65VC0EP-l8Q7q7HHIO7JE17QBaQ5-hqfv1Elbaaz3KZMp-zzfEZe40pfNzcWtTB_196CGvYrbjJXTuClXo6t8ewql_qx9m0j-Y8yfrBnN8B9B7wGg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD4MrqA-eL_M7qp5EHyxzqRN2mbfZHFQ1GHAEXwraS4gaCszHdF_70na6a6gDz610LQN_c5pvpOcnA_gKGeRTG0iAiEsD_CHx4M8zm3AUxPqVLoh1XqxiWQ4TO_vxagDJ-1eGGOMTz4zp-7Ur-XrUs3cVFkvdjlZbkf5D85YSOvdWu2aAeNeBxk5DPo4BhJNiUbaF73x6Ozmsq7XSVnoCwAjzY45_TAaeXkVlxwpp_h9bC1s8TXz9CPQYO17fV-H1YZpkrPaNDagY4pNWJurOJDGqTdh5b-ShFtwN5qUVekmZsmtl8hB3AgSWzJ0xW6nFR4xnEfDIV5O0yUaeWz_kLF89RskiCw0OX96fvDFR4hLVHzbhrvB-fjvRdBILwSK0X4VUGUVjRR6PLWKh1zaRHNmVZqjiycMaQrSjFwx1ddIaUKJfwIhEyEjrYQROol2YKEoC7MHRPAcaRpVgkWWaaqlZFbnMVWcGy6N6UIwhyBTTV1yJ4_xmPn4pC8yj17m0MNAJezCcdv-ua7I8WXLLYdD26qBoAsHHxBur4ccw7sojrtA5pBn6GxuBUUWppxNMxEzl7XN8Rm7tSn8u7mxqJ-fv_QQli7GN9fZ9eXw6hcsYxfDOpPtNyxUk5nZh0X1Uj1MJwfeqN8B6zfyeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prototype+Selection+for+Nearest+Neighbor+Classification%3A+Taxonomy+and+Empirical+Study&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=GARCIA%2C+Salvador&rft.au=DERRAC%2C+Joaqufn&rft.au=CANO%2C+Jos%C3%A9+Ram%C3%B3n&rft.au=HERRERA%2C+Francisco&rft.date=2012-03-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=34&rft.issue=3&rft.spage=417&rft.epage=435&rft_id=info:doi/10.1109%2FTPAMI.2011.142&rft.externalDBID=n%2Fa&rft.externalDocID=25862366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon