Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study
The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbac...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 34; číslo 3; s. 417 - 435 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.03.2012
IEEE Computer Society |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification. |
|---|---|
| AbstractList | The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification. The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification.The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one of the most useful algorithms in data mining in spite of its simplicity. However, the nearest neighbor classifier suffers from several drawbacks such as high storage requirements, low efficiency in classification response, and low noise tolerance. These weaknesses have been the subject of study for many researchers and many solutions have been proposed. Among them, one of the most promising solutions consists of reducing the data used for establishing a classification rule (training data) by means of selecting relevant prototypes. Many prototype selection methods exist in the literature and the research in this area is still advancing. Different properties could be observed in the definition of them, but no formal categorization has been established yet. This paper provides a survey of the prototype selection methods proposed in the literature from a theoretical and empirical point of view. Considering a theoretical point of view, we propose a taxonomy based on the main characteristics presented in prototype selection and we analyze their advantages and drawbacks. Empirically, we conduct an experimental study involving different sizes of data sets for measuring their performance in terms of accuracy, reduction capabilities, and runtime. The results obtained by all the methods studied have been verified by nonparametric statistical tests. Several remarks, guidelines, and recommendations are made for the use of prototype selection for nearest neighbor classification. |
| Author | Derrac, Joaquin Garcia, Salvador Herrera, Francisco Cano, Jose Ramon |
| Author_xml | – sequence: 1 givenname: Salvador surname: Garcia fullname: Garcia, Salvador email: sglopez@ujaen.es organization: Campus las Lagunillas, EPS, Univ. of Jaen, Jaen, Spain – sequence: 2 givenname: Joaquin surname: Derrac fullname: Derrac, Joaquin email: jderrac@decsai.ugr.es organization: CITIC-UGR, Univ. of Granada, Granada, Spain – sequence: 3 givenname: Jose Ramon surname: Cano fullname: Cano, Jose Ramon email: jrcano@ujaen.es organization: EPS Linares, Univ. of Jae'n, Linares, Spain – sequence: 4 givenname: Francisco surname: Herrera fullname: Herrera, Francisco email: herrera@decsai.ugr.es organization: ETSII, Univ. of Granada, Granada, Spain |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25862366$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21768651$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctrGzEQxkVJqR23114KYS8hp3U1eu2qt2DygrQNxD4LWSu1KrsrR1pD_N9HfiUQ6Glg5vcN38x3ik760FuEvgKeAmD5ff5w-fNuSjDAFBj5gMYEBC4lkeQEjTEIUtY1qUfoNKV_GAPjmH5CIwKVqAWHMVo8xDCEYbOyxaNtrRl86AsXYvHL6mjTkKv_83eZG7NWp-SdN3rL_Cjm-jn0odsUum-Kq27lYx61xeOwbjaf0Uen22S_HOoELa6v5rPb8v73zd3s8r40DPBQgnEGqMEUwBlOuHZVw5kz9ZLwqmJCUAl4aZjBjWCUaIax1JXUtDHSyqaiE3Sx37uK4Wmd7arOJ2PbVvc2rJOSgoGUgvNMnh3I9bKzjVpF3-m4UcdPZOD8AOiU73BR98anN47XgtDsaILYnjMxpBStU8YPu5cMUftWAVbbYNQuGLUNRuVgsmz6Tnbc_F_Bt73AW2tfYQE0m-X0BUC2lzY |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_patrec_2016_03_011 crossref_primary_10_3390_e22030291 crossref_primary_10_1016_j_knosys_2022_108451 crossref_primary_10_3390_e20100746 crossref_primary_10_1007_s13748_019_00172_4 crossref_primary_10_2478_amcs_2018_0055 crossref_primary_10_1007_s00500_016_2148_4 crossref_primary_10_1016_j_ins_2017_04_025 crossref_primary_10_1016_j_aiopen_2025_08_004 crossref_primary_10_1016_j_cviu_2016_10_012 crossref_primary_10_1007_s11704_014_3038_5 crossref_primary_10_1080_1062936X_2017_1423376 crossref_primary_10_1016_j_patcog_2014_06_012 crossref_primary_10_3390_app10155164 crossref_primary_10_1007_s00500_012_0888_3 crossref_primary_10_1007_s11042_022_14136_9 crossref_primary_10_1007_s10044_017_0620_0 crossref_primary_10_1016_j_asoc_2020_106568 crossref_primary_10_1016_j_eswa_2014_02_017 crossref_primary_10_1109_JIOT_2019_2946500 crossref_primary_10_1016_j_knosys_2017_08_020 crossref_primary_10_1007_s10586_016_0598_1 crossref_primary_10_1016_j_inffus_2015_12_002 crossref_primary_10_1109_MSMC_2019_2950534 crossref_primary_10_3390_info14100572 crossref_primary_10_1007_s10489_013_0433_9 crossref_primary_10_3233_AIS_180486 crossref_primary_10_3390_signals2020021 crossref_primary_10_1109_TCYB_2020_3001158 crossref_primary_10_1016_j_patcog_2014_10_001 crossref_primary_10_3390_pr13072187 crossref_primary_10_1016_j_asoc_2019_105803 crossref_primary_10_1109_COMST_2016_2537748 crossref_primary_10_1007_s00521_022_07506_9 crossref_primary_10_1186_s40537_021_00518_7 crossref_primary_10_1007_s12530_017_9203_y crossref_primary_10_1016_j_ins_2012_10_006 crossref_primary_10_1007_s10472_015_9472_8 crossref_primary_10_1016_j_ref_2020_06_005 crossref_primary_10_1007_s10489_022_04447_7 crossref_primary_10_3390_w15183222 crossref_primary_10_1017_dce_2023_4 crossref_primary_10_1016_j_eswa_2020_113269 crossref_primary_10_1016_j_patcog_2019_07_004 crossref_primary_10_1007_s11053_019_09525_1 crossref_primary_10_1007_s10846_023_01831_4 crossref_primary_10_1016_j_media_2024_103281 crossref_primary_10_1109_TNNLS_2015_2437901 crossref_primary_10_1016_j_neunet_2019_06_013 crossref_primary_10_1016_j_engappai_2017_02_006 crossref_primary_10_1007_s00521_024_10333_9 crossref_primary_10_3233_JIFS_169137 crossref_primary_10_1016_j_neucom_2012_06_009 crossref_primary_10_1016_j_asoc_2015_09_006 crossref_primary_10_1016_j_engappai_2013_10_003 crossref_primary_10_1007_s11704_016_5306_z crossref_primary_10_1016_j_patcog_2016_11_013 crossref_primary_10_1109_TCSVT_2014_2359098 crossref_primary_10_3390_rs5041809 crossref_primary_10_1016_j_patrec_2013_08_022 crossref_primary_10_1016_j_patcog_2013_04_016 crossref_primary_10_1016_j_patcog_2013_04_018 crossref_primary_10_3390_rs16244742 crossref_primary_10_1108_DTA_01_2021_0027 crossref_primary_10_1016_j_inffus_2021_10_015 crossref_primary_10_1007_s12667_019_00347_x crossref_primary_10_1109_TKDE_2023_3328952 crossref_primary_10_3390_s21196652 crossref_primary_10_1016_j_patrec_2017_08_016 crossref_primary_10_3233_AIC_160710 crossref_primary_10_1007_s10115_018_1220_z crossref_primary_10_1038_s41598_022_23036_9 crossref_primary_10_1109_TIP_2024_3463412 crossref_primary_10_1016_j_patcog_2013_03_004 crossref_primary_10_1016_j_patcog_2014_11_005 crossref_primary_10_1016_j_ymssp_2012_08_021 crossref_primary_10_1016_j_cola_2024_101301 crossref_primary_10_1016_j_asoc_2018_11_037 crossref_primary_10_3390_e23020149 crossref_primary_10_3390_electronics10151757 crossref_primary_10_3390_j4030024 crossref_primary_10_1016_j_ins_2020_07_065 crossref_primary_10_1016_j_neucom_2018_04_017 crossref_primary_10_1016_j_swevo_2018_02_022 crossref_primary_10_59277_PRA_SER_A_25_4_08 crossref_primary_10_1016_j_inffus_2016_11_004 crossref_primary_10_4018_IJDWM_2020070109 crossref_primary_10_1016_j_knosys_2014_07_020 crossref_primary_10_1007_s11042_016_3572_2 crossref_primary_10_3233_JIFS_200124 crossref_primary_10_1016_j_inffus_2020_08_011 crossref_primary_10_1016_j_neucom_2013_05_055 crossref_primary_10_1109_TCYB_2021_3105696 crossref_primary_10_1007_s42979_021_00839_7 crossref_primary_10_1016_j_jappgeo_2019_103936 crossref_primary_10_1016_j_marpetgeo_2019_07_026 crossref_primary_10_1016_j_patcog_2018_07_037 crossref_primary_10_1142_S0219649224500813 crossref_primary_10_3390_app10103356 crossref_primary_10_1016_j_eswa_2013_06_053 crossref_primary_10_1016_j_knosys_2014_07_013 crossref_primary_10_1016_j_neunet_2018_07_014 crossref_primary_10_1109_TSMC_2016_2622247 crossref_primary_10_3390_info13120572 crossref_primary_10_1016_j_jvcir_2018_02_010 crossref_primary_10_3390_electronics12102239 crossref_primary_10_3390_computers9040096 crossref_primary_10_1109_ACCESS_2020_2997387 crossref_primary_10_3390_cryptography1030022 crossref_primary_10_1002_widm_1289 crossref_primary_10_1007_s00521_016_2278_8 crossref_primary_10_1109_TNNLS_2021_3057270 crossref_primary_10_1109_TCBB_2019_2917429 crossref_primary_10_1016_j_tcs_2022_08_021 crossref_primary_10_1016_j_swevo_2021_100991 crossref_primary_10_1016_j_neucom_2019_02_024 crossref_primary_10_1007_s13042_018_0877_7 crossref_primary_10_1016_j_ijar_2023_108923 crossref_primary_10_3390_sym13050818 crossref_primary_10_1016_j_asoc_2018_04_016 crossref_primary_10_1007_s10462_013_9411_1 crossref_primary_10_1007_s11517_023_02917_9 crossref_primary_10_1007_s00521_024_10237_8 crossref_primary_10_3233_IDA_150475 crossref_primary_10_1016_j_neucom_2014_04_078 crossref_primary_10_1007_s10844_021_00650_z crossref_primary_10_1016_j_neucom_2018_01_056 crossref_primary_10_1002_widm_1078 crossref_primary_10_1016_j_patcog_2016_10_014 crossref_primary_10_1016_j_ins_2015_08_021 crossref_primary_10_1007_s10044_015_0452_8 crossref_primary_10_1016_j_patcog_2017_06_030 crossref_primary_10_1109_ACCESS_2021_3053778 crossref_primary_10_1016_j_asoc_2018_05_029 crossref_primary_10_1109_ACCESS_2024_3490778 crossref_primary_10_1016_j_neucom_2013_01_050 crossref_primary_10_1016_j_neunet_2019_11_019 crossref_primary_10_1016_j_patcog_2014_11_015 crossref_primary_10_1007_s42979_024_03007_9 crossref_primary_10_1016_j_ins_2014_01_007 crossref_primary_10_1016_j_neucom_2025_131320 crossref_primary_10_3390_su14074053 crossref_primary_10_1007_s00500_016_2176_0 crossref_primary_10_1109_TEVC_2017_2688863 crossref_primary_10_1007_s10489_022_03761_4 crossref_primary_10_3390_e19110583 crossref_primary_10_1016_j_ins_2017_02_016 crossref_primary_10_1016_j_ins_2021_04_039 crossref_primary_10_1007_s12559_019_09638_y crossref_primary_10_3390_ijgi10040246 crossref_primary_10_1016_j_eswa_2022_119365 crossref_primary_10_3390_app10113933 crossref_primary_10_1016_j_knosys_2019_105196 crossref_primary_10_1016_j_patrec_2016_05_007 crossref_primary_10_1007_s00500_022_07439_4 crossref_primary_10_1016_j_comgeo_2020_101732 crossref_primary_10_1109_TGRS_2023_3292919 crossref_primary_10_7717_peerj_cs_464 crossref_primary_10_1007_s11042_024_18422_6 crossref_primary_10_1016_j_jfranklin_2024_107014 crossref_primary_10_1016_j_neucom_2018_01_062 crossref_primary_10_3233_IDA_160844 crossref_primary_10_1007_s13042_014_0239_z crossref_primary_10_1109_TNNLS_2018_2875347 crossref_primary_10_1016_j_ins_2018_10_029 crossref_primary_10_1049_el_2018_7980 crossref_primary_10_1109_TNNLS_2012_2198832 crossref_primary_10_1038_srep27988 crossref_primary_10_1016_j_knosys_2016_05_058 crossref_primary_10_1016_j_neucom_2017_01_078 crossref_primary_10_1016_j_cageo_2022_105208 crossref_primary_10_1109_JSEN_2018_2885323 crossref_primary_10_1016_j_knosys_2016_05_056 crossref_primary_10_1515_jaiscr_2017_0011 crossref_primary_10_1016_j_techfore_2024_123386 crossref_primary_10_1016_j_ijepes_2014_01_016 crossref_primary_10_1007_s10651_024_00634_6 crossref_primary_10_1016_j_neucom_2018_05_131 crossref_primary_10_1016_j_neunet_2017_08_002 crossref_primary_10_1016_j_asoc_2020_107033 crossref_primary_10_1016_j_petrol_2019_106587 crossref_primary_10_1016_j_ins_2019_06_033 crossref_primary_10_1016_j_patcog_2025_112390 crossref_primary_10_1016_j_procs_2014_08_119 crossref_primary_10_1016_j_ins_2024_121738 crossref_primary_10_1016_j_asoc_2015_08_060 crossref_primary_10_1007_s13042_021_01327_3 crossref_primary_10_1007_s00521_023_09155_y crossref_primary_10_1016_j_compind_2021_103434 crossref_primary_10_1016_j_jocs_2022_101614 crossref_primary_10_1016_j_neucom_2023_01_004 crossref_primary_10_1016_j_compbiomed_2025_110050 crossref_primary_10_1007_s00521_022_07974_z crossref_primary_10_1016_j_inffus_2015_09_004 crossref_primary_10_1016_j_neucom_2017_08_076 crossref_primary_10_1016_j_is_2025_102564 crossref_primary_10_3233_JCS_171060 crossref_primary_10_3390_app12030950 crossref_primary_10_1108_PROG_02_2016_0014 crossref_primary_10_1016_j_patcog_2013_02_006 crossref_primary_10_1016_j_knosys_2015_02_015 crossref_primary_10_1016_j_jss_2015_04_038 crossref_primary_10_1016_j_procs_2021_08_240 crossref_primary_10_1016_j_patcog_2025_111884 crossref_primary_10_1016_j_inffus_2017_09_010 crossref_primary_10_1007_s00521_022_07647_x crossref_primary_10_1016_j_asoc_2020_106716 crossref_primary_10_1016_j_patcog_2021_108356 crossref_primary_10_1002_sec_724 crossref_primary_10_1016_j_patcog_2012_07_004 crossref_primary_10_1016_j_ins_2011_09_027 crossref_primary_10_1109_ACCESS_2022_3233598 crossref_primary_10_1145_3459665 crossref_primary_10_1016_j_eswa_2012_05_075 crossref_primary_10_1177_03611981241278354 crossref_primary_10_1007_s10462_022_10186_5 crossref_primary_10_1017_S026988891800036X crossref_primary_10_1007_s10044_015_0454_6 crossref_primary_10_1016_j_ins_2013_10_038 crossref_primary_10_1016_j_eswa_2014_05_037 crossref_primary_10_1016_j_patcog_2016_05_028 crossref_primary_10_1109_TPAMI_2020_3035599 crossref_primary_10_3390_e18060222 crossref_primary_10_1016_j_neucom_2014_05_006 crossref_primary_10_1155_2018_1817479 crossref_primary_10_1186_s41044_016_0014_0 crossref_primary_10_1007_s43069_022_00177_1 crossref_primary_10_1016_j_ins_2023_01_090 crossref_primary_10_1016_j_ins_2021_07_015 crossref_primary_10_1145_3371153 crossref_primary_10_1016_j_neucom_2016_04_003 crossref_primary_10_1109_TCYB_2018_2877663 crossref_primary_10_3390_met9050557 crossref_primary_10_1007_s40808_018_0543_9 crossref_primary_10_1016_j_jss_2016_09_007 crossref_primary_10_1016_j_knosys_2012_11_005 crossref_primary_10_1016_j_patcog_2015_05_018 crossref_primary_10_1111_exsy_13217 crossref_primary_10_1016_j_patcog_2017_09_038 crossref_primary_10_3233_IDA_184190 crossref_primary_10_1002_smr_2710 crossref_primary_10_1007_s12530_022_09476_8 crossref_primary_10_1016_j_neucom_2016_08_026 crossref_primary_10_3390_electronics8050592 crossref_primary_10_1016_j_patcog_2014_07_023 crossref_primary_10_1016_j_patcog_2019_107024 crossref_primary_10_1109_TFUZZ_2022_3216990 crossref_primary_10_1155_2022_7409171 crossref_primary_10_1007_s00521_016_2458_6 crossref_primary_10_1016_j_neucom_2015_01_030 crossref_primary_10_1007_s10044_014_0393_7 crossref_primary_10_1016_j_neucom_2016_04_018 crossref_primary_10_1016_j_neucom_2017_04_018 crossref_primary_10_1016_j_eswa_2018_05_017 crossref_primary_10_1016_j_infsof_2025_107874 crossref_primary_10_1016_j_neucom_2014_01_033 crossref_primary_10_1016_j_neucom_2019_05_055 crossref_primary_10_1109_TGRS_2024_3478385 crossref_primary_10_1016_j_eswa_2015_12_046 crossref_primary_10_1016_j_datak_2017_10_003 crossref_primary_10_1016_j_asoc_2012_06_013 crossref_primary_10_1016_j_knosys_2015_07_034 crossref_primary_10_1016_j_ins_2016_03_012 crossref_primary_10_1016_j_compeleceng_2020_106957 crossref_primary_10_1111_exsy_12254 crossref_primary_10_1007_s40866_019_0074_0 crossref_primary_10_1016_j_jbusres_2021_03_018 crossref_primary_10_1007_s00521_023_08630_w crossref_primary_10_1016_j_ijar_2021_08_006 crossref_primary_10_3390_su9050813 crossref_primary_10_1109_TPAMI_2015_2511748 crossref_primary_10_1145_3582000 crossref_primary_10_1007_s40808_019_00583_1 crossref_primary_10_1109_ACCESS_2021_3127195 crossref_primary_10_1016_j_patcog_2017_10_029 crossref_primary_10_1016_j_asoc_2015_12_015 crossref_primary_10_3233_JIFS_235290 crossref_primary_10_1007_s10618_022_00836_1 crossref_primary_10_1007_s13748_017_0117_5 crossref_primary_10_1007_s10462_024_10971_4 crossref_primary_10_1016_j_enconman_2019_05_114 crossref_primary_10_1016_j_jss_2013_12_034 crossref_primary_10_1007_s13042_020_01228_x crossref_primary_10_1016_j_jss_2016_08_093 crossref_primary_10_1109_ACCESS_2020_3042453 crossref_primary_10_3390_app10020515 crossref_primary_10_1016_j_patcog_2022_108553 crossref_primary_10_3233_ICA_180581 crossref_primary_10_1109_TNNLS_2019_2920864 crossref_primary_10_1016_j_asoc_2019_04_013 crossref_primary_10_1016_j_patcog_2019_107122 crossref_primary_10_1016_j_asoc_2014_05_023 crossref_primary_10_1109_ACCESS_2025_3584709 crossref_primary_10_1016_j_eswa_2022_118203 crossref_primary_10_1007_s11269_025_04146_1 crossref_primary_10_1016_j_asoc_2016_03_015 crossref_primary_10_15446_ing_investig_v41n3_79308 crossref_primary_10_1016_j_knosys_2018_02_022 crossref_primary_10_1109_TPAMI_2024_3387116 crossref_primary_10_1155_2014_324742 crossref_primary_10_1016_j_neucom_2020_01_049 crossref_primary_10_3390_app10093089 crossref_primary_10_1109_TSMCB_2012_2227470 crossref_primary_10_1016_j_inffus_2025_103133 crossref_primary_10_1016_j_jvcir_2018_10_013 crossref_primary_10_1016_j_knosys_2013_07_011 crossref_primary_10_1016_j_neucom_2016_10_035 crossref_primary_10_1016_j_patcog_2013_05_006 crossref_primary_10_1016_j_knosys_2016_10_031 crossref_primary_10_1007_s10472_023_09882_x crossref_primary_10_1016_j_asoc_2015_02_036 crossref_primary_10_1016_j_bspc_2024_106763 crossref_primary_10_1111_exsy_12155 crossref_primary_10_1016_j_engappai_2014_11_011 crossref_primary_10_1016_j_asoc_2015_07_046 crossref_primary_10_1016_j_jestch_2021_05_015 crossref_primary_10_1016_j_knosys_2015_12_006 crossref_primary_10_1007_s00138_015_0744_4 crossref_primary_10_1016_j_neucom_2015_03_078 crossref_primary_10_2478_amcs_2019_0012 crossref_primary_10_1007_s00500_015_1690_9 |
| Cites_doi | 10.1109/TPAMI.2009.69 10.1023/A:1022686102325 10.1109/T-C.1974.223827 10.1002/int.1068 10.1016/S0167-8655(98)00075-0 10.1023/A:1014043630878 10.1109/TKDE.2008.178 10.1002/int.10132 10.1016/S0167-8655(99)00082-3 10.7551/mitpress/4908.001.0001 10.1162/evco.2009.17.3.275 10.1007/11492542_4 10.1109/TIT.1968.1054155 10.1007/s10044-008-0142-x 10.1109/ICMLC.2008.4620384 10.1142/S0218001405004332 10.1109/TNN.2009.2018547 10.1109/TPAMI.1986.4767859 10.1201/9781420089653 10.1016/j.eswa.2005.10.007 10.1016/j.patcog.2007.03.006 10.1109/TSMC.1972.4309137 10.1016/j.patcog.2009.04.019 10.1016/0167-8655(86)90066-8 10.1109/TIT.1975.1055464 10.1109/TKDE.2009.159 10.1109/TPAMI.2007.1182 10.1016/j.patcog.2010.10.020 10.1016/S0031-3203(01)00132-7 10.1016/S0031-3203(01)00137-6 10.1016/j.patcog.2008.02.006 10.1109/TPAMI.2009.164 10.1145/1327452.1327494 10.1109/TNN.2008.2005496 10.1016/S0167-8655(97)00035-4 10.1016/j.csda.2005.06.007 10.1016/S0031-3203(99)00068-0 10.1142/S0129065708001725 10.1016/0167-8655(95)00047-K 10.1016/B978-1-55860-335-6.50043-X 10.1145/1007730.1007735 10.1109/TPAMI.2006.145 10.1007/s00500-008-0323-y 10.1016/j.patcog.2009.12.012 10.1016/j.patcog.2005.06.001 10.1016/j.asoc.2010.11.030 10.1016/j.eswa.2007.08.083 10.1109/TEVC.2003.819265 10.1007/978-3-540-24844-6_90 10.1109/TSMCB.2008.2011816 10.1016/S0167-8655(02)00109-5 10.1007/11539087_68 10.1016/j.ins.2009.12.010 10.1016/j.patrec.2008.08.001 10.1016/S0031-3203(00)00184-9 10.1109/TKDE.2008.227 10.1109/34.615448 10.1007/11492542_5 10.1109/21.278999 10.1007/s10044-003-0191-0 10.1142/S0218001407005752 10.1162/neco.1995.7.1.72 10.1109/TSMC.1976.4309523 10.1007/978-94-017-2053-3 10.1109/TPAMI.2002.1023804 10.1016/j.patcog.2006.04.005 10.1016/S0031-3203(02)00119-X 10.1109/TPAMI.2006.248 10.1109/TNN.2010.2087415 10.1016/j.patcog.2005.06.012 10.1109/TKDE.2007.190665 10.1142/S0218001409007727 10.1016/B978-0-934613-41-5.50006-4 10.1109/34.506411 10.1016/j.patrec.2004.09.043 10.1109/TSMC.1976.4309452 10.1016/j.artint.2010.01.001 10.1109/TIT.1972.1054809 10.1023/A:1006593614256 10.1109/TKDE.2007.190645 10.1016/S0031-3203(96)00098-2 10.1109/TPAMI.2007.70714 10.1109/TNN.2007.902955 10.1613/jair.346 10.1533/9780857099440 10.1016/j.datak.2006.01.008 10.1016/S0167-8655(02)00225-8 10.5555/1248547.1248548 10.2307/3001968 10.1109/TIT.1967.1053964 10.1023/A:1007626913721 10.1177/001316446002000104 10.1109/ICMLC.2003.1264449 10.1007/BF00058656 10.1007/springerreference_62523 10.1145/293347.293348 10.1007/s10994-009-5161-3 10.1109/TPAMI.2010.155 10.1007/s10618-008-0087-0 10.1016/j.engappai.2007.01.001 10.1198/106186007X208380 10.1109/5.58325 10.1023/A:1006563312922 10.1007/3-540-48229-6_3 10.1007/11578079_38 10.1007/s10618-008-0121-2 10.1109/TIT.1974.1055252 10.1109/3477.931531 10.1109/TIT.1979.1056066 10.1007/BF00153759 10.1109/TPAMI.2002.1033219 10.1007/978-3-540-25945-9_61 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7X8 |
| DOI | 10.1109/TPAMI.2011.142 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 435 |
| ExternalDocumentID | 21768651 25862366 10_1109_TPAMI_2011_142 6136515 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG AAYOK NPM PKN RIC Z5M 7X8 |
| ID | FETCH-LOGICAL-c410t-1cfc13c0311fc525af7d54fc8b25774663910bc4c0d6432a4009a79a3dc9e9d73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 538 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299381600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Mon Sep 29 06:21:40 EDT 2025 Wed Feb 19 01:57:57 EST 2025 Mon Jul 21 09:14:37 EDT 2025 Sat Nov 29 08:10:38 EST 2025 Tue Nov 18 22:26:32 EST 2025 Wed Aug 27 02:47:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Performance evaluation Capability index Nearest neighbour Data analysis Taxonomy Empirical method edition Data mining classification Condensation Supervised classification Recommendation Prototype selection Statistical test nearest neighbor Efficiency Categorization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-1cfc13c0311fc525af7d54fc8b25774663910bc4c0d6432a4009a79a3dc9e9d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21768651 |
| PQID | 964199655 |
| PQPubID | 23479 |
| PageCount | 19 |
| ParticipantIDs | ieee_primary_6136515 crossref_citationtrail_10_1109_TPAMI_2011_142 crossref_primary_10_1109_TPAMI_2011_142 proquest_miscellaneous_964199655 pascalfrancis_primary_25862366 pubmed_primary_21768651 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-01 |
| PublicationDateYYYYMMDD | 2012-03-01 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2012 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Chang (ref105) 2006; 7 García (ref120) 2008; 9 Marchiori (ref109) 2008; 9 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 Sebban (ref93) 2002; 3 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Sebban (ref92) ref29 ref13 ref12 Mitchell (ref8) 1997 ref15 ref14 Cameron-Jones (ref79) ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 Devijver (ref74) 1982 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref108 ref78 ref106 ref107 ref75 ref104 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 Asuncion (ref115) 2007 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref69 ref118 ref64 ref63 ref116 ref66 ref113 ref65 ref114 Witten (ref117) 2005 ref60 ref122 ref62 ref61 ref121 |
| References_xml | – ident: ref14 doi: 10.1109/TPAMI.2009.69 – ident: ref80 doi: 10.1023/A:1022686102325 – ident: ref32 doi: 10.1109/T-C.1974.223827 – ident: ref29 doi: 10.1002/int.1068 – ident: ref83 doi: 10.1016/S0167-8655(98)00075-0 – ident: ref89 doi: 10.1023/A:1014043630878 – ident: ref16 doi: 10.1109/TKDE.2008.178 – ident: ref38 doi: 10.1002/int.10132 – ident: ref85 doi: 10.1016/S0167-8655(99)00082-3 – ident: ref4 doi: 10.7551/mitpress/4908.001.0001 – ident: ref62 doi: 10.1162/evco.2009.17.3.275 – ident: ref64 doi: 10.1007/11492542_4 – start-page: 855 volume-title: Proc. 17th Int’l Conf. Machine Learning ident: ref92 article-title: Instance Pruning as an Information Preserving Problem – ident: ref66 doi: 10.1109/TIT.1968.1054155 – volume: 9 start-page: 997 year: 2008 ident: ref109 article-title: Hit Miss Networks with Applications to Instance Selection publication-title: J. Machine Learning Research – ident: ref111 doi: 10.1007/s10044-008-0142-x – ident: ref106 doi: 10.1109/ICMLC.2008.4620384 – ident: ref104 doi: 10.1142/S0218001405004332 – ident: ref110 doi: 10.1109/TNN.2009.2018547 – ident: ref17 doi: 10.1109/TPAMI.1986.4767859 – ident: ref5 doi: 10.1201/9781420089653 – ident: ref55 doi: 10.1016/j.eswa.2005.10.007 – ident: ref50 doi: 10.1016/j.patcog.2007.03.006 – ident: ref68 doi: 10.1109/TSMC.1972.4309137 – ident: ref63 doi: 10.1016/j.patcog.2009.04.019 – ident: ref75 doi: 10.1016/0167-8655(86)90066-8 – ident: ref70 doi: 10.1109/TIT.1975.1055464 – ident: ref7 doi: 10.1109/TKDE.2009.159 – ident: ref19 doi: 10.1109/TPAMI.2007.1182 – ident: ref36 doi: 10.1016/j.patcog.2010.10.020 – ident: ref94 doi: 10.1016/S0031-3203(01)00132-7 – ident: ref95 doi: 10.1016/S0031-3203(01)00137-6 – volume-title: Machine Learning year: 1997 ident: ref8 – ident: ref108 doi: 10.1016/j.patcog.2008.02.006 – ident: ref112 doi: 10.1109/TPAMI.2009.164 – ident: ref22 doi: 10.1145/1327452.1327494 – ident: ref46 doi: 10.1109/TNN.2008.2005496 – ident: ref82 doi: 10.1016/S0167-8655(97)00035-4 – ident: ref9 doi: 10.1016/j.csda.2005.06.007 – ident: ref86 doi: 10.1016/S0031-3203(99)00068-0 – ident: ref107 doi: 10.1142/S0129065708001725 – ident: ref84 doi: 10.1016/0167-8655(95)00047-K – ident: ref40 doi: 10.1016/B978-1-55860-335-6.50043-X – ident: ref61 doi: 10.1145/1007730.1007735 – ident: ref43 doi: 10.1109/TPAMI.2006.145 – ident: ref114 doi: 10.1007/s00500-008-0323-y – ident: ref41 doi: 10.1016/j.patcog.2009.12.012 – ident: ref48 doi: 10.1016/j.patcog.2005.06.001 – ident: ref39 doi: 10.1016/j.asoc.2010.11.030 – ident: ref56 doi: 10.1016/j.eswa.2007.08.083 – ident: ref98 doi: 10.1109/TEVC.2003.819265 – ident: ref24 doi: 10.1007/978-3-540-24844-6_90 – ident: ref34 doi: 10.1109/TSMCB.2008.2011816 – ident: ref91 doi: 10.1016/S0167-8655(02)00109-5 – ident: ref102 doi: 10.1007/11539087_68 – ident: ref121 doi: 10.1016/j.ins.2009.12.010 – ident: ref57 doi: 10.1016/j.patrec.2008.08.001 – ident: ref90 doi: 10.1016/S0031-3203(00)00184-9 – ident: ref15 doi: 10.1109/TKDE.2008.227 – ident: ref18 doi: 10.1109/34.615448 – ident: ref101 doi: 10.1007/11492542_5 – ident: ref78 doi: 10.1109/21.278999 – ident: ref30 doi: 10.1007/s10044-003-0191-0 – ident: ref49 doi: 10.1142/S0218001407005752 – ident: ref81 doi: 10.1162/neco.1995.7.1.72 – ident: ref71 doi: 10.1109/TSMC.1976.4309523 – ident: ref6 doi: 10.1007/978-94-017-2053-3 – ident: ref26 doi: 10.1109/TPAMI.2002.1023804 – volume-title: Pattern Recognition, A Statistical Approach year: 1982 ident: ref74 – ident: ref27 doi: 10.1016/j.patcog.2006.04.005 – ident: ref99 doi: 10.1016/S0031-3203(02)00119-X – ident: ref58 doi: 10.1109/TPAMI.2006.248 – ident: ref35 doi: 10.1109/TNN.2010.2087415 – ident: ref25 doi: 10.1016/j.patcog.2005.06.012 – ident: ref53 doi: 10.1109/TKDE.2007.190665 – ident: ref65 doi: 10.1142/S0218001409007727 – ident: ref76 doi: 10.1016/B978-0-934613-41-5.50006-4 – ident: ref10 doi: 10.1109/34.506411 – ident: ref31 doi: 10.1016/j.patrec.2004.09.043 – ident: ref72 doi: 10.1109/TSMC.1976.4309452 – ident: ref52 doi: 10.1016/j.artint.2010.01.001 – ident: ref67 doi: 10.1109/TIT.1972.1054809 – ident: ref42 doi: 10.1023/A:1006593614256 – ident: ref28 doi: 10.1109/TKDE.2007.190645 – year: 2005 ident: ref117 publication-title: Data Mining: Practical Machine Learning Tools and Techniques – ident: ref20 doi: 10.1016/S0031-3203(96)00098-2 – ident: ref13 doi: 10.1109/TPAMI.2007.70714 – ident: ref44 doi: 10.1109/TNN.2007.902955 – ident: ref47 doi: 10.1613/jair.346 – ident: ref2 doi: 10.1533/9780857099440 – ident: ref54 doi: 10.1016/j.datak.2006.01.008 – ident: ref100 doi: 10.1016/S0167-8655(02)00225-8 – ident: ref119 doi: 10.5555/1248547.1248548 – ident: ref122 doi: 10.2307/3001968 – ident: ref1 doi: 10.1109/TIT.1967.1053964 – volume: 7 start-page: 2125 year: 2006 ident: ref105 article-title: Adaptive Prototype Learning Algorithms: Theoretical and Experimental Studies publication-title: J. Machine Learning Research – ident: ref23 doi: 10.1023/A:1007626913721 – start-page: 99 volume-title: Proc. Eighth Australian Joint Conf. Artificial Intelligence ident: ref79 article-title: Instance Selection by Encoding Length Heuristic with Random Mutation Hill Climbing – ident: ref116 doi: 10.1177/001316446002000104 – ident: ref97 doi: 10.1109/ICMLC.2003.1264449 – ident: ref37 doi: 10.1007/BF00058656 – ident: ref3 doi: 10.1007/springerreference_62523 – ident: ref21 doi: 10.1145/293347.293348 – ident: ref113 doi: 10.1007/s10994-009-5161-3 – ident: ref59 doi: 10.1109/TPAMI.2010.155 – ident: ref60 doi: 10.1007/s10618-008-0087-0 – ident: ref118 doi: 10.1016/j.engappai.2007.01.001 – ident: ref11 doi: 10.1198/106186007X208380 – ident: ref33 doi: 10.1109/5.58325 – ident: ref45 doi: 10.1023/A:1006563312922 – ident: ref87 doi: 10.1007/3-540-48229-6_3 – ident: ref103 doi: 10.1007/11578079_38 – year: 2007 ident: ref115 article-title: UCI Machine Learning Repository – ident: ref51 doi: 10.1007/s10618-008-0121-2 – ident: ref69 doi: 10.1109/TIT.1974.1055252 – ident: ref88 doi: 10.1109/3477.931531 – ident: ref73 doi: 10.1109/TIT.1979.1056066 – ident: ref77 doi: 10.1007/BF00153759 – volume: 9 start-page: 2677 year: 2008 ident: ref120 article-title: An Extension on ’Statistical Comparisons of Classifiers over Multiple Data Sets’ for All Pairwise Comparisons publication-title: J. Machine Learning Research – ident: ref12 doi: 10.1109/TPAMI.2002.1033219 – volume: 3 start-page: 863 year: 2002 ident: ref93 article-title: Stopping Criterion for Boosting-Based Data Reduction Techniques: From Binary to Multiclass Problems publication-title: J. Machine Learning Research – ident: ref96 doi: 10.1007/978-3-540-25945-9_61 |
| SSID | ssj0014503 |
| Score | 2.5799646 |
| Snippet | The nearest neighbor classifier is one of the most used and well-known techniques for performing recognition tasks. It has also demonstrated itself to be one... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 417 |
| SubjectTerms | Accuracy Applied sciences classification Classification algorithms Computer science; control theory; systems condensation Data processing. List processing. Character string processing edition Exact sciences and technology Memory organisation. Data processing nearest neighbor Noise Noise measurement Prototype selection Prototypes Software Taxonomy Training |
| Title | Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study |
| URI | https://ieeexplore.ieee.org/document/6136515 https://www.ncbi.nlm.nih.gov/pubmed/21768651 https://www.proquest.com/docview/964199655 |
| Volume | 34 |
| WOSCitedRecordID | wos000299381600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD6ouNCFz3t1fAxZCHdzq5M2aRp3IoouHAYcYXYlzQOEayszHdF_70naqQrXhasWmrah3znNd5KT8wGcFCxRmRMyktLxCH94PCrSwkU8s7HJlB9SXRCbEMNhNpnI0RL87fbCWGtD8pk99adhLd9Ueu6nys5Sn5Pld5QvCyGavVrdigHjQQUZGQx6OIYRbYFGOpBn49HF3W1TrZOyOJT_RZKdcvplLAriKj41Us3w67hG1uJ73hnGn-vNn_V8CzZankkuGsPYhiVb7sDmQsOBtC69A-ufChLuwsNoWtWVn5Yl90EgB1EjSGvJ0Je6ndV4xGAezYYEMU2fZhSQPSdj9Rq2RxBVGnL19PwYSo8Qn6b49gserq_GlzdRK7wQaUYHdUS10zTR6O_UaR5z5YThzOmsQAcXDEkKkoxCMz0wSGhihf8BqYRUidHSSiOS37BSVqXdByJ5gSSNaskSxww1SjFnipRqzi1X1vYgWkCQ67YquRfH-JeH6GQg84Be7tHDMCXuwZ-u_XNTj-Pblrseh65VC0EP-l8Q7q7HHIO7JE17QBaQ5-hqfv1Elbaaz3KZMp-zzfEZe40pfNzcWtTB_196CGvYrbjJXTuClXo6t8ewql_qx9m0j-Y8yfrBnN8B9B7wGg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD4MrqA-eL_M7qp5EHyxzqRN2mbfZHFQ1GHAEXwraS4gaCszHdF_70na6a6gDz610LQN_c5pvpOcnA_gKGeRTG0iAiEsD_CHx4M8zm3AUxPqVLoh1XqxiWQ4TO_vxagDJ-1eGGOMTz4zp-7Ur-XrUs3cVFkvdjlZbkf5D85YSOvdWu2aAeNeBxk5DPo4BhJNiUbaF73x6Ozmsq7XSVnoCwAjzY45_TAaeXkVlxwpp_h9bC1s8TXz9CPQYO17fV-H1YZpkrPaNDagY4pNWJurOJDGqTdh5b-ShFtwN5qUVekmZsmtl8hB3AgSWzJ0xW6nFR4xnEfDIV5O0yUaeWz_kLF89RskiCw0OX96fvDFR4hLVHzbhrvB-fjvRdBILwSK0X4VUGUVjRR6PLWKh1zaRHNmVZqjiycMaQrSjFwx1ddIaUKJfwIhEyEjrYQROol2YKEoC7MHRPAcaRpVgkWWaaqlZFbnMVWcGy6N6UIwhyBTTV1yJ4_xmPn4pC8yj17m0MNAJezCcdv-ua7I8WXLLYdD26qBoAsHHxBur4ccw7sojrtA5pBn6GxuBUUWppxNMxEzl7XN8Rm7tSn8u7mxqJ-fv_QQli7GN9fZ9eXw6hcsYxfDOpPtNyxUk5nZh0X1Uj1MJwfeqN8B6zfyeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prototype+Selection+for+Nearest+Neighbor+Classification%3A+Taxonomy+and+Empirical+Study&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=GARCIA%2C+Salvador&rft.au=DERRAC%2C+Joaqufn&rft.au=CANO%2C+Jos%C3%A9+Ram%C3%B3n&rft.au=HERRERA%2C+Francisco&rft.date=2012-03-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=34&rft.issue=3&rft.spage=417&rft.epage=435&rft_id=info:doi/10.1109%2FTPAMI.2011.142&rft.externalDBID=n%2Fa&rft.externalDocID=25862366 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |