A deep learning approach for Parkinson’s disease diagnosis from EEG signals

An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 32; číslo 15; s. 10927 - 10933
Hlavní autoři: Oh, Shu Lih, Hagiwara, Yuki, Raghavendra, U., Yuvaraj, Rajamanickam, Arunkumar, N., Murugappan, M., Acharya, U. Rajendra
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.08.2020
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen -layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.
AbstractList An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen -layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.
An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen-layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.
Author Oh, Shu Lih
Hagiwara, Yuki
Yuvaraj, Rajamanickam
Raghavendra, U.
Acharya, U. Rajendra
Arunkumar, N.
Murugappan, M.
Author_xml – sequence: 1
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic
– sequence: 2
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic
– sequence: 3
  givenname: U.
  surname: Raghavendra
  fullname: Raghavendra, U.
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education
– sequence: 4
  givenname: Rajamanickam
  surname: Yuvaraj
  fullname: Yuvaraj, Rajamanickam
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 5
  givenname: N.
  surname: Arunkumar
  fullname: Arunkumar, N.
  organization: Department of Electronics and Instrumentation, SASTRA University
– sequence: 6
  givenname: M.
  surname: Murugappan
  fullname: Murugappan, M.
  organization: Kuwait College of Science and Technology
– sequence: 7
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University
BookMark eNp9kM1KAzEUhYNUsFUfwF3A9Wh-JzPLUmoVKrrQdcjMJGNqm4zJdOHO1_D1fBIzjCAIFi4cLjlf7uHMwMR5pwG4wOgKIySuI0Kc4AzhIqN5UWb8CEwxozSjiBcTMEUlS685oydgFuMGIcTygk_B_Rw2Wndwq1Vw1rVQdV3wqn6Bxgf4qMKrddG7r4_PCBsbtYo6qWqdjzZCE_wOLpcrGG3r1DaegWOTRJ__6Cl4vlk-LW6z9cPqbjFfZzXDqM9wXjEqOFekqmhaaMOFUAVRrMSVyQXJkeANS2OUNoYa0pQmLZhzpBXP6Sm4HP9NWd_2OvZy4_dhSCApwQVnggh8yEUYYTwfJrnw6KqDjzFoI7tgdyq8S4zk0K0cu5WpWzl0K3lixB-mtr3qrXd9UHZ7kCQjGdMV1-rwm-l_6BvOXY6-
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120750
crossref_primary_10_3390_fractalfract5040225
crossref_primary_10_1007_s11571_023_10016_6
crossref_primary_10_1109_LSENS_2025_3565312
crossref_primary_10_1155_2022_7603319
crossref_primary_10_1007_s41666_023_00130_9
crossref_primary_10_1007_s11517_025_03388_w
crossref_primary_10_1371_journal_pone_0274263
crossref_primary_10_3390_app14093883
crossref_primary_10_3390_electronics10141740
crossref_primary_10_1038_s41598_022_06497_w
crossref_primary_10_2174_1574893618666230706112826
crossref_primary_10_1016_j_nexres_2025_100473
crossref_primary_10_1371_journal_pone_0315453
crossref_primary_10_1016_j_jestch_2024_101855
crossref_primary_10_1186_s40708_025_00260_3
crossref_primary_10_1002_tee_23646
crossref_primary_10_1016_j_engappai_2022_105540
crossref_primary_10_1007_s13198_024_02591_6
crossref_primary_10_1016_j_bspc_2022_104281
crossref_primary_10_3390_electronics12040783
crossref_primary_10_1016_j_measurement_2018_11_045
crossref_primary_10_1038_s41598_021_93543_8
crossref_primary_10_1016_j_bspc_2023_105872
crossref_primary_10_1016_j_compbiomed_2022_106469
crossref_primary_10_1007_s11042_019_7483_x
crossref_primary_10_1109_JBHI_2022_3232811
crossref_primary_10_1080_13682199_2022_2146885
crossref_primary_10_1016_j_bbe_2022_07_007
crossref_primary_10_1007_s12031_025_02329_4
crossref_primary_10_1016_j_biomaterials_2025_123548
crossref_primary_10_1016_j_compbiolchem_2024_108228
crossref_primary_10_1007_s11042_022_12960_7
crossref_primary_10_1007_s11042_019_7555_y
crossref_primary_10_1016_j_artmed_2019_07_006
crossref_primary_10_1007_s11517_021_02354_6
crossref_primary_10_3390_s22197154
crossref_primary_10_3390_s21093050
crossref_primary_10_1007_s40843_022_2165_8
crossref_primary_10_1109_ACCESS_2023_3277756
crossref_primary_10_1016_j_bbe_2022_04_003
crossref_primary_10_3390_math11020376
crossref_primary_10_3390_electronics11142265
crossref_primary_10_1007_s13721_025_00583_5
crossref_primary_10_1007_s40747_021_00408_8
crossref_primary_10_1016_j_nicl_2022_103266
crossref_primary_10_1016_j_measurement_2018_11_075
crossref_primary_10_13005_bpj_3076
crossref_primary_10_1007_s41782_024_00292_5
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_1080_1206212X_2018_1553272
crossref_primary_10_3390_diagnostics12081796
crossref_primary_10_1016_j_inffus_2022_12_019
crossref_primary_10_1016_j_cose_2021_102220
crossref_primary_10_1007_s11042_024_18398_3
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1002_tee_70094
crossref_primary_10_3389_fnbot_2022_953968
crossref_primary_10_3390_app10238662
crossref_primary_10_3390_diagnostics11061076
crossref_primary_10_1177_09727531251351067
crossref_primary_10_1007_s00521_022_07809_x
crossref_primary_10_1109_ACCESS_2021_3089358
crossref_primary_10_1155_2022_7242667
crossref_primary_10_3390_app12146967
crossref_primary_10_3390_s23218936
crossref_primary_10_1080_02648725_2023_2200333
crossref_primary_10_1109_TNSRE_2023_3324343
crossref_primary_10_1016_j_bspc_2022_103774
crossref_primary_10_1111_exsy_12472
crossref_primary_10_3390_healthcare9060740
crossref_primary_10_3390_sym15020535
crossref_primary_10_1016_j_cmpb_2023_107496
crossref_primary_10_1016_j_cmpb_2019_105205
crossref_primary_10_1016_j_measurement_2018_11_064
crossref_primary_10_1108_IJCHM_09_2021_1176
crossref_primary_10_1007_s41870_024_02377_w
crossref_primary_10_1088_1741_2552_ade6a9
crossref_primary_10_1109_TNSRE_2023_3323902
crossref_primary_10_3390_electronics12132856
crossref_primary_10_1016_j_compbiomed_2024_108462
crossref_primary_10_1159_000547180
crossref_primary_10_1007_s42979_025_03685_z
crossref_primary_10_1007_s11042_019_7533_4
crossref_primary_10_1016_j_eswa_2024_125713
crossref_primary_10_1088_1741_2552_acc612
crossref_primary_10_3389_fphys_2023_1227952
crossref_primary_10_1109_TCAD_2024_3388908
crossref_primary_10_1007_s13369_021_06544_0
crossref_primary_10_1039_D4RA05560H
crossref_primary_10_1007_s11042_019_7474_y
crossref_primary_10_1007_s00521_024_09569_2
crossref_primary_10_1016_j_bj_2024_100803
crossref_primary_10_1109_JSEN_2021_3080135
crossref_primary_10_1007_s13369_022_07249_8
crossref_primary_10_7717_peerj_cs_3135
crossref_primary_10_1016_j_eswa_2023_120541
crossref_primary_10_3390_info11120556
crossref_primary_10_3390_a15010005
crossref_primary_10_4108_eetpht_10_5568
crossref_primary_10_1186_s12883_023_03468_0
crossref_primary_10_3389_fncom_2022_1006763
crossref_primary_10_1007_s11042_019_07765_0
crossref_primary_10_1007_s00521_021_06626_y
crossref_primary_10_1016_j_bspc_2022_104116
crossref_primary_10_1109_ACCESS_2024_3421302
crossref_primary_10_3390_diagnostics14192181
crossref_primary_10_3390_s23052458
crossref_primary_10_1007_s11042_019_7191_6
crossref_primary_10_1109_ACCESS_2023_3319248
crossref_primary_10_1080_21681163_2024_2304574
crossref_primary_10_1016_j_arr_2024_102285
crossref_primary_10_1109_TCDS_2024_3386364
crossref_primary_10_1038_s41746_021_00536_y
crossref_primary_10_4103_jehp_jehp_1777_23
crossref_primary_10_1007_s00521_020_05505_2
crossref_primary_10_3389_fnins_2021_741651
crossref_primary_10_1016_j_bspc_2025_108057
crossref_primary_10_1002_ima_23120
crossref_primary_10_1007_s00521_018_3889_z
crossref_primary_10_1109_TETC_2021_3054761
crossref_primary_10_1007_s11042_019_7532_5
crossref_primary_10_1515_bams_2021_0064
crossref_primary_10_3390_bioengineering10010066
crossref_primary_10_1111_exsy_12787
crossref_primary_10_1080_1206212X_2018_1554836
crossref_primary_10_1007_s13198_025_02966_3
crossref_primary_10_1109_JBHI_2023_3292452
crossref_primary_10_1007_s12539_024_00634_x
crossref_primary_10_1080_10255842_2023_2271603
crossref_primary_10_3390_computers12030058
crossref_primary_10_1016_j_compbiomed_2024_107959
crossref_primary_10_3389_fnins_2024_1433583
crossref_primary_10_1007_s12144_025_07337_6
crossref_primary_10_1109_JIOT_2022_3232793
crossref_primary_10_3390_computers11030047
crossref_primary_10_3390_s22187065
crossref_primary_10_1109_JSEN_2025_3562448
crossref_primary_10_1109_JTEHM_2021_3050925
crossref_primary_10_3390_app14219747
crossref_primary_10_1007_s11571_022_09904_0
crossref_primary_10_1080_21681163_2022_2111721
crossref_primary_10_1109_ACCESS_2019_2948430
crossref_primary_10_3390_a15120474
crossref_primary_10_1109_ACCESS_2023_3275024
crossref_primary_10_1007_s10278_024_01316_2
crossref_primary_10_1088_1741_2552_ac40a0
crossref_primary_10_1016_j_parkreldis_2020_08_001
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1186_s41983_024_00839_3
crossref_primary_10_1088_1741_2552_ad9957
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_1007_s10916_019_1519_7
crossref_primary_10_3390_app9142789
crossref_primary_10_3390_app13042698
crossref_primary_10_3390_jpm11010038
crossref_primary_10_1371_journal_pone_0273383
crossref_primary_10_1016_j_ajp_2025_104537
crossref_primary_10_1007_s11042_024_20466_7
crossref_primary_10_1007_s12264_021_00749_x
crossref_primary_10_3389_fnagi_2025_1586282
crossref_primary_10_1038_s41746_023_00983_9
crossref_primary_10_1109_TNNLS_2022_3220551
crossref_primary_10_1007_s00521_020_05467_5
crossref_primary_10_1016_j_procs_2024_11_165
crossref_primary_10_1016_j_engappai_2023_106882
crossref_primary_10_1038_s41598_022_23247_0
crossref_primary_10_3390_s20102860
crossref_primary_10_1007_s40747_020_00257_x
crossref_primary_10_1109_ACCESS_2025_3575023
crossref_primary_10_1016_j_jneumeth_2021_109282
crossref_primary_10_32604_cmc_2022_023124
crossref_primary_10_3390_s21196343
crossref_primary_10_1007_s00521_024_09521_4
crossref_primary_10_1177_0954411920966937
crossref_primary_10_1051_bioconf_20236101014
crossref_primary_10_1109_TAI_2022_3193651
crossref_primary_10_1007_s13246_023_01284_x
crossref_primary_10_1007_s11042_024_18186_z
crossref_primary_10_1109_ACCESS_2025_3593254
crossref_primary_10_34248_bsengineering_858918
crossref_primary_10_1080_00207454_2020_1733559
crossref_primary_10_1088_2632_2153_ad370d
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_1371_journal_pone_0286506
crossref_primary_10_3390_math11214409
crossref_primary_10_3390_s23208609
crossref_primary_10_1186_s12938_024_01250_y
crossref_primary_10_1155_2022_3590973
crossref_primary_10_1007_s10462_021_10062_8
crossref_primary_10_1177_20552076241297355
crossref_primary_10_1007_s11831_022_09710_1
crossref_primary_10_3390_ijerph16040599
crossref_primary_10_4018_IJSI_292027
crossref_primary_10_1007_s00530_020_00694_1
crossref_primary_10_1109_ACCESS_2025_3583572
crossref_primary_10_1007_s11760_019_01564_8
crossref_primary_10_1109_TIM_2024_3351248
crossref_primary_10_1002_adfm_202101099
crossref_primary_10_1007_s11571_022_09817_y
crossref_primary_10_1088_2632_072X_ac5f8d
crossref_primary_10_1109_TDSC_2021_3124337
crossref_primary_10_1007_s11042_019_07790_z
crossref_primary_10_1007_s11042_019_7534_3
crossref_primary_10_1016_j_bspc_2023_105467
crossref_primary_10_1016_j_heliyon_2024_e25469
crossref_primary_10_1016_j_neunet_2021_11_025
crossref_primary_10_3390_app9142870
crossref_primary_10_3390_app142210511
crossref_primary_10_1080_1206212X_2018_1550166
crossref_primary_10_1016_j_bspc_2024_106946
crossref_primary_10_56294_sctconf20251353
crossref_primary_10_1016_j_compbiomed_2025_110608
crossref_primary_10_1016_j_patrec_2020_03_009
crossref_primary_10_4103_JNMO_JNMO_10_23
crossref_primary_10_26634_jse_15_3_18133
crossref_primary_10_1016_j_compmedimag_2024_102400
crossref_primary_10_1109_ACCESS_2023_3325896
crossref_primary_10_1109_TCBB_2023_3246961
crossref_primary_10_1155_2021_5511922
crossref_primary_10_1155_2021_5531754
crossref_primary_10_3389_fneur_2021_638266
crossref_primary_10_1007_s13369_019_04197_8
crossref_primary_10_1016_j_bspc_2021_102777
crossref_primary_10_1016_j_bbe_2021_11_003
crossref_primary_10_1109_ACCESS_2021_3133326
crossref_primary_10_3390_computers13110293
crossref_primary_10_1007_s00521_022_07509_6
crossref_primary_10_1007_s11042_024_20276_x
crossref_primary_10_1016_j_imu_2023_101352
crossref_primary_10_1007_s42600_022_00215_1
crossref_primary_10_1007_s11042_019_7537_0
crossref_primary_10_1016_j_bspc_2023_104870
crossref_primary_10_1109_ACCESS_2020_3044732
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_1155_2022_9276579
crossref_primary_10_1186_s12984_020_00684_4
crossref_primary_10_1016_j_neuroscience_2024_11_030
crossref_primary_10_1109_LSENS_2021_3074958
crossref_primary_10_1007_s10462_025_11347_y
crossref_primary_10_1007_s11571_022_09886_z
crossref_primary_10_1371_journal_pone_0263159
crossref_primary_10_1007_s11042_019_7161_z
crossref_primary_10_1109_ACCESS_2025_3533703
crossref_primary_10_1016_j_nbd_2025_106915
crossref_primary_10_1007_s11571_020_09655_w
crossref_primary_10_1016_j_eswa_2022_117362
crossref_primary_10_1515_bmt_2022_0022
crossref_primary_10_1109_TNNLS_2020_3016666
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1162_netn_a_00353
crossref_primary_10_1109_ACCESS_2019_2899188
crossref_primary_10_1109_ACCESS_2018_2886708
crossref_primary_10_3389_fmed_2024_1453743
crossref_primary_10_3390_diagnostics12051033
crossref_primary_10_32604_jnm_2022_027040
crossref_primary_10_3390_s22052028
crossref_primary_10_1007_s11042_019_07759_y
crossref_primary_10_1016_j_bbe_2021_04_008
crossref_primary_10_3390_diagnostics13061088
crossref_primary_10_1186_s13064_025_00212_x
crossref_primary_10_1016_j_cmpb_2023_107683
crossref_primary_10_1177_1550059420916634
crossref_primary_10_15857_ksep_2021_30_2_131
crossref_primary_10_1177_20552076221075147
crossref_primary_10_3390_s24134273
crossref_primary_10_1016_j_molliq_2023_122479
crossref_primary_10_1111_exsy_12957
crossref_primary_10_3390_bioengineering11100986
crossref_primary_10_1109_ACCESS_2022_3197645
crossref_primary_10_1007_s11042_022_13947_0
crossref_primary_10_3390_math11194065
crossref_primary_10_1016_j_drudis_2024_104216
crossref_primary_10_3390_bioengineering9030116
crossref_primary_10_3390_s21217034
crossref_primary_10_1007_s11042_019_7173_8
crossref_primary_10_1016_j_compbiomed_2023_107031
crossref_primary_10_1109_TKDE_2021_3128770
crossref_primary_10_1016_j_ssci_2019_04_007
crossref_primary_10_1007_s10462_021_10084_2
crossref_primary_10_3389_fnins_2024_1373515
Cites_doi 10.1016/j.bspc.2012.08.004
10.1007/978-3-642-15825-4_10
10.1038/nrd3115
10.1016/j.ijpsycho.2014.07.014
10.1016/j.cmpb.2018.04.012
10.1016/j.ins.2017.04.012
10.1038/14819
10.1016/j.jocs.2017.02.006
10.1101/cshperspect.a020602
10.1016/j.future.2017.08.039
10.1016/S0079-6123(10)83004-3
10.1016/j.bspc.2012.04.007
10.1007/s11065-010-9148-4
10.1016/j.knosys.2017.06.003
10.1016/j.cmpb.2018.04.005
10.1212/WNL.17.5.427
10.1016/j.bspc.2013.02.006
10.1109/IJCNN.2011.6033458
10.1142/S0129065710002589
10.1016/j.eswa.2009.01.022
10.1016/j.neuropharm.2011.02.007
10.1016/j.compbiomed.2017.09.017
10.1016/j.psychres.2009.04.004
10.1109/CVPR.2005.254
10.1016/j.eswa.2012.07.014
10.1155/2014/985789
10.1007/s11571-013-9247-z
10.1080/03091900701559408
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2018
The Natural Computing Applications Forum 2018.
Copyright Springer Nature B.V. Aug 2020
Copyright_xml – notice: The Natural Computing Applications Forum 2018
– notice: The Natural Computing Applications Forum 2018.
– notice: Copyright Springer Nature B.V. Aug 2020
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-018-3689-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 1433-3058
EndPage 10933
ExternalDocumentID 10_1007_s00521_018_3689_5
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c410t-16b43755a2bb316b3d577a82a491bf6726075d45d4faeff3f2d9fd4f1550ea563
IEDL.DBID RSV
ISICitedReferencesCount 414
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549646700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 08:25:27 EST 2025
Wed Nov 05 02:18:11 EST 2025
Sat Nov 29 07:46:43 EST 2025
Tue Nov 18 22:41:04 EST 2025
Mon Jul 21 06:07:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Deep learning
Computer-aided detection system
Convolutional neural network
Parkinson’s disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-16b43755a2bb316b3d577a82a491bf6726075d45d4faeff3f2d9fd4f1550ea563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2424564564
PQPubID 2043988
PageCount 7
ParticipantIDs proquest_journals_3218547271
proquest_journals_2424564564
crossref_primary_10_1007_s00521_018_3689_5
crossref_citationtrail_10_1007_s00521_018_3689_5
springer_journals_10_1007_s00521_018_3689_5
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 3689_CR5
HL Chen (3689_CR31) 2013; 40
3689_CR4
AF Leuchter (3689_CR9) 2009; 169
UR Acharya (3689_CR18) 2017; 132
UR Acharya (3689_CR23) 2018; 79
CAM Lima (3689_CR8) 2009; 36
UR Acharya (3689_CR17) 2017; 405
UR Acharya (3689_CR20) 2018; 13
C Ma (3689_CR33) 2014; 2014
R Yuvaraj (3689_CR7) 2016; 28
H Hampal (3689_CR11) 2010; 9
RJ Martis (3689_CR14) 2013; 8
UR Acharya (3689_CR22) 2018; 161
O Faust (3689_CR24) 2018; 161
UR Acharya (3689_CR13) 2010; 20
J Stiles (3689_CR1) 2010; 20
UR Acharya (3689_CR21) 2017
M Yahr (3689_CR30) 1967; 17
DJ Surmeier (3689_CR3) 2010; 183
3689_CR29
3689_CR28
CX Han (3689_CR6) 2013; 7
MJ Gandal (3689_CR10) 2012; 62
WL Zuo (3689_CR32) 2013; 8
3689_CR27
M Riesenhuber (3689_CR25) 1999; 2
3689_CR26
MR Daliri (3689_CR34) 2013; 8
J Silver (3689_CR2) 2015; 7
KC Chua (3689_CR12) 2009; 33
JH Tan (3689_CR19) 2017; 20
A Krizhevsky (3689_CR16) 2012; 1
R Yuvraj (3689_CR15) 2014; 94
References_xml – volume: 8
  start-page: 193
  year: 2013
  ident: 3689_CR14
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2012.08.004
– ident: 3689_CR27
  doi: 10.1007/978-3-642-15825-4_10
– volume: 9
  start-page: 560
  issue: 7
  year: 2010
  ident: 3689_CR11
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3115
– volume: 94
  start-page: 482
  issue: 3
  year: 2014
  ident: 3689_CR15
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2014.07.014
– volume: 1
  start-page: 1097
  year: 2012
  ident: 3689_CR16
  publication-title: Adv Neural Inf Process Syst
– volume: 161
  start-page: 103
  year: 2018
  ident: 3689_CR22
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 405
  start-page: 81
  year: 2017
  ident: 3689_CR17
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.04.012
– volume: 2
  start-page: 1019
  year: 1999
  ident: 3689_CR25
  publication-title: Nat Neurosci
  doi: 10.1038/14819
– volume: 20
  start-page: 70
  year: 2017
  ident: 3689_CR19
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.02.006
– volume: 7
  start-page: a020602
  issue: 3
  year: 2015
  ident: 3689_CR2
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a020602
– volume: 79
  start-page: 952
  issue: 3
  year: 2018
  ident: 3689_CR23
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.08.039
– volume: 183
  start-page: 59
  year: 2010
  ident: 3689_CR3
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(10)83004-3
– volume: 8
  start-page: 66
  issue: 1
  year: 2013
  ident: 3689_CR34
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2012.04.007
– volume: 20
  start-page: 327
  issue: 4
  year: 2010
  ident: 3689_CR1
  publication-title: Neuropsychol Rev
  doi: 10.1007/s11065-010-9148-4
– ident: 3689_CR5
– volume: 132
  start-page: 62
  year: 2017
  ident: 3689_CR18
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.06.003
– volume: 161
  start-page: 1
  year: 2018
  ident: 3689_CR24
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 17
  start-page: 427
  issue: 5
  year: 1967
  ident: 3689_CR30
  publication-title: Neurology
  doi: 10.1212/WNL.17.5.427
– volume: 8
  start-page: 364
  issue: 4
  year: 2013
  ident: 3689_CR32
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.02.006
– volume: 28
  start-page: 12
  year: 2016
  ident: 3689_CR7
  publication-title: Neural Comput Appl
– ident: 3689_CR26
  doi: 10.1109/IJCNN.2011.6033458
– volume: 20
  start-page: 509
  issue: 6
  year: 2010
  ident: 3689_CR13
  publication-title: Int J Neutral Syst
  doi: 10.1142/S0129065710002589
– volume: 36
  start-page: 10054
  issue: 6
  year: 2009
  ident: 3689_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.022
– volume: 62
  start-page: 1504
  issue: 3
  year: 2012
  ident: 3689_CR10
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.02.007
– ident: 3689_CR29
– year: 2017
  ident: 3689_CR21
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 169
  start-page: 132
  issue: 2
  year: 2009
  ident: 3689_CR9
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2009.04.004
– ident: 3689_CR28
  doi: 10.1109/CVPR.2005.254
– ident: 3689_CR4
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  ident: 3689_CR31
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.014
– volume: 2014
  start-page: 1
  year: 2014
  ident: 3689_CR33
  publication-title: Comput Math Methods Med
  doi: 10.1155/2014/985789
– volume: 7
  start-page: 351
  year: 2013
  ident: 3689_CR6
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-013-9247-z
– volume: 33
  start-page: 42
  issue: 1
  year: 2009
  ident: 3689_CR12
  publication-title: J Med Eng Technol
  doi: 10.1080/03091900701559408
– volume: 13
  start-page: 1
  year: 2018
  ident: 3689_CR20
  publication-title: Appl Intell
SSID ssj0004685
Score 2.6625535
Snippet An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10927
SubjectTerms Artificial Intelligence
Artificial neural networks
Automation
Brain
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Diagnosis
Disease
Dopamine
Electroencephalography
Engineering
Epilepsy
Image Processing and Computer Vision
Machine learning
Medical diagnosis
Mental disorders
Neural networks
Neurons
Parkinson's disease
Probability and Statistics in Computer Science
S.I. : Computer aided Medical Diagnosis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_o5sGL8y9Op-TgSQl2bbK0J5my6UHHEJXdStI2MpBtrtOzX8Ov5yfxJUs3Fd1FCJSQhoS8l-T98v4BHAmRoFCcapoInlDGdURDhbzssdTEO1daWgPZh2vR6YS9XtR1D265M6sszkR7UKfDxLyRn_pWRWfK2eiZmqxRRrvqUmgsQ9lEKmMlKJ-3Ot3bL56RNiknYhhj38OCQq_p2TCieHUhlA4pTiqi_PvNNBc3f2hI7cXTrvx3yuuw5kRO0pzyyAYsZYNNqBTpHIjb3Vtw0yRplo2ISyTxSIp44wQFW2Lco62n2Mfbe06cXge_1lKvnxPjp0JarUtiLEKQp7fhvt26u7iiLtsCTVjdm9B6Q7FAcC59pQKsBCkXQoa-ZFFd6YZA4CN4yrBomWkdaD-NNFYMxskkbwQ7UBoMB9kukIR5SnuSC183sLcMw0hJRG4S8Ylika6CV6x0nLhQ5CYjxlM8C6JsiRMjcWJDnJhX4XjWZTSNw7Ho51pBkNhtyTyeU-PX5gBlHc5QmqtX4aSg-Lz5z7H2Fo-1D6u-QejWZLAGpcn4JTuAleR10s_Hh45dPwGZ3u94
  priority: 102
  providerName: ProQuest
Title A deep learning approach for Parkinson’s disease diagnosis from EEG signals
URI https://link.springer.com/article/10.1007/s00521-018-3689-5
https://www.proquest.com/docview/2424564564
https://www.proquest.com/docview/3218547271
Volume 32
WOSCitedRecordID wos000549646700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64zQdfnFeczpEHn5RCL0nTPk7p9EHHmDqGLyVpGxnIHOv02b_h3_OXeJK188IUFAIl5FZOTprz9dwAjjhPUChOlZVwlliUqdAKJPKyTVMd71wqYQxkB5e82w2Gw7BX-HHnpbV7qZI0X-qFs5v-g6mhb2DhJKHFKlDD2y7Qp7F_PfjkDGnycCJs0SY91CtVmcum-HoZfUiY35Si5q7p1P_1lhuwXoiWpD3nhU1YycZbUC_TNpDiFG_DVZukWTYhRcKIe1LGFScowBLtBm08wt5eXnNS6G_waSzyRjnR_igkis6JtvxA3t2B2050c3ZhFVkVrIQ69sxyfEk9zphwpfSw4qWMcxG4goaOVD5HgMNZSrEokSnlKTcNFVY0lskE871dqI4fx9kekITaUtmCcVf5OFoEQSgFIjSBOETSUDXALskbJ0XIcZ354iFeBEs25IqRXLEmV8wacLwYMpnH2_itc7Pcs7g4ennsGl2uLkubPZRpGEWpzWnASbmFH80_rrX_p94HsOZqYG4sBZtQnU2fskNYTZ5no3zagtpp1O31W1DpsbuWYd93qw3mNw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gV58i-szB70owW6bbNqDiOj6wHXxoCJeatI2siDralfFm3_DP-GP8pc4yTauinrzIARKSNPQZCb5JvMCWBIiQVCcapoInlDGdURDhbTssdTEO1daWgPZ05qo18Ozs-ioB16cL4wxq3R7ot2o0-vE3JGv-VZFZ8pG64aarFFGu-pSaHTI4iB7fECRLV_f38b1Xfb9nerx1h4tsgrQhJW9Ni1XFAsE59JXKsBKkHIhZOhLFpWVrggE-IKnDIuWmdaB9tNIY8Vg-UzySoDf7YV-xlBYQv454ucf_DBtClCUmIw1EQucFtWzQUvxoETBPaQ4BRHln8_BLrj9oo-1x9zOyH-boFEYLgA12exwwBj0ZM1xGHHJKkixd03A4SZJs6xFijQZl8RFUycI24lx_rZ-cK9PzzkptFb4tHaIjZwYLxxSre4SY--CHDsJJ3_yU1PQ17xuZtNAEuYp7UkufF3B3jIMIyVRLpUofSkW6RJ4bmXjpAi0bvJ9XMXvIaItMcRIDLEhhpiXYOW9S6sTZeS3l-ccAcTFhpPH3dX_tjlAJMcZYtVyCVYdhXWbfxxr5vexFmFw7_iwFtf26wezMOSbuwhrHDkHfe3bu2weBpL7diO_XbCMQuDirwnvDbWFStQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1Dz4pJRtbdK0j0M3FecYqGNvJWkbGUgda_XZv-Hf85d4krWbyhRECJSQS8tJQs7Xc_kAjjkPUSmOlBVyFlqUKd_yJO7lOo10vnOphHGQ7Xd4t-sNBn4v5zlNC2_3wiQ5iWnQWZqSrDaKVG0a-Kb_ZmoY7Fk4oW-xRViimjNIw_Xb_qfASMPJiRBGu_dQpzBrzpvi68U00za_GUjNvdMu__uL12EtVzlJc7JHNmAhTjahXNA5kPx0b8FNk0RxPCI5kcQDKfKNE1RsiQ6PNpFi769vKcntOvg0nnrDlOg4FdJqXRDtEYJ7ehvu2627s0srZ1uwQhRdZjVcSR3OmLCldLDiRIxz4dmC-g2pXI7Ah7OIYlEiVspRduQrrGiMEwvmOjtQSp6SeBdISOtS1QXjtnJxtPA8XwpEbgLxiaS-qkC9EHUQ5qnINSPGYzBNomzEFaC4Ai2ugFXgZDpkNMnD8VvnarF-QX4k08A2Nl5d5jY7qOswitpcowKnxXLOmn98196feh_BSu-8HXSuutf7sGpr7G6cCatQysbP8QEshy_ZMB0fmn38AQQF72U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+approach+for+Parkinson%E2%80%99s+disease+diagnosis+from+EEG+signals&rft.jtitle=Neural+computing+%26+applications&rft.au=Oh%2C+Shu+Lih&rft.au=Hagiwara%2C+Yuki&rft.au=Raghavendra%2C+U.&rft.au=Yuvaraj%2C+Rajamanickam&rft.date=2020-08-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=15&rft.spage=10927&rft.epage=10933&rft_id=info:doi/10.1007%2Fs00521-018-3689-5&rft.externalDocID=10_1007_s00521_018_3689_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon