Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array
This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92 MHz oscillators and a reference SA...
Uložené v:
| Vydané v: | Sensors and actuators. B, Chemical Ročník 89; číslo 3; s. 269 - 284 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.04.2003
|
| Predmet: | |
| ISSN: | 0925-4005, 1873-3077 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92
MHz oscillators and a reference SAW element, in order to recognize the different individual components in a binary mixture of VOCs such as methanol (CH
3OH) and 2-propanol (C
3H
7OH), in the range 20–140 and 5–70
ppm, respectively. The SAW sensors, operating at room temperature, have been specifically coated by sensing thin films belonging to various chemical classes such as arachidic acid (fatty acids), carbowax (stationary phases), triethanolamine (amines), acrylated polysiloxane (polysiloxanes) to ensure cross-sensitivity towards VOCs under test. By using the relative frequency change as the output signal of the SAW multi-sensor array with an artificial neural network (ANN), a recognition system has been realized for the identification of tested VOCs. The features extraction from output signals of the SAW multi-sensor array, exposed to the binary component mixture of methanol and 2-propanol, has been also performed by pattern recognition techniques such as principal component analysis (PCA). The feedforward multi-layer neural network with a hidden layer and trained by a back-propagation learning algorithm has been implemented in order to classify and identify the tested VOCs patterns. Both the normalized responses of four SAW sensors array and the selected principal components (PCs) scores have been used as inputs to the multi-layer perceptron ANN by resulting in a 100% success recognition rate with the four SAW sensors normalized responses and with the first two principal components scores of the original data of the primary matrix. The different strategies used to recognize the VOCs patterns by the ANNs such as the ‘Leave-one-out’ method and ‘Training-and-Test’ method are discussed. Our experimental results have evidenced that the proposed binary vapor mixture classifier based on the electronic nose system, developed by inexpensive and poorly selective chemical SAW sensors, is highly effective in the identification of tested VOCs of methanol and 2-propanol. Moreover, the combination of PCA, as data pre-processing technique, and ANN, as patterns classification technique, provides a rapid and accurate recognition method of the individual components in the tested binary mixture of methanol and 2-propanol. |
|---|---|
| AbstractList | This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92 MHz oscillators and a reference SAW element, in order to recognize the different individual components in a binary mixture of VOCs such as methanol (CH sub(3)OH) and 2-propanol (C sub(3)H sub(7)OH), in the range 20-140 and 5-70 ppm, respectively. The SAW sensors, operating at room temperature, have been specifically coated by sensing thin films belonging to various chemical classes such as arachidic acid (fatty acids), carbowax (stationary phases), triethanolamine (amines), acrylated polysiloxane (polysiloxanes) to ensure cross-sensitivity towards VOCs under test. By using the relative frequency change as the output signal of the SAW multi-sensor array with an artificial neural network (ANN), a recognition system has been realized for the identification of tested VOCs. The features extraction from output signals of the SAW multi-sensor array, exposed to the binary component mixture of methanol and 2-propanol, has been also performed by pattern recognition techniques such as principal component analysis (PCA). The feedforward multi-layer neural network with a hidden layer and trained by a back-propagation learning algorithm has been implemented in order to classify and identify the tested VOCs patterns. Both the normalized responses of four SAW sensors array and the selected principal components (PCs) scores have been used as inputs to the multi-layer perceptron ANN by resulting in a 100% success recognition rate with the four SAW sensors normalized responses and with the first two principal components scores of the original data of the primary matrix. The different strategies used to recognize the VOCs patterns by the ANNs such as the 'Leave-one-out' method and 'Training-and-Test' method are discussed. Our experimental results have evidenced that the proposed binary vapor mixture classifier based on the electronic nose system, developed by inexpensive and poorly selective chemical SAW sensors, is highly effective in the identification of tested VOCs of methanol and 2-propanol. Moreover, the combination of PCA, as data preprocessing technique, and ANN, as patterns classification technique, provides a rapid and accurate recognition method of the individual components in the tested binary mixture of methanol and 2-propanol. This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array with four acoustic sensing elements, developed in dual configuration as multiplexed two-port resonator 433.92 MHz oscillators and a reference SAW element, in order to recognize the different individual components in a binary mixture of VOCs such as methanol (CH 3OH) and 2-propanol (C 3H 7OH), in the range 20–140 and 5–70 ppm, respectively. The SAW sensors, operating at room temperature, have been specifically coated by sensing thin films belonging to various chemical classes such as arachidic acid (fatty acids), carbowax (stationary phases), triethanolamine (amines), acrylated polysiloxane (polysiloxanes) to ensure cross-sensitivity towards VOCs under test. By using the relative frequency change as the output signal of the SAW multi-sensor array with an artificial neural network (ANN), a recognition system has been realized for the identification of tested VOCs. The features extraction from output signals of the SAW multi-sensor array, exposed to the binary component mixture of methanol and 2-propanol, has been also performed by pattern recognition techniques such as principal component analysis (PCA). The feedforward multi-layer neural network with a hidden layer and trained by a back-propagation learning algorithm has been implemented in order to classify and identify the tested VOCs patterns. Both the normalized responses of four SAW sensors array and the selected principal components (PCs) scores have been used as inputs to the multi-layer perceptron ANN by resulting in a 100% success recognition rate with the four SAW sensors normalized responses and with the first two principal components scores of the original data of the primary matrix. The different strategies used to recognize the VOCs patterns by the ANNs such as the ‘Leave-one-out’ method and ‘Training-and-Test’ method are discussed. Our experimental results have evidenced that the proposed binary vapor mixture classifier based on the electronic nose system, developed by inexpensive and poorly selective chemical SAW sensors, is highly effective in the identification of tested VOCs of methanol and 2-propanol. Moreover, the combination of PCA, as data pre-processing technique, and ANN, as patterns classification technique, provides a rapid and accurate recognition method of the individual components in the tested binary mixture of methanol and 2-propanol. |
| Author | Penza, M Cassano, G |
| Author_xml | – sequence: 1 givenname: M surname: Penza fullname: Penza, M email: michele.penza@brindisi.enea.it – sequence: 2 givenname: G surname: Cassano fullname: Cassano, G |
| BookMark | eNqFkctuFDEQRS2USEwSPgHJKwSLJn70y2KBRqMEkCJlER5Ly-2uJgXddmO7E4av4hPxzCAWbMabqsW5t8p1z8iJ8w4Iec7Za854fXnHlKiKkrHqJZOvWH6iUE_IireNLCRrmhOy-oc8JWcxfstMKWu2Ir_X8zyiNQm9o36gc0BncTYjtX6a8xyXqHFm3EaMuempCQkHtJgJB0vYl_Tow_dIk6cBrP_q8BfQdA8UXY8P2C8Z-ny7iTv_CdK9cX68FMUc_LxrM0YN7dCZsKUT_kxLANpt6d36C52WMWERwUUf8uhgthfkdDBjhGd_6zn5dH31cfO-uLl992GzvilsyVkquDK9rdvSKD7YobVtY8uqldyyZmiUBdXWwhhZiq4DZZjoBK96IRreG5Cq7-Q5eXHwzWv-WCAmPWG0MI7GgV-iFo2SVSXkUZDXvC5LzjNYHUAbfIwBBp2PPeVPa870Lki9D1LvUtJM6n2QWmXdm_90FtM-sBQMjkfVbw9qyMd6QAg6WgRnocccVtK9xyMOfwCLJr2T |
| CitedBy_id | crossref_primary_10_1016_j_snb_2005_11_079 crossref_primary_10_3390_rs14236003 crossref_primary_10_1016_j_snb_2005_02_031 crossref_primary_10_1109_JSEN_2020_3042766 crossref_primary_10_1002_adv_20263 crossref_primary_10_1016_j_snb_2005_01_025 crossref_primary_10_1016_j_psep_2016_05_014 crossref_primary_10_1063_1_3660805 crossref_primary_10_1016_j_snb_2013_12_063 crossref_primary_10_1039_C6AN00326E crossref_primary_10_1109_JSEN_2009_2029452 crossref_primary_10_1016_j_snb_2004_11_027 crossref_primary_10_1016_j_snb_2016_09_152 crossref_primary_10_1080_00387010600803664 crossref_primary_10_5194_amt_11_6351_2018 crossref_primary_10_1063_1_2763965 crossref_primary_10_1016_j_snb_2006_12_028 crossref_primary_10_1016_j_lwt_2005_01_002 crossref_primary_10_1016_j_snb_2007_08_044 crossref_primary_10_1016_j_snb_2018_03_028 crossref_primary_10_1016_j_snb_2008_12_037 crossref_primary_10_1080_00387010_2019_1671873 crossref_primary_10_1007_s12034_022_02674_9 crossref_primary_10_1007_s11517_023_02861_8 crossref_primary_10_1016_j_snb_2014_04_065 crossref_primary_10_1016_j_snb_2007_12_052 crossref_primary_10_1007_s11738_017_2583_6 crossref_primary_10_1016_j_foodcont_2007_03_007 crossref_primary_10_3390_s100504675 crossref_primary_10_3390_s140711659 crossref_primary_10_1016_j_talanta_2008_05_042 crossref_primary_10_3390_s19153417 crossref_primary_10_1016_j_ecoenv_2023_114911 crossref_primary_10_1016_j_snb_2018_08_013 crossref_primary_10_1002_smsc_202400250 crossref_primary_10_3390_s18082523 crossref_primary_10_1109_JLT_2006_884984 crossref_primary_10_1016_j_mssp_2022_106706 crossref_primary_10_3390_s17112529 crossref_primary_10_1016_j_snb_2005_11_002 crossref_primary_10_1002_app_29142 crossref_primary_10_1088_0957_0233_18_9_034 crossref_primary_10_3390_s17122716 crossref_primary_10_1016_j_aca_2003_12_026 crossref_primary_10_1016_j_foodchem_2007_07_071 crossref_primary_10_1016_j_snb_2014_12_076 crossref_primary_10_1109_JSEN_2005_858435 crossref_primary_10_1016_j_aca_2005_11_024 crossref_primary_10_1016_j_jfoodeng_2008_08_008 crossref_primary_10_1016_j_sna_2019_03_037 crossref_primary_10_1002_jccs_200600107 crossref_primary_10_1016_j_matlet_2006_04_073 crossref_primary_10_1016_j_uclim_2014_09_002 crossref_primary_10_1016_j_snb_2014_02_011 |
| Cites_doi | 10.1016/0925-4005(94)87042-X 10.1016/S0925-4005(01)00941-8 10.1016/S0003-2670(01)01392-7 10.1016/S0925-4005(00)00634-1 10.1109/58.726434 10.1016/S0003-2670(97)00202-X 10.1016/S0304-3991(99)00123-0 10.1016/S0925-4005(01)00937-6 10.1093/oso/9780198559559.001.0001 10.1016/S0925-4005(01)00705-5 10.1016/S0003-2670(01)01584-7 10.1016/B978-012077460-9/50003-4 10.1088/0957-0233/4/12/029 10.1039/an9962100671 10.1016/S0925-4005(01)00683-9 10.1016/S0925-4005(99)00186-0 10.1016/S0925-4005(01)00743-2 10.1016/S0925-4005(00)00485-8 10.1109/6.715180 10.1201/9781420050646.ptb6 10.1016/S0925-4005(00)00559-1 10.1016/S0925-4005(00)00448-2 10.1016/S0003-2670(99)00767-9 10.1016/S0925-4005(01)00781-X 10.1016/S0925-4005(01)00718-3 10.1016/S0925-4005(01)00687-6 10.1016/S0925-4005(99)00381-0 10.1016/S0925-4005(01)00581-0 |
| ContentType | Journal Article |
| Copyright | 2003 Elsevier Science B.V. |
| Copyright_xml | – notice: 2003 Elsevier Science B.V. |
| DBID | AAYXX CITATION 7QO 7TV 8FD C1K FR3 P64 7SU |
| DOI | 10.1016/S0925-4005(03)00002-9 |
| DatabaseName | CrossRef Biotechnology Research Abstracts Pollution Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Pollution Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Environmental Engineering Abstracts |
| DatabaseTitleList | Engineering Research Database Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3077 |
| EndPage | 284 |
| ExternalDocumentID | 308279584 10_1016_S0925_4005_03_00002_9 S0925400503000029 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SST SSZ T5K TN5 WUQ XFK YK3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7QO 7TV 8FD C1K FR3 P64 7SU |
| ID | FETCH-LOGICAL-c410t-19adc684a91fcf8c87c45831c07f79ce9862aa342bbe9a02b215d2271dae39db3 |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000181894400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-4005 |
| IngestDate | Sun Nov 09 10:29:36 EST 2025 Mon Oct 06 18:17:56 EDT 2025 Sat Nov 29 02:10:59 EST 2025 Tue Nov 18 19:56:07 EST 2025 Fri Feb 23 02:27:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Multi-sensor array SAW chemical sensors Pattern recognition Vapor sensing thin films Artificial neural networks Principal component analysis |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-19adc684a91fcf8c87c45831c07f79ce9862aa342bbe9a02b215d2271dae39db3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 16164411 |
| PQPubID | 23462 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_27935523 proquest_miscellaneous_16164411 crossref_primary_10_1016_S0925_4005_03_00002_9 crossref_citationtrail_10_1016_S0925_4005_03_00002_9 elsevier_sciencedirect_doi_10_1016_S0925_4005_03_00002_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-04-01 |
| PublicationDateYYYYMMDD | 2003-04-01 |
| PublicationDate_xml | – month: 04 year: 2003 text: 2003-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Sensors and actuators. B, Chemical |
| PublicationYear | 2003 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Battiston, Ramseyer, Lang, Baller, Gerber, Gimzewski, Meyer, Guntherodt (BIB18) 2001; 77 Brezmes, Ferreras, Llobet, Vilanova, Correig (BIB29) 1997; 348 Cai, Park, Heldsinger, Hsieh, Zellers (BIB25) 2000; 62 D.S. Ballantine, R.M. White, S.J. Martin, A.J. Ricco, E.T. Zellers, G.C. Frye, H. Wohltjen, Acoustic Wave Sensors, Academic Press, San Diego, USA, 1997. Xie, Jiang, Jiang, Wu, Li (BIB10) 2001; 77 Bakken, Kauffman, Jurs, Albert, Stitzel (BIB16) 2001; 79 Evans, Persaud, McNeish, Sneath, Hobson, Magan (BIB7) 2000; 69 Lloyd Spetz, Tobias, Uneus, Svenningstorp, Ekedahl, Lundstrom (BIB14) 2000; 70 Nakamoto, Iguchi, Moriizumi (BIB21) 2000; 71 Covington, Gardner, Briand, de Rooij (BIB9) 2001; 77 J.W. Gardner, P.N. Bartlett, Electronic Noses, Oxford University Press, Oxford, 1999. Guadarrama, Rodriguez-Mendez, de Saja (BIB8) 2002; 455 Penza, Cassano (BIB24) 2000; 68 Penza, Cassano, Sergi, Lo Sterzo, Russo (BIB23) 2001; 81 Penza, Cassano, Tortorella (BIB4) 2001; 81 Mc Murtry, Wright, Jackson (BIB15) 2001; 72 American Conference of Governmental Industrial Hygienists, 2000 TLVs and BEIs, ACGIH Worldwide, Cincinnati, USA, 2001. C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995. Winquist, Holmin, Krantz-Rulcker, Wide, Lundstrom (BIB6) 2000; 406 Penza, Milella, Anisimkin (BIB11) 1998; 45 Barker, Chen, Agbor, Monkman, Mars, Petty (BIB12) 1994; 17 Winquist, Hornsten, Sundgren, Lundstrom (BIB13) 1993; 4 Baller, Lang, Fritz, Gerber, Gimzewski, Drechsler, Rothuizen, Despont, Vettiger, Battiston, Ramseyer, Fornaro, Meyer, Guntherodt (BIB17) 2000; 82 Lee, Jung, Lim, Huh, Lee (BIB5) 2001; 77 Di Natale, Macagnano, Martinelli, Proietti, Paolesse, Castellari, Campani, D’Amico (BIB19) 2001; 77 Stahl, Rapp, Wessa (BIB22) 2001; 450 Comini, Faglia, Sberveglieri (BIB3) 2001; 76 Deng, Stone, Thompson (BIB20) 1996; 121 Nagle, Gutierrez-Osuna, Schiffman (BIB1) 1998; 35 Barker (10.1016/S0925-4005(03)00002-9_BIB12) 1994; 17 Brezmes (10.1016/S0925-4005(03)00002-9_BIB29) 1997; 348 Nakamoto (10.1016/S0925-4005(03)00002-9_BIB21) 2000; 71 Guadarrama (10.1016/S0925-4005(03)00002-9_BIB8) 2002; 455 Battiston (10.1016/S0925-4005(03)00002-9_BIB18) 2001; 77 Xie (10.1016/S0925-4005(03)00002-9_BIB10) 2001; 77 Covington (10.1016/S0925-4005(03)00002-9_BIB9) 2001; 77 Mc Murtry (10.1016/S0925-4005(03)00002-9_BIB15) 2001; 72 Deng (10.1016/S0925-4005(03)00002-9_BIB20) 1996; 121 Penza (10.1016/S0925-4005(03)00002-9_BIB23) 2001; 81 Nagle (10.1016/S0925-4005(03)00002-9_BIB1) 1998; 35 Winquist (10.1016/S0925-4005(03)00002-9_BIB6) 2000; 406 Cai (10.1016/S0925-4005(03)00002-9_BIB25) 2000; 62 Baller (10.1016/S0925-4005(03)00002-9_BIB17) 2000; 82 Bakken (10.1016/S0925-4005(03)00002-9_BIB16) 2001; 79 Stahl (10.1016/S0925-4005(03)00002-9_BIB22) 2001; 450 Di Natale (10.1016/S0925-4005(03)00002-9_BIB19) 2001; 77 Winquist (10.1016/S0925-4005(03)00002-9_BIB13) 1993; 4 Evans (10.1016/S0925-4005(03)00002-9_BIB7) 2000; 69 Lloyd Spetz (10.1016/S0925-4005(03)00002-9_BIB14) 2000; 70 Penza (10.1016/S0925-4005(03)00002-9_BIB11) 1998; 45 10.1016/S0925-4005(03)00002-9_BIB2 Penza (10.1016/S0925-4005(03)00002-9_BIB4) 2001; 81 Lee (10.1016/S0925-4005(03)00002-9_BIB5) 2001; 77 Comini (10.1016/S0925-4005(03)00002-9_BIB3) 2001; 76 10.1016/S0925-4005(03)00002-9_BIB26 Penza (10.1016/S0925-4005(03)00002-9_BIB24) 2000; 68 10.1016/S0925-4005(03)00002-9_BIB28 10.1016/S0925-4005(03)00002-9_BIB27 |
| References_xml | – volume: 77 start-page: 155 year: 2001 end-page: 162 ident: BIB9 article-title: A polymer gate FET sensor array for detecting organic vapours publication-title: Sens. Actuators B – reference: D.S. Ballantine, R.M. White, S.J. Martin, A.J. Ricco, E.T. Zellers, G.C. Frye, H. Wohltjen, Acoustic Wave Sensors, Academic Press, San Diego, USA, 1997. – volume: 62 start-page: 121 year: 2000 end-page: 130 ident: BIB25 article-title: Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors publication-title: Sens. Actuators B – volume: 72 start-page: 69 year: 2001 end-page: 74 ident: BIB15 article-title: Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air publication-title: Sens. Actuators B – volume: 81 start-page: 115 year: 2001 end-page: 121 ident: BIB4 article-title: Gas recognition by activated WO publication-title: Sens. Actuators B – volume: 77 start-page: 228 year: 2001 end-page: 236 ident: BIB5 article-title: Recognition of volatile organic compounds using SnO publication-title: Sens. Actuators B – volume: 71 start-page: 155 year: 2000 end-page: 160 ident: BIB21 article-title: Vapor supply method in odor sensing system and analysis of transient sensor responses publication-title: Sens. Actuators B – volume: 76 start-page: 270 year: 2001 end-page: 274 ident: BIB3 article-title: CO and NO publication-title: Sens. Actuators B – reference: American Conference of Governmental Industrial Hygienists, 2000 TLVs and BEIs, ACGIH Worldwide, Cincinnati, USA, 2001. – volume: 406 start-page: 147 year: 2000 end-page: 157 ident: BIB6 article-title: A hybrid electronic tongue publication-title: Anal. Chim. Acta – reference: J.W. Gardner, P.N. Bartlett, Electronic Noses, Oxford University Press, Oxford, 1999. – volume: 77 start-page: 260 year: 2001 end-page: 263 ident: BIB10 article-title: Gas sensitive Langmuir–Blodgett films based on erbium bis[octakis(octyloxy)phthalocyaninato] complex publication-title: Sens. Actuators B – volume: 45 start-page: 1125 year: 1998 end-page: 1132 ident: BIB11 article-title: Gas sensing properties of Langmuir–Blodgett polypyrrole film investigated by surface acoustic waves publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. – volume: 450 start-page: 27 year: 2001 end-page: 36 ident: BIB22 article-title: Adhesives: a new class of polymer coatings for surface acoustic wave sensors for fast and reliable process control applications publication-title: Anal. Chim. Acta – volume: 35 start-page: 22 year: 1998 end-page: 31 ident: BIB1 article-title: The how and why of electronic noses publication-title: IEEE Spectrum – volume: 348 start-page: 503 year: 1997 end-page: 509 ident: BIB29 article-title: Neural network based electronic nose for the classification of aromatic species publication-title: Anal. Chim. Acta – reference: C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995. – volume: 68 start-page: 300 year: 2000 end-page: 306 ident: BIB24 article-title: Relative humidity sensing by PVA-coated dual resonator SAW oscillator publication-title: Sens. Actuators B – volume: 77 start-page: 122 year: 2001 end-page: 131 ident: BIB18 article-title: A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout publication-title: Sens. Actuators B – volume: 70 start-page: 67 year: 2000 end-page: 76 ident: BIB14 article-title: High temperature catalytic metal field effect transistors for industrial applications publication-title: Sens. Actuators B – volume: 77 start-page: 561 year: 2001 end-page: 566 ident: BIB19 article-title: Electronic nose based investigation of the sensorial properties of peaches and nectarines publication-title: Sens. Actuators B – volume: 69 start-page: 348 year: 2000 end-page: 358 ident: BIB7 article-title: Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data publication-title: Sens. Actuators B – volume: 79 start-page: 1 year: 2001 end-page: 10 ident: BIB16 article-title: Pattern recognition analysis of optical sensor array data to detect nitroaromatic compound vapors publication-title: Sens. Actuators B – volume: 81 start-page: 88 year: 2001 end-page: 98 ident: BIB23 article-title: SAW chemical sensing using poly-ynes and organometallic polymer films publication-title: Sens. Actuators B – volume: 121 start-page: 671 year: 1996 end-page: 679 ident: BIB20 article-title: Selective detection of aroma components by acoustic wave sensors coated with conducting polymer films publication-title: Analyst – volume: 17 start-page: 143 year: 1994 end-page: 147 ident: BIB12 article-title: Vapor recognition using organic films and artificial neural networks publication-title: Sens. Actuators B – volume: 455 start-page: 41 year: 2002 end-page: 47 ident: BIB8 article-title: Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles publication-title: Anal. Chim. Acta – volume: 4 start-page: 1493 year: 1993 end-page: 1500 ident: BIB13 article-title: Performance of an electronic nose for quality estimation of ground meat publication-title: Meas. Sci. Technol. – volume: 82 start-page: 1 year: 2000 end-page: 9 ident: BIB17 article-title: A cantilever array-based artificial nose publication-title: Ultramicroscopy – volume: 17 start-page: 143 year: 1994 ident: 10.1016/S0925-4005(03)00002-9_BIB12 article-title: Vapor recognition using organic films and artificial neural networks publication-title: Sens. Actuators B doi: 10.1016/0925-4005(94)87042-X – volume: 81 start-page: 115 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB4 article-title: Gas recognition by activated WO3 thin-film sensors array publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00941-8 – volume: 450 start-page: 27 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB22 article-title: Adhesives: a new class of polymer coatings for surface acoustic wave sensors for fast and reliable process control applications publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)01392-7 – volume: 72 start-page: 69 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB15 article-title: Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00634-1 – volume: 45 start-page: 1125 year: 1998 ident: 10.1016/S0925-4005(03)00002-9_BIB11 article-title: Gas sensing properties of Langmuir–Blodgett polypyrrole film investigated by surface acoustic waves publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. doi: 10.1109/58.726434 – volume: 348 start-page: 503 year: 1997 ident: 10.1016/S0925-4005(03)00002-9_BIB29 article-title: Neural network based electronic nose for the classification of aromatic species publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(97)00202-X – volume: 82 start-page: 1 year: 2000 ident: 10.1016/S0925-4005(03)00002-9_BIB17 article-title: A cantilever array-based artificial nose publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(99)00123-0 – volume: 81 start-page: 88 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB23 article-title: SAW chemical sensing using poly-ynes and organometallic polymer films publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00937-6 – ident: 10.1016/S0925-4005(03)00002-9_BIB27 doi: 10.1093/oso/9780198559559.001.0001 – volume: 77 start-page: 561 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB19 article-title: Electronic nose based investigation of the sensorial properties of peaches and nectarines publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00705-5 – volume: 455 start-page: 41 year: 2002 ident: 10.1016/S0925-4005(03)00002-9_BIB8 article-title: Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)01584-7 – ident: 10.1016/S0925-4005(03)00002-9_BIB26 doi: 10.1016/B978-012077460-9/50003-4 – volume: 4 start-page: 1493 year: 1993 ident: 10.1016/S0925-4005(03)00002-9_BIB13 article-title: Performance of an electronic nose for quality estimation of ground meat publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/4/12/029 – volume: 121 start-page: 671 year: 1996 ident: 10.1016/S0925-4005(03)00002-9_BIB20 article-title: Selective detection of aroma components by acoustic wave sensors coated with conducting polymer films publication-title: Analyst doi: 10.1039/an9962100671 – ident: 10.1016/S0925-4005(03)00002-9_BIB2 – volume: 77 start-page: 122 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB18 article-title: A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00683-9 – volume: 71 start-page: 155 year: 2000 ident: 10.1016/S0925-4005(03)00002-9_BIB21 article-title: Vapor supply method in odor sensing system and analysis of transient sensor responses publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(99)00186-0 – volume: 77 start-page: 260 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB10 article-title: Gas sensitive Langmuir–Blodgett films based on erbium bis[octakis(octyloxy)phthalocyaninato] complex publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00743-2 – volume: 69 start-page: 348 year: 2000 ident: 10.1016/S0925-4005(03)00002-9_BIB7 article-title: Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00485-8 – volume: 35 start-page: 22 year: 1998 ident: 10.1016/S0925-4005(03)00002-9_BIB1 article-title: The how and why of electronic noses publication-title: IEEE Spectrum doi: 10.1109/6.715180 – ident: 10.1016/S0925-4005(03)00002-9_BIB28 doi: 10.1201/9781420050646.ptb6 – volume: 70 start-page: 67 year: 2000 ident: 10.1016/S0925-4005(03)00002-9_BIB14 article-title: High temperature catalytic metal field effect transistors for industrial applications publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00559-1 – volume: 68 start-page: 300 year: 2000 ident: 10.1016/S0925-4005(03)00002-9_BIB24 article-title: Relative humidity sensing by PVA-coated dual resonator SAW oscillator publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00448-2 – volume: 406 start-page: 147 year: 2000 ident: 10.1016/S0925-4005(03)00002-9_BIB6 article-title: A hybrid electronic tongue publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(99)00767-9 – volume: 79 start-page: 1 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB16 article-title: Pattern recognition analysis of optical sensor array data to detect nitroaromatic compound vapors publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00781-X – volume: 77 start-page: 228 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB5 article-title: Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00718-3 – volume: 77 start-page: 155 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB9 article-title: A polymer gate FET sensor array for detecting organic vapours publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00687-6 – volume: 62 start-page: 121 year: 2000 ident: 10.1016/S0925-4005(03)00002-9_BIB25 article-title: Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(99)00381-0 – volume: 76 start-page: 270 year: 2001 ident: 10.1016/S0925-4005(03)00002-9_BIB3 article-title: CO and NO2 response of tin oxide silicon doped thin films publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00581-0 |
| SSID | ssj0004360 |
| Score | 2.054889 |
| Snippet | This work reports on the performance of a volatile organic compounds (VOCs) identification system based on a surface acoustic wave (SAW) multi-sensor array... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 269 |
| SubjectTerms | Artificial neural networks Multi-sensor array Pattern recognition Principal component analysis SAW chemical sensors Vapor sensing thin films |
| Title | Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array |
| URI | https://dx.doi.org/10.1016/S0925-4005(03)00002-9 https://www.proquest.com/docview/16164411 https://www.proquest.com/docview/27935523 |
| Volume | 89 |
| WOSCitedRecordID | wos000181894400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004360 issn: 0925-4005 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE9RnnOgEqhya6_t2HsMUSvgUJBSIDdrd72WIrVO5KRV6K_iR_DDmH3Y6xaV0gMXx1l51xvNl533DCFvhskwpDxVAWNlGSSREgFH6SgoM6oYR37NZWWaTWSHh_l0yr4MBr_aXJiz46yu8_WaLf4rqXEMia1TZ29A7m5RHMB7JDpekex4_SfCj7xL2oQzW2u6KQNyspjXNqbcVSIxlVobEy6kLee6uKX5MKHhpvaDCzA6V0ZCnfn0rW-fx0vrnNfGd92n64AGeBwv9BdtReE7wub6nszWxk2Bgu5k9N2GMAZLVJ91_GbT8AuO5YkZdzvTyS26G9DuznsbGmCLG_jjvD7nFyy6Y1QFuGkm7nqGtfaMuBcG4wyTNEWtNkz7Z7RtM-SwGPcPXNvoxfFuatvN_cEWrIVi0i29rXtybVPdMBUZAvO8sPX_X2KRXeCij4nDpQq9VBHGhVmmYLfIJs1Shuxhc_Rxf_rJ5-fGJlu9e73PJNvze3obxu_cfq6SkS5JC0YEOrpP7jndBUYWcw_IQNUPyd1eRctH5GcPfTCvoEMfdOiDFn14U4JHH1j0QYs-WM2hQx8g-sCjDzT69Pot-vY89vAx4GCxBw57IH4AYg_62AODvcfk68H-0fhD4JqCBDKJwlUQMV7KYZ5wFlWyymWeSe36j2SYVRmTiqGKznmcUCHwsAmpQJm2pDSLSq5iVor4Cdmo8ec-JYCSquChSkQ6VElWVTwWiqNGIiORhjystkjSkqGQrmK-btxyXPwVBltkt5u2sCVjrpuQtzQunNxr5dkC8Xvd1NctJgrkC9rZx2s1P10WqMlpVSe6-gma6d4KNH520_0-J3f8H_cF2Vg1p-oluS3PVrNl88qB_zfLLObt |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+principal+component+analysis+and+artificial+neural+networks+to+recognize+the+individual+VOCs+of+methanol%2F2-propanol+in+a+binary+mixture+by+SAW+multi-sensor+array&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Penza%2C+M&rft.au=Cassano%2C+G&rft.date=2003-04-01&rft.issn=0925-4005&rft.volume=89&rft.issue=3&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1016%2FS0925-4005%2803%2900002-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0925_4005_03_00002_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |