Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array

This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92 MHz oscillators and a reference SA...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors and actuators. B, Chemical Ročník 89; číslo 3; s. 269 - 284
Hlavní autori: Penza, M, Cassano, G
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2003
Predmet:
ISSN:0925-4005, 1873-3077
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92 MHz oscillators and a reference SAW element, in order to recognize the different individual components in a binary mixture of VOCs such as methanol (CH 3OH) and 2-propanol (C 3H 7OH), in the range 20–140 and 5–70 ppm, respectively. The SAW sensors, operating at room temperature, have been specifically coated by sensing thin films belonging to various chemical classes such as arachidic acid (fatty acids), carbowax (stationary phases), triethanolamine (amines), acrylated polysiloxane (polysiloxanes) to ensure cross-sensitivity towards VOCs under test. By using the relative frequency change as the output signal of the SAW multi-sensor array with an artificial neural network (ANN), a recognition system has been realized for the identification of tested VOCs. The features extraction from output signals of the SAW multi-sensor array, exposed to the binary component mixture of methanol and 2-propanol, has been also performed by pattern recognition techniques such as principal component analysis (PCA). The feedforward multi-layer neural network with a hidden layer and trained by a back-propagation learning algorithm has been implemented in order to classify and identify the tested VOCs patterns. Both the normalized responses of four SAW sensors array and the selected principal components (PCs) scores have been used as inputs to the multi-layer perceptron ANN by resulting in a 100% success recognition rate with the four SAW sensors normalized responses and with the first two principal components scores of the original data of the primary matrix. The different strategies used to recognize the VOCs patterns by the ANNs such as the ‘Leave-one-out’ method and ‘Training-and-Test’ method are discussed. Our experimental results have evidenced that the proposed binary vapor mixture classifier based on the electronic nose system, developed by inexpensive and poorly selective chemical SAW sensors, is highly effective in the identification of tested VOCs of methanol and 2-propanol. Moreover, the combination of PCA, as data pre-processing technique, and ANN, as patterns classification technique, provides a rapid and accurate recognition method of the individual components in the tested binary mixture of methanol and 2-propanol.
AbstractList This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92 MHz oscillators and a reference SAW element, in order to recognize the different individual components in a binary mixture of VOCs such as methanol (CH sub(3)OH) and 2-propanol (C sub(3)H sub(7)OH), in the range 20-140 and 5-70 ppm, respectively. The SAW sensors, operating at room temperature, have been specifically coated by sensing thin films belonging to various chemical classes such as arachidic acid (fatty acids), carbowax (stationary phases), triethanolamine (amines), acrylated polysiloxane (polysiloxanes) to ensure cross-sensitivity towards VOCs under test. By using the relative frequency change as the output signal of the SAW multi-sensor array with an artificial neural network (ANN), a recognition system has been realized for the identification of tested VOCs. The features extraction from output signals of the SAW multi-sensor array, exposed to the binary component mixture of methanol and 2-propanol, has been also performed by pattern recognition techniques such as principal component analysis (PCA). The feedforward multi-layer neural network with a hidden layer and trained by a back-propagation learning algorithm has been implemented in order to classify and identify the tested VOCs patterns. Both the normalized responses of four SAW sensors array and the selected principal components (PCs) scores have been used as inputs to the multi-layer perceptron ANN by resulting in a 100% success recognition rate with the four SAW sensors normalized responses and with the first two principal components scores of the original data of the primary matrix. The different strategies used to recognize the VOCs patterns by the ANNs such as the 'Leave-one-out' method and 'Training-and-Test' method are discussed. Our experimental results have evidenced that the proposed binary vapor mixture classifier based on the electronic nose system, developed by inexpensive and poorly selective chemical SAW sensors, is highly effective in the identification of tested VOCs of methanol and 2-propanol. Moreover, the combination of PCA, as data preprocessing technique, and ANN, as patterns classification technique, provides a rapid and accurate recognition method of the individual components in the tested binary mixture of methanol and 2-propanol.
This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92 MHz oscillators and a reference SAW element, in order to recognize the different individual components in a binary mixture of VOCs such as methanol (CH 3OH) and 2-propanol (C 3H 7OH), in the range 20–140 and 5–70 ppm, respectively. The SAW sensors, operating at room temperature, have been specifically coated by sensing thin films belonging to various chemical classes such as arachidic acid (fatty acids), carbowax (stationary phases), triethanolamine (amines), acrylated polysiloxane (polysiloxanes) to ensure cross-sensitivity towards VOCs under test. By using the relative frequency change as the output signal of the SAW multi-sensor array with an artificial neural network (ANN), a recognition system has been realized for the identification of tested VOCs. The features extraction from output signals of the SAW multi-sensor array, exposed to the binary component mixture of methanol and 2-propanol, has been also performed by pattern recognition techniques such as principal component analysis (PCA). The feedforward multi-layer neural network with a hidden layer and trained by a back-propagation learning algorithm has been implemented in order to classify and identify the tested VOCs patterns. Both the normalized responses of four SAW sensors array and the selected principal components (PCs) scores have been used as inputs to the multi-layer perceptron ANN by resulting in a 100% success recognition rate with the four SAW sensors normalized responses and with the first two principal components scores of the original data of the primary matrix. The different strategies used to recognize the VOCs patterns by the ANNs such as the ‘Leave-one-out’ method and ‘Training-and-Test’ method are discussed. Our experimental results have evidenced that the proposed binary vapor mixture classifier based on the electronic nose system, developed by inexpensive and poorly selective chemical SAW sensors, is highly effective in the identification of tested VOCs of methanol and 2-propanol. Moreover, the combination of PCA, as data pre-processing technique, and ANN, as patterns classification technique, provides a rapid and accurate recognition method of the individual components in the tested binary mixture of methanol and 2-propanol.
Author Penza, M
Cassano, G
Author_xml – sequence: 1
  givenname: M
  surname: Penza
  fullname: Penza, M
  email: michele.penza@brindisi.enea.it
– sequence: 2
  givenname: G
  surname: Cassano
  fullname: Cassano, G
BookMark eNqFkctuFDEQRS2USEwSPgHJKwSLJn70y2KBRqMEkCJlER5Ly-2uJgXddmO7E4av4hPxzCAWbMabqsW5t8p1z8iJ8w4Iec7Za854fXnHlKiKkrHqJZOvWH6iUE_IireNLCRrmhOy-oc8JWcxfstMKWu2Ir_X8zyiNQm9o36gc0BncTYjtX6a8xyXqHFm3EaMuempCQkHtJgJB0vYl_Tow_dIk6cBrP_q8BfQdA8UXY8P2C8Z-ny7iTv_CdK9cX68FMUc_LxrM0YN7dCZsKUT_kxLANpt6d36C52WMWERwUUf8uhgthfkdDBjhGd_6zn5dH31cfO-uLl992GzvilsyVkquDK9rdvSKD7YobVtY8uqldyyZmiUBdXWwhhZiq4DZZjoBK96IRreG5Cq7-Q5eXHwzWv-WCAmPWG0MI7GgV-iFo2SVSXkUZDXvC5LzjNYHUAbfIwBBp2PPeVPa870Lki9D1LvUtJM6n2QWmXdm_90FtM-sBQMjkfVbw9qyMd6QAg6WgRnocccVtK9xyMOfwCLJr2T
CitedBy_id crossref_primary_10_1016_j_snb_2005_11_079
crossref_primary_10_3390_rs14236003
crossref_primary_10_1016_j_snb_2005_02_031
crossref_primary_10_1109_JSEN_2020_3042766
crossref_primary_10_1002_adv_20263
crossref_primary_10_1016_j_snb_2005_01_025
crossref_primary_10_1016_j_psep_2016_05_014
crossref_primary_10_1063_1_3660805
crossref_primary_10_1016_j_snb_2013_12_063
crossref_primary_10_1039_C6AN00326E
crossref_primary_10_1109_JSEN_2009_2029452
crossref_primary_10_1016_j_snb_2004_11_027
crossref_primary_10_1016_j_snb_2016_09_152
crossref_primary_10_1080_00387010600803664
crossref_primary_10_5194_amt_11_6351_2018
crossref_primary_10_1063_1_2763965
crossref_primary_10_1016_j_snb_2006_12_028
crossref_primary_10_1016_j_lwt_2005_01_002
crossref_primary_10_1016_j_snb_2007_08_044
crossref_primary_10_1016_j_snb_2018_03_028
crossref_primary_10_1016_j_snb_2008_12_037
crossref_primary_10_1080_00387010_2019_1671873
crossref_primary_10_1007_s12034_022_02674_9
crossref_primary_10_1007_s11517_023_02861_8
crossref_primary_10_1016_j_snb_2014_04_065
crossref_primary_10_1016_j_snb_2007_12_052
crossref_primary_10_1007_s11738_017_2583_6
crossref_primary_10_1016_j_foodcont_2007_03_007
crossref_primary_10_3390_s100504675
crossref_primary_10_3390_s140711659
crossref_primary_10_1016_j_talanta_2008_05_042
crossref_primary_10_3390_s19153417
crossref_primary_10_1016_j_ecoenv_2023_114911
crossref_primary_10_1016_j_snb_2018_08_013
crossref_primary_10_1002_smsc_202400250
crossref_primary_10_3390_s18082523
crossref_primary_10_1109_JLT_2006_884984
crossref_primary_10_1016_j_mssp_2022_106706
crossref_primary_10_3390_s17112529
crossref_primary_10_1016_j_snb_2005_11_002
crossref_primary_10_1002_app_29142
crossref_primary_10_1088_0957_0233_18_9_034
crossref_primary_10_3390_s17122716
crossref_primary_10_1016_j_aca_2003_12_026
crossref_primary_10_1016_j_foodchem_2007_07_071
crossref_primary_10_1016_j_snb_2014_12_076
crossref_primary_10_1109_JSEN_2005_858435
crossref_primary_10_1016_j_aca_2005_11_024
crossref_primary_10_1016_j_jfoodeng_2008_08_008
crossref_primary_10_1016_j_sna_2019_03_037
crossref_primary_10_1002_jccs_200600107
crossref_primary_10_1016_j_matlet_2006_04_073
crossref_primary_10_1016_j_uclim_2014_09_002
crossref_primary_10_1016_j_snb_2014_02_011
Cites_doi 10.1016/0925-4005(94)87042-X
10.1016/S0925-4005(01)00941-8
10.1016/S0003-2670(01)01392-7
10.1016/S0925-4005(00)00634-1
10.1109/58.726434
10.1016/S0003-2670(97)00202-X
10.1016/S0304-3991(99)00123-0
10.1016/S0925-4005(01)00937-6
10.1093/oso/9780198559559.001.0001
10.1016/S0925-4005(01)00705-5
10.1016/S0003-2670(01)01584-7
10.1016/B978-012077460-9/50003-4
10.1088/0957-0233/4/12/029
10.1039/an9962100671
10.1016/S0925-4005(01)00683-9
10.1016/S0925-4005(99)00186-0
10.1016/S0925-4005(01)00743-2
10.1016/S0925-4005(00)00485-8
10.1109/6.715180
10.1201/9781420050646.ptb6
10.1016/S0925-4005(00)00559-1
10.1016/S0925-4005(00)00448-2
10.1016/S0003-2670(99)00767-9
10.1016/S0925-4005(01)00781-X
10.1016/S0925-4005(01)00718-3
10.1016/S0925-4005(01)00687-6
10.1016/S0925-4005(99)00381-0
10.1016/S0925-4005(01)00581-0
ContentType Journal Article
Copyright 2003 Elsevier Science B.V.
Copyright_xml – notice: 2003 Elsevier Science B.V.
DBID AAYXX
CITATION
7QO
7TV
8FD
C1K
FR3
P64
7SU
DOI 10.1016/S0925-4005(03)00002-9
DatabaseName CrossRef
Biotechnology Research Abstracts
Pollution Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Environmental Engineering Abstracts
DatabaseTitleList Engineering Research Database

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 284
ExternalDocumentID 308279584
10_1016_S0925_4005_03_00002_9
S0925400503000029
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
WUQ
XFK
YK3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7QO
7TV
8FD
C1K
FR3
P64
7SU
ID FETCH-LOGICAL-c410t-19adc684a91fcf8c87c45831c07f79ce9862aa342bbe9a02b215d2271dae39db3
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000181894400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-4005
IngestDate Sun Nov 09 10:29:36 EST 2025
Mon Oct 06 18:17:56 EDT 2025
Sat Nov 29 02:10:59 EST 2025
Tue Nov 18 19:56:07 EST 2025
Fri Feb 23 02:27:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-sensor array
SAW chemical sensors
Pattern recognition
Vapor sensing thin films
Artificial neural networks
Principal component analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-19adc684a91fcf8c87c45831c07f79ce9862aa342bbe9a02b215d2271dae39db3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 16164411
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_27935523
proquest_miscellaneous_16164411
crossref_primary_10_1016_S0925_4005_03_00002_9
crossref_citationtrail_10_1016_S0925_4005_03_00002_9
elsevier_sciencedirect_doi_10_1016_S0925_4005_03_00002_9
PublicationCentury 2000
PublicationDate 2003-04-01
PublicationDateYYYYMMDD 2003-04-01
PublicationDate_xml – month: 04
  year: 2003
  text: 2003-04-01
  day: 01
PublicationDecade 2000
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2003
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Battiston, Ramseyer, Lang, Baller, Gerber, Gimzewski, Meyer, Guntherodt (BIB18) 2001; 77
Brezmes, Ferreras, Llobet, Vilanova, Correig (BIB29) 1997; 348
Cai, Park, Heldsinger, Hsieh, Zellers (BIB25) 2000; 62
D.S. Ballantine, R.M. White, S.J. Martin, A.J. Ricco, E.T. Zellers, G.C. Frye, H. Wohltjen, Acoustic Wave Sensors, Academic Press, San Diego, USA, 1997.
Xie, Jiang, Jiang, Wu, Li (BIB10) 2001; 77
Bakken, Kauffman, Jurs, Albert, Stitzel (BIB16) 2001; 79
Evans, Persaud, McNeish, Sneath, Hobson, Magan (BIB7) 2000; 69
Lloyd Spetz, Tobias, Uneus, Svenningstorp, Ekedahl, Lundstrom (BIB14) 2000; 70
Nakamoto, Iguchi, Moriizumi (BIB21) 2000; 71
Covington, Gardner, Briand, de Rooij (BIB9) 2001; 77
J.W. Gardner, P.N. Bartlett, Electronic Noses, Oxford University Press, Oxford, 1999.
Guadarrama, Rodriguez-Mendez, de Saja (BIB8) 2002; 455
Penza, Cassano (BIB24) 2000; 68
Penza, Cassano, Sergi, Lo Sterzo, Russo (BIB23) 2001; 81
Penza, Cassano, Tortorella (BIB4) 2001; 81
Mc Murtry, Wright, Jackson (BIB15) 2001; 72
American Conference of Governmental Industrial Hygienists, 2000 TLVs and BEIs, ACGIH Worldwide, Cincinnati, USA, 2001.
C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.
Winquist, Holmin, Krantz-Rulcker, Wide, Lundstrom (BIB6) 2000; 406
Penza, Milella, Anisimkin (BIB11) 1998; 45
Barker, Chen, Agbor, Monkman, Mars, Petty (BIB12) 1994; 17
Winquist, Hornsten, Sundgren, Lundstrom (BIB13) 1993; 4
Baller, Lang, Fritz, Gerber, Gimzewski, Drechsler, Rothuizen, Despont, Vettiger, Battiston, Ramseyer, Fornaro, Meyer, Guntherodt (BIB17) 2000; 82
Lee, Jung, Lim, Huh, Lee (BIB5) 2001; 77
Di Natale, Macagnano, Martinelli, Proietti, Paolesse, Castellari, Campani, D’Amico (BIB19) 2001; 77
Stahl, Rapp, Wessa (BIB22) 2001; 450
Comini, Faglia, Sberveglieri (BIB3) 2001; 76
Deng, Stone, Thompson (BIB20) 1996; 121
Nagle, Gutierrez-Osuna, Schiffman (BIB1) 1998; 35
Barker (10.1016/S0925-4005(03)00002-9_BIB12) 1994; 17
Brezmes (10.1016/S0925-4005(03)00002-9_BIB29) 1997; 348
Nakamoto (10.1016/S0925-4005(03)00002-9_BIB21) 2000; 71
Guadarrama (10.1016/S0925-4005(03)00002-9_BIB8) 2002; 455
Battiston (10.1016/S0925-4005(03)00002-9_BIB18) 2001; 77
Xie (10.1016/S0925-4005(03)00002-9_BIB10) 2001; 77
Covington (10.1016/S0925-4005(03)00002-9_BIB9) 2001; 77
Mc Murtry (10.1016/S0925-4005(03)00002-9_BIB15) 2001; 72
Deng (10.1016/S0925-4005(03)00002-9_BIB20) 1996; 121
Penza (10.1016/S0925-4005(03)00002-9_BIB23) 2001; 81
Nagle (10.1016/S0925-4005(03)00002-9_BIB1) 1998; 35
Winquist (10.1016/S0925-4005(03)00002-9_BIB6) 2000; 406
Cai (10.1016/S0925-4005(03)00002-9_BIB25) 2000; 62
Baller (10.1016/S0925-4005(03)00002-9_BIB17) 2000; 82
Bakken (10.1016/S0925-4005(03)00002-9_BIB16) 2001; 79
Stahl (10.1016/S0925-4005(03)00002-9_BIB22) 2001; 450
Di Natale (10.1016/S0925-4005(03)00002-9_BIB19) 2001; 77
Winquist (10.1016/S0925-4005(03)00002-9_BIB13) 1993; 4
Evans (10.1016/S0925-4005(03)00002-9_BIB7) 2000; 69
Lloyd Spetz (10.1016/S0925-4005(03)00002-9_BIB14) 2000; 70
Penza (10.1016/S0925-4005(03)00002-9_BIB11) 1998; 45
10.1016/S0925-4005(03)00002-9_BIB2
Penza (10.1016/S0925-4005(03)00002-9_BIB4) 2001; 81
Lee (10.1016/S0925-4005(03)00002-9_BIB5) 2001; 77
Comini (10.1016/S0925-4005(03)00002-9_BIB3) 2001; 76
10.1016/S0925-4005(03)00002-9_BIB26
Penza (10.1016/S0925-4005(03)00002-9_BIB24) 2000; 68
10.1016/S0925-4005(03)00002-9_BIB28
10.1016/S0925-4005(03)00002-9_BIB27
References_xml – volume: 77
  start-page: 155
  year: 2001
  end-page: 162
  ident: BIB9
  article-title: A polymer gate FET sensor array for detecting organic vapours
  publication-title: Sens. Actuators B
– reference: D.S. Ballantine, R.M. White, S.J. Martin, A.J. Ricco, E.T. Zellers, G.C. Frye, H. Wohltjen, Acoustic Wave Sensors, Academic Press, San Diego, USA, 1997.
– volume: 62
  start-page: 121
  year: 2000
  end-page: 130
  ident: BIB25
  article-title: Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors
  publication-title: Sens. Actuators B
– volume: 72
  start-page: 69
  year: 2001
  end-page: 74
  ident: BIB15
  article-title: Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air
  publication-title: Sens. Actuators B
– volume: 81
  start-page: 115
  year: 2001
  end-page: 121
  ident: BIB4
  article-title: Gas recognition by activated WO
  publication-title: Sens. Actuators B
– volume: 77
  start-page: 228
  year: 2001
  end-page: 236
  ident: BIB5
  article-title: Recognition of volatile organic compounds using SnO
  publication-title: Sens. Actuators B
– volume: 71
  start-page: 155
  year: 2000
  end-page: 160
  ident: BIB21
  article-title: Vapor supply method in odor sensing system and analysis of transient sensor responses
  publication-title: Sens. Actuators B
– volume: 76
  start-page: 270
  year: 2001
  end-page: 274
  ident: BIB3
  article-title: CO and NO
  publication-title: Sens. Actuators B
– reference: American Conference of Governmental Industrial Hygienists, 2000 TLVs and BEIs, ACGIH Worldwide, Cincinnati, USA, 2001.
– volume: 406
  start-page: 147
  year: 2000
  end-page: 157
  ident: BIB6
  article-title: A hybrid electronic tongue
  publication-title: Anal. Chim. Acta
– reference: J.W. Gardner, P.N. Bartlett, Electronic Noses, Oxford University Press, Oxford, 1999.
– volume: 77
  start-page: 260
  year: 2001
  end-page: 263
  ident: BIB10
  article-title: Gas sensitive Langmuir–Blodgett films based on erbium bis[octakis(octyloxy)phthalocyaninato] complex
  publication-title: Sens. Actuators B
– volume: 45
  start-page: 1125
  year: 1998
  end-page: 1132
  ident: BIB11
  article-title: Gas sensing properties of Langmuir–Blodgett polypyrrole film investigated by surface acoustic waves
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
– volume: 450
  start-page: 27
  year: 2001
  end-page: 36
  ident: BIB22
  article-title: Adhesives: a new class of polymer coatings for surface acoustic wave sensors for fast and reliable process control applications
  publication-title: Anal. Chim. Acta
– volume: 35
  start-page: 22
  year: 1998
  end-page: 31
  ident: BIB1
  article-title: The how and why of electronic noses
  publication-title: IEEE Spectrum
– volume: 348
  start-page: 503
  year: 1997
  end-page: 509
  ident: BIB29
  article-title: Neural network based electronic nose for the classification of aromatic species
  publication-title: Anal. Chim. Acta
– reference: C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.
– volume: 68
  start-page: 300
  year: 2000
  end-page: 306
  ident: BIB24
  article-title: Relative humidity sensing by PVA-coated dual resonator SAW oscillator
  publication-title: Sens. Actuators B
– volume: 77
  start-page: 122
  year: 2001
  end-page: 131
  ident: BIB18
  article-title: A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout
  publication-title: Sens. Actuators B
– volume: 70
  start-page: 67
  year: 2000
  end-page: 76
  ident: BIB14
  article-title: High temperature catalytic metal field effect transistors for industrial applications
  publication-title: Sens. Actuators B
– volume: 77
  start-page: 561
  year: 2001
  end-page: 566
  ident: BIB19
  article-title: Electronic nose based investigation of the sensorial properties of peaches and nectarines
  publication-title: Sens. Actuators B
– volume: 69
  start-page: 348
  year: 2000
  end-page: 358
  ident: BIB7
  article-title: Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data
  publication-title: Sens. Actuators B
– volume: 79
  start-page: 1
  year: 2001
  end-page: 10
  ident: BIB16
  article-title: Pattern recognition analysis of optical sensor array data to detect nitroaromatic compound vapors
  publication-title: Sens. Actuators B
– volume: 81
  start-page: 88
  year: 2001
  end-page: 98
  ident: BIB23
  article-title: SAW chemical sensing using poly-ynes and organometallic polymer films
  publication-title: Sens. Actuators B
– volume: 121
  start-page: 671
  year: 1996
  end-page: 679
  ident: BIB20
  article-title: Selective detection of aroma components by acoustic wave sensors coated with conducting polymer films
  publication-title: Analyst
– volume: 17
  start-page: 143
  year: 1994
  end-page: 147
  ident: BIB12
  article-title: Vapor recognition using organic films and artificial neural networks
  publication-title: Sens. Actuators B
– volume: 455
  start-page: 41
  year: 2002
  end-page: 47
  ident: BIB8
  article-title: Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles
  publication-title: Anal. Chim. Acta
– volume: 4
  start-page: 1493
  year: 1993
  end-page: 1500
  ident: BIB13
  article-title: Performance of an electronic nose for quality estimation of ground meat
  publication-title: Meas. Sci. Technol.
– volume: 82
  start-page: 1
  year: 2000
  end-page: 9
  ident: BIB17
  article-title: A cantilever array-based artificial nose
  publication-title: Ultramicroscopy
– volume: 17
  start-page: 143
  year: 1994
  ident: 10.1016/S0925-4005(03)00002-9_BIB12
  article-title: Vapor recognition using organic films and artificial neural networks
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(94)87042-X
– volume: 81
  start-page: 115
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB4
  article-title: Gas recognition by activated WO3 thin-film sensors array
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00941-8
– volume: 450
  start-page: 27
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB22
  article-title: Adhesives: a new class of polymer coatings for surface acoustic wave sensors for fast and reliable process control applications
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)01392-7
– volume: 72
  start-page: 69
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB15
  article-title: Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00634-1
– volume: 45
  start-page: 1125
  year: 1998
  ident: 10.1016/S0925-4005(03)00002-9_BIB11
  article-title: Gas sensing properties of Langmuir–Blodgett polypyrrole film investigated by surface acoustic waves
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
  doi: 10.1109/58.726434
– volume: 348
  start-page: 503
  year: 1997
  ident: 10.1016/S0925-4005(03)00002-9_BIB29
  article-title: Neural network based electronic nose for the classification of aromatic species
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(97)00202-X
– volume: 82
  start-page: 1
  year: 2000
  ident: 10.1016/S0925-4005(03)00002-9_BIB17
  article-title: A cantilever array-based artificial nose
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(99)00123-0
– volume: 81
  start-page: 88
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB23
  article-title: SAW chemical sensing using poly-ynes and organometallic polymer films
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00937-6
– ident: 10.1016/S0925-4005(03)00002-9_BIB27
  doi: 10.1093/oso/9780198559559.001.0001
– volume: 77
  start-page: 561
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB19
  article-title: Electronic nose based investigation of the sensorial properties of peaches and nectarines
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00705-5
– volume: 455
  start-page: 41
  year: 2002
  ident: 10.1016/S0925-4005(03)00002-9_BIB8
  article-title: Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)01584-7
– ident: 10.1016/S0925-4005(03)00002-9_BIB26
  doi: 10.1016/B978-012077460-9/50003-4
– volume: 4
  start-page: 1493
  year: 1993
  ident: 10.1016/S0925-4005(03)00002-9_BIB13
  article-title: Performance of an electronic nose for quality estimation of ground meat
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/4/12/029
– volume: 121
  start-page: 671
  year: 1996
  ident: 10.1016/S0925-4005(03)00002-9_BIB20
  article-title: Selective detection of aroma components by acoustic wave sensors coated with conducting polymer films
  publication-title: Analyst
  doi: 10.1039/an9962100671
– ident: 10.1016/S0925-4005(03)00002-9_BIB2
– volume: 77
  start-page: 122
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB18
  article-title: A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00683-9
– volume: 71
  start-page: 155
  year: 2000
  ident: 10.1016/S0925-4005(03)00002-9_BIB21
  article-title: Vapor supply method in odor sensing system and analysis of transient sensor responses
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(99)00186-0
– volume: 77
  start-page: 260
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB10
  article-title: Gas sensitive Langmuir–Blodgett films based on erbium bis[octakis(octyloxy)phthalocyaninato] complex
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00743-2
– volume: 69
  start-page: 348
  year: 2000
  ident: 10.1016/S0925-4005(03)00002-9_BIB7
  article-title: Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00485-8
– volume: 35
  start-page: 22
  year: 1998
  ident: 10.1016/S0925-4005(03)00002-9_BIB1
  article-title: The how and why of electronic noses
  publication-title: IEEE Spectrum
  doi: 10.1109/6.715180
– ident: 10.1016/S0925-4005(03)00002-9_BIB28
  doi: 10.1201/9781420050646.ptb6
– volume: 70
  start-page: 67
  year: 2000
  ident: 10.1016/S0925-4005(03)00002-9_BIB14
  article-title: High temperature catalytic metal field effect transistors for industrial applications
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00559-1
– volume: 68
  start-page: 300
  year: 2000
  ident: 10.1016/S0925-4005(03)00002-9_BIB24
  article-title: Relative humidity sensing by PVA-coated dual resonator SAW oscillator
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00448-2
– volume: 406
  start-page: 147
  year: 2000
  ident: 10.1016/S0925-4005(03)00002-9_BIB6
  article-title: A hybrid electronic tongue
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(99)00767-9
– volume: 79
  start-page: 1
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB16
  article-title: Pattern recognition analysis of optical sensor array data to detect nitroaromatic compound vapors
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00781-X
– volume: 77
  start-page: 228
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB5
  article-title: Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00718-3
– volume: 77
  start-page: 155
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB9
  article-title: A polymer gate FET sensor array for detecting organic vapours
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00687-6
– volume: 62
  start-page: 121
  year: 2000
  ident: 10.1016/S0925-4005(03)00002-9_BIB25
  article-title: Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(99)00381-0
– volume: 76
  start-page: 270
  year: 2001
  ident: 10.1016/S0925-4005(03)00002-9_BIB3
  article-title: CO and NO2 response of tin oxide silicon doped thin films
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00581-0
SSID ssj0004360
Score 2.054889
Snippet This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Artificial neural networks
Multi-sensor array
Pattern recognition
Principal component analysis
SAW chemical sensors
Vapor sensing thin films
Title Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array
URI https://dx.doi.org/10.1016/S0925-4005(03)00002-9
https://www.proquest.com/docview/16164411
https://www.proquest.com/docview/27935523
Volume 89
WOSCitedRecordID wos000181894400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004360
  issn: 0925-4005
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE9RnnOgEqhya6_t2HsMUSvgUJBSIDdrd72WIrVO5KRV6K_iR_DDmH3Y6xaV0gMXx1l51xvNl533DCFvhskwpDxVAWNlGSSREgFH6SgoM6oYR37NZWWaTWSHh_l0yr4MBr_aXJiz46yu8_WaLf4rqXEMia1TZ29A7m5RHMB7JDpekex4_SfCj7xL2oQzW2u6KQNyspjXNqbcVSIxlVobEy6kLee6uKX5MKHhpvaDCzA6V0ZCnfn0rW-fx0vrnNfGd92n64AGeBwv9BdtReE7wub6nszWxk2Bgu5k9N2GMAZLVJ91_GbT8AuO5YkZdzvTyS26G9DuznsbGmCLG_jjvD7nFyy6Y1QFuGkm7nqGtfaMuBcG4wyTNEWtNkz7Z7RtM-SwGPcPXNvoxfFuatvN_cEWrIVi0i29rXtybVPdMBUZAvO8sPX_X2KRXeCij4nDpQq9VBHGhVmmYLfIJs1Shuxhc_Rxf_rJ5-fGJlu9e73PJNvze3obxu_cfq6SkS5JC0YEOrpP7jndBUYWcw_IQNUPyd1eRctH5GcPfTCvoEMfdOiDFn14U4JHH1j0QYs-WM2hQx8g-sCjDzT69Pot-vY89vAx4GCxBw57IH4AYg_62AODvcfk68H-0fhD4JqCBDKJwlUQMV7KYZ5wFlWyymWeSe36j2SYVRmTiqGKznmcUCHwsAmpQJm2pDSLSq5iVor4Cdmo8ec-JYCSquChSkQ6VElWVTwWiqNGIiORhjystkjSkqGQrmK-btxyXPwVBltkt5u2sCVjrpuQtzQunNxr5dkC8Xvd1NctJgrkC9rZx2s1P10WqMlpVSe6-gma6d4KNH520_0-J3f8H_cF2Vg1p-oluS3PVrNl88qB_zfLLObt
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+principal+component+analysis+and+artificial+neural+networks+to+recognize+the+individual+VOCs+of+methanol%2F2-propanol+in+a+binary+mixture+by+SAW+multi-sensor+array&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Penza%2C+M&rft.au=Cassano%2C+G&rft.date=2003-04-01&rft.issn=0925-4005&rft.volume=89&rft.issue=3&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1016%2FS0925-4005%2803%2900002-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0925_4005_03_00002_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon