Seasonally Evolving Trends Explain the North‐South Dipole Pattern Observed in Tibetan Plateau Precipitation

The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Geophysical research letters Ročník 50; číslo 17
Hlavní autori: Ma, Jieru, Ren, Hong‐Li, Cai, Ming, Huang, Jianping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 16.09.2023
Wiley
Predmet:
ISSN:0094-8276, 1944-8007
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction. Plain Language Summary The Tibetan Plateau (TP) is experiencing the north‐wetting‐south‐drying trend due to the imbalance of the Asian water tower since 1979, influencing the water supply to billions of people and regional and global climate. However, the characteristics of the seasonally evolving variations of precipitation across seasons on multiyear timescales, as well as the associated major circulation patterns, remain unknown. Here we identify four primary seasonally evolving patterns (SEPs) and focus on investigating their corresponding long‐term trends and interdecadal variations. These four modes collectively contribute by 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the trend of the second SEP that features a north‐south dipole explains the spatio‐temporal disparity of the total precipitation trend, displaying the strongest amplitude in summer over the TP. Our findings provide insight into the climate variability manifested in SEPs as a major source for the interdecadal prediction of rainfall evolution in the Asian water tower. Key Points Seasonally evolving patterns (SEPs) explain 60%–90% of the spatial mean amplitude of total precipitation trend over the Tibetan Plateau The second SEP trend with a north‐south dipole pattern mainly contributes to the spatio‐temporal disparity of the total precipitation trend The seasonally evolving north‐south dipole trend is linked to the Silk Road pattern and the Indian monsoon variations
AbstractList The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction.
Abstract The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction.
The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction. Plain Language Summary The Tibetan Plateau (TP) is experiencing the north‐wetting‐south‐drying trend due to the imbalance of the Asian water tower since 1979, influencing the water supply to billions of people and regional and global climate. However, the characteristics of the seasonally evolving variations of precipitation across seasons on multiyear timescales, as well as the associated major circulation patterns, remain unknown. Here we identify four primary seasonally evolving patterns (SEPs) and focus on investigating their corresponding long‐term trends and interdecadal variations. These four modes collectively contribute by 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the trend of the second SEP that features a north‐south dipole explains the spatio‐temporal disparity of the total precipitation trend, displaying the strongest amplitude in summer over the TP. Our findings provide insight into the climate variability manifested in SEPs as a major source for the interdecadal prediction of rainfall evolution in the Asian water tower. Key Points Seasonally evolving patterns (SEPs) explain 60%–90% of the spatial mean amplitude of total precipitation trend over the Tibetan Plateau The second SEP trend with a north‐south dipole pattern mainly contributes to the spatio‐temporal disparity of the total precipitation trend The seasonally evolving north‐south dipole trend is linked to the Silk Road pattern and the Indian monsoon variations
The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction. The Tibetan Plateau (TP) is experiencing the north‐wetting‐south‐drying trend due to the imbalance of the Asian water tower since 1979, influencing the water supply to billions of people and regional and global climate. However, the characteristics of the seasonally evolving variations of precipitation across seasons on multiyear timescales, as well as the associated major circulation patterns, remain unknown. Here we identify four primary seasonally evolving patterns (SEPs) and focus on investigating their corresponding long‐term trends and interdecadal variations. These four modes collectively contribute by 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the trend of the second SEP that features a north‐south dipole explains the spatio‐temporal disparity of the total precipitation trend, displaying the strongest amplitude in summer over the TP. Our findings provide insight into the climate variability manifested in SEPs as a major source for the interdecadal prediction of rainfall evolution in the Asian water tower. Seasonally evolving patterns (SEPs) explain 60%–90% of the spatial mean amplitude of total precipitation trend over the Tibetan Plateau The second SEP trend with a north‐south dipole pattern mainly contributes to the spatio‐temporal disparity of the total precipitation trend The seasonally evolving north‐south dipole trend is linked to the Silk Road pattern and the Indian monsoon variations
Author Ma, Jieru
Cai, Ming
Huang, Jianping
Ren, Hong‐Li
Author_xml – sequence: 1
  givenname: Jieru
  orcidid: 0009-0007-4260-0791
  surname: Ma
  fullname: Ma, Jieru
  organization: Chinese Academy of Meteorological Sciences
– sequence: 2
  givenname: Hong‐Li
  orcidid: 0000-0001-7194-0567
  surname: Ren
  fullname: Ren, Hong‐Li
  email: renhl@cma.gov.cn
  organization: Chinese Academy of Meteorological Sciences
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-1614-1102
  surname: Cai
  fullname: Cai, Ming
  organization: Florida State University
– sequence: 4
  givenname: Jianping
  orcidid: 0000-0003-2845-797X
  surname: Huang
  fullname: Huang, Jianping
  organization: Lanzhou University
BookMark eNqFkc1uEzEUhS1UJNLCjgewxJaA_8Y_S1TSUCmiEQ1r687Y0zhyx4PtBLLjEXhGnoSBVAixgNW9uvruOdI55-hsSINH6Dklryhh5jUjjC9XlAht6CM0o0aIuSZEnaEZIWbamZJP0HkpO0IIJ5zO0P2th5IGiPGIF4cUD2G4w5vsB1fw4ssYIQy4bj1-n3Ldfv_67Tbt6xa_DWOKHq-hVp8HfNMWnw_e4QnehNZXGPA6QvWwx-vsuzCGCjWk4Sl63EMs_tnDvEAfrxaby3fz1c3y-vLNat4JSvS8bbwmknFnJG2kUJ0TzGntplMDCjrVyo47qVQrWmKgAcONI60WniviJOcX6Pqk6xLs7JjDPeSjTRDsr0PKdxZyDV301hjvpOgl630jWg1adSB72TZ6kqeUTVovTlpjTp_2vlS7S_s8JVYs05IbKqjUE_XyRHU5lZJ9_9uVEvuzHPtnORPO_sK7h4hqhhD_8_Q5RH_8p4FdflhJyZXmPwDWtqKD
CitedBy_id crossref_primary_10_1016_j_scib_2024_06_026
crossref_primary_10_3390_atmos15010117
crossref_primary_10_1016_j_jhydrol_2025_133508
crossref_primary_10_1016_j_eiar_2025_107888
crossref_primary_10_1038_s43247_024_01563_9
crossref_primary_10_1016_j_fmre_2023_12_006
crossref_primary_10_1029_2025GL117001
crossref_primary_10_3390_rs16142585
Cites_doi 10.1175/JAS-D-12-023.1
10.1007/s10584-011-0099-4
10.1175/JCLI-D-21-0207.1
10.1038/srep13711
10.1175/JCLI-D-14-00303.1
10.2151/jmsj.87.561
10.1175/BAMS-D-17-0057.1
10.1016/j.gloplacha.2013.12.001
10.1007/s00382-008-0437-z
10.1038/nclimate1580
10.1175/JCLI-D-18-0364.1
10.1029/2020GL088631
10.1175/JHM609.1
10.6038/cjg20130406
10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
10.1002/qj.3803
10.3390/atmos8030052
10.3390/atmos9040138
10.1038/s41598-017-04615-7
10.1029/2005GL022709
10.1175/JCLI-D-17-0340.1
10.1029/2008GL034330
10.1038/s43017-022-00299-4
10.1038/nclimate2055
10.1175/JCLI-D-16-0814.1
10.1038/ncomms10925
10.1126/sciadv.abf9395
10.1126/science.1183188
10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
10.1002/asl.677
10.1002/2016JD025515
10.1029/2008GL035867
10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2
10.1002/jgrd.50290
10.1038/s41586-019-1822-y
10.1007/s00382-014-2310-6
10.1016/j.scib.2022.12.026
10.2151/jmsj.2016-015
10.1175/JCLI-D-19-0471.1
10.1088/1748-9326/5/1/015101
10.1088/1748-9326/abcb36
ContentType Journal Article
Copyright 2023. The Authors.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2023GL104891
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_99ed64f62fe54b8a87ca6f6b5877b112
10_1029_2023GL104891
GRL66378
Genre article
GeographicLocations Tibetan Plateau
GeographicLocations_xml – name: Tibetan Plateau
GrantInformation_xml – fundername: Special Project for Innovation and Development of CMA
  funderid: CXFZ2023J050
– fundername: National Natural Science Foundation of China
  funderid: U2242206
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c4108-b5e80623d9615647cd42d88d6235a7ac7b6c3d677b4b09a5a939d0b84e370d633
IEDL.DBID 24P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Fri Oct 03 12:50:29 EDT 2025
Fri Jul 25 18:59:09 EDT 2025
Sat Nov 29 08:09:51 EST 2025
Tue Nov 18 22:23:22 EST 2025
Wed Jan 22 16:15:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-b5e80623d9615647cd42d88d6235a7ac7b6c3d677b4b09a5a939d0b84e370d633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7194-0567
0000-0003-2845-797X
0000-0002-1614-1102
0009-0007-4260-0791
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL104891
PQID 2863914168
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_99ed64f62fe54b8a87ca6f6b5877b112
proquest_journals_2863914168
crossref_primary_10_1029_2023GL104891
crossref_citationtrail_10_1029_2023GL104891
wiley_primary_10_1029_2023GL104891_GRL66378
PublicationCentury 2000
PublicationDate 16 September 2023
PublicationDateYYYYMMDD 2023-09-16
PublicationDate_xml – month: 09
  year: 2023
  text: 16 September 2023
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 7
2017; 7
2017; 8
2015; 5
2009; 87
2010; 328
2019; 32
2020; 16
2008; 35
2016; 94
2020; 146
2020; 33
2008; 31
2016; 17
2019; 100
2014; 45
2014; 112
2018; 9
2017; 30
2016; 7
2015; 28
2023; 68
2011; 109
2012; 2
2014; 4
2022; 3
2021
2013; 56
2013; 118
1997; 78
2007; 8
2022; 35
2020; 577
2020; 47
2005; 32
2012; 69
2017; 122
2010; 5
2001; 14
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
Harris I. C. (e_1_2_9_9_1) 2021
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 5
  issue: 1
  year: 2010
  article-title: Review of climate and cryospheric change in the Tibetan Plateau
  publication-title: Environmental Research Letters
– volume: 87
  start-page: 561
  issue: 3
  year: 2009
  end-page: 580
  article-title: Analysis on the dynamics of a wave‐like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations
  publication-title: Journal of the Meteorological Society of Japan
– volume: 14
  start-page: 4073
  issue: 20
  year: 2001
  end-page: 4090
  article-title: Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific‐East Asian monsoons
  publication-title: Journal of Climate
– volume: 7
  issue: 24
  year: 2021
  article-title: Skillful prediction of summer rainfall in the Tibetan Plateau on multiyear time scales
  publication-title: Science Advances
– volume: 100
  start-page: 423
  issue: 3
  year: 2019
  end-page: 444
  article-title: Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis
  publication-title: Bulletin of the American Meteorological Society
– volume: 7
  issue: 1
  year: 2017
  article-title: Mechanism of non‐appearance of hiatus in Tibetan Plateau
  publication-title: Scientific Reports
– volume: 33
  start-page: 8507
  issue: 19
  year: 2020
  end-page: 8522
  article-title: Why has the inner Tibetan Plateau become wetter since the mid‐1990s?
  publication-title: Journal of Climate
– volume: 35
  issue: 14
  year: 2008
  article-title: Tibetan Plateau warming and precipitation changes in East Asia
  publication-title: Geophysical Research Letters
– volume: 56
  start-page: 1102
  issue: 4
  year: 2013
  end-page: 1111
  article-title: A gridded daily observation dataset over China region and comparison with the other datasets
  publication-title: Chinese Journal of Geophysics
– volume: 32
  issue: 15
  year: 2005
  article-title: A method for detecting season‐dependent modes of climate variability: S‐EOF analysis
  publication-title: Geophysical Research Letters
– volume: 8
  start-page: 770
  issue: 4
  year: 2007
  end-page: 789
  article-title: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate
  publication-title: Journal of Hydrometeorology
– volume: 3
  start-page: 618
  issue: 10
  year: 2022
  end-page: 632
  article-title: The imbalance of the Asian water tower
  publication-title: Nature Reviews Earth & Environment
– volume: 28
  start-page: 1707
  issue: 4
  year: 2015
  end-page: 1722
  article-title: Detecting long‐term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations
  publication-title: Journal of Climate
– volume: 4
  start-page: 68
  issue: 1
  year: 2014
  end-page: 73
  article-title: Mid‐latitude westerlies as a driver of glacier variability in monsoonal High Asia
  publication-title: Nature Climate Change
– volume: 16
  issue: 1
  year: 2020
  article-title: Mechanisms of the decadal variability of monsoon rainfall in the southern Tibetan Plateau
  publication-title: Environmental Research Letters
– volume: 30
  start-page: 8973
  issue: 22
  year: 2017
  end-page: 8985
  article-title: Effect of Indian Ocean SST on Tibetan Plateau precipitation in the early rainy season
  publication-title: Journal of Climate
– volume: 328
  start-page: 1382
  issue: 5984
  year: 2010
  end-page: 1385
  article-title: Climate change will affect the Asian water towers
  publication-title: Science
– volume: 78
  start-page: 2539
  issue: 11
  year: 1997
  end-page: 2558
  article-title: Global precipitation: A 17‐year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs
  publication-title: Bulletin of the American Meteorological Society
– volume: 45
  start-page: 791
  issue: 3–4
  year: 2014
  end-page: 806
  article-title: Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau
  publication-title: Climate Dynamics
– year: 2021
– volume: 8
  issue: 3
  year: 2017
  article-title: Evaluating the hydrological cycle over land using the newly‐corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC)
  publication-title: Atmosphere
– volume: 122
  start-page: 614
  issue: 2
  year: 2017
  end-page: 630
  article-title: Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 69
  start-page: 1706
  issue: 5
  year: 2012
  end-page: 1712
  article-title: Process‐based decomposition of the global surface temperature response to El Niño in boreal winter
  publication-title: Journal of the Atmospheric Sciences
– volume: 94
  start-page: 269
  issue: 3
  year: 2016
  end-page: 302
  article-title: The JRA‐55 Reanalysis: Representation of atmospheric circulation and climate variability
  publication-title: Journal of the Meteorological Society of Japan
– volume: 577
  start-page: 364
  issue: 7790
  year: 2020
  end-page: 369
  article-title: Importance and vulnerability of the world’s water towers
  publication-title: Nature
– volume: 2
  start-page: 663
  issue: 9
  year: 2012
  end-page: 667
  article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings
  publication-title: Nature Climate Change
– volume: 47
  issue: 17
  year: 2020
  article-title: Southward shift of westerlies intensifies the East Asian early summer rainband following El Niño
  publication-title: Geophysical Research Letters
– volume: 30
  start-page: 9915
  issue: 24
  year: 2017
  end-page: 9932
  article-title: Interdecadal variations of the Silk Road pattern
  publication-title: Journal of Climate
– volume: 9
  issue: 4
  year: 2018
  article-title: The global precipitation climatology project (GPCP) monthly analysis (new version 23) and a review of 2017 global precipitation
  publication-title: Atmosphere
– volume: 68
  start-page: 105
  issue: 1
  year: 2023
  end-page: 116
  article-title: Pushing the boundary of seasonal prediction with the lever of varying annual cycles
  publication-title: Science Bulletin
– volume: 31
  start-page: 823
  issue: 7–8
  year: 2008
  end-page: 841
  article-title: The modulated annual cycle: An alternative reference frame for climate anomalies
  publication-title: Climate Dynamics
– volume: 14
  start-page: 2896
  issue: 13
  year: 2001
  end-page: 2909
  article-title: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation
  publication-title: Journal of Climate
– volume: 17
  start-page: 446
  issue: 8
  year: 2016
  end-page: 452
  article-title: Interdecadal circumglobal teleconnection pattern during boreal summer
  publication-title: Atmospheric Science Letters
– volume: 35
  start-page: 1679
  issue: 5
  year: 2022
  end-page: 1694
  article-title: Dominant anomalous circulation patterns of Tibetan Plateau summer climate generated by ENSO‐forced and ENSO‐independent teleconnections
  publication-title: Journal of Climate
– volume: 7
  issue: 1
  year: 2016
  article-title: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent
  publication-title: Nature Communications
– volume: 32
  start-page: 4103
  issue: 13
  year: 2019
  end-page: 4119
  article-title: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms
  publication-title: Journal of Climate
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 109
  start-page: 517
  issue: 3–4
  year: 2011
  end-page: 534
  article-title: Response of hydrological cycle to recent climate changes in the Tibetan Plateau
  publication-title: Climatic Change
– volume: 118
  start-page: 3534
  issue: 9
  year: 2013
  end-page: 3544
  article-title: Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 35
  issue: 20
  year: 2008
  article-title: World water tower: An atmospheric perspective
  publication-title: Geophysical Research Letters
– volume: 5
  issue: 1
  year: 2015
  article-title: Does the climate warming hiatus exist over the Tibetan Plateau?
  publication-title: Scientific Reports
– volume: 112
  start-page: 79
  year: 2014
  end-page: 91
  article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review
  publication-title: Global and Planetary Change
– ident: e_1_2_9_4_1
  doi: 10.1175/JAS-D-12-023.1
– ident: e_1_2_9_37_1
  doi: 10.1007/s10584-011-0099-4
– ident: e_1_2_9_12_1
  doi: 10.1175/JCLI-D-21-0207.1
– ident: e_1_2_9_6_1
  doi: 10.1038/srep13711
– ident: e_1_2_9_19_1
  doi: 10.1175/JCLI-D-14-00303.1
– ident: e_1_2_9_17_1
  doi: 10.2151/jmsj.87.561
– ident: e_1_2_9_40_1
  doi: 10.1175/BAMS-D-17-0057.1
– ident: e_1_2_9_36_1
  doi: 10.1016/j.gloplacha.2013.12.001
– ident: e_1_2_9_33_1
  doi: 10.1007/s00382-008-0437-z
– ident: e_1_2_9_39_1
  doi: 10.1038/nclimate1580
– ident: e_1_2_9_43_1
  doi: 10.1175/JCLI-D-18-0364.1
– ident: e_1_2_9_16_1
  doi: 10.1029/2020GL088631
– volume-title: CRU TS4.05: Climatic research unit (CRU) time‐series (TS) version 4.05 of high‐resolution gridded data of month‐by‐month variation in climate (January 1901–December 2020)
  year: 2021
  ident: e_1_2_9_9_1
– ident: e_1_2_9_31_1
  doi: 10.1175/JHM609.1
– ident: e_1_2_9_32_1
  doi: 10.6038/cjg20130406
– ident: e_1_2_9_34_1
  doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
– ident: e_1_2_9_10_1
  doi: 10.1002/qj.3803
– ident: e_1_2_9_23_1
  doi: 10.3390/atmos8030052
– ident: e_1_2_9_2_1
  doi: 10.3390/atmos9040138
– ident: e_1_2_9_20_1
  doi: 10.1038/s41598-017-04615-7
– ident: e_1_2_9_25_1
  doi: 10.1029/2005GL022709
– ident: e_1_2_9_28_1
  doi: 10.1175/JCLI-D-17-0340.1
– ident: e_1_2_9_26_1
  doi: 10.1029/2008GL034330
– ident: e_1_2_9_38_1
  doi: 10.1038/s43017-022-00299-4
– ident: e_1_2_9_22_1
  doi: 10.1038/nclimate2055
– ident: e_1_2_9_3_1
  doi: 10.1175/JCLI-D-16-0814.1
– ident: e_1_2_9_5_1
  doi: 10.1038/ncomms10925
– ident: e_1_2_9_11_1
  doi: 10.1126/sciadv.abf9395
– ident: e_1_2_9_14_1
  doi: 10.1126/science.1183188
– ident: e_1_2_9_27_1
  doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
– ident: e_1_2_9_30_1
  doi: 10.1002/asl.677
– ident: e_1_2_9_29_1
  doi: 10.1002/2016JD025515
– ident: e_1_2_9_35_1
  doi: 10.1029/2008GL035867
– ident: e_1_2_9_18_1
  doi: 10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2
– ident: e_1_2_9_7_1
  doi: 10.1002/jgrd.50290
– ident: e_1_2_9_13_1
  doi: 10.1038/s41586-019-1822-y
– ident: e_1_2_9_41_1
  doi: 10.1007/s00382-014-2310-6
– ident: e_1_2_9_21_1
  doi: 10.1016/j.scib.2022.12.026
– ident: e_1_2_9_8_1
  doi: 10.2151/jmsj.2016-015
– ident: e_1_2_9_24_1
  doi: 10.1175/JCLI-D-19-0471.1
– ident: e_1_2_9_15_1
  doi: 10.1088/1748-9326/5/1/015101
– ident: e_1_2_9_42_1
  doi: 10.1088/1748-9326/abcb36
SSID ssj0003031
Score 2.4814806
Snippet The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally...
Abstract The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplitude
Amplitudes
Annual precipitation
Circulation patterns
Climate
Climate variability
Dipoles
Evolution
Global climate
Interdecadal variability
north‐south dipole pattern
Plateaus
Precipitation
Precipitation trends
Precipitation variability
Rainfall
Rainfall forecasting
seasonal cycle
seasonal evolving trend
Seasons
Summer
Tibetan Plateau
Towers
Trends
Variability
Variation
Water supply
Water towers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA0iCm7EJ9YXWehKBiePyWPpsy5KLVqhuyGvQqHWYlVw5yf4jX6JN5mp1IW6cTeETLjc3CTnJpdzEDrwLnhhJcuIKHTGlaWZEdTBwpNc5MooX1RiE7LdVr2e7sxIfcWasIoeuHLcsdYwGO8L2g8Ft_CzdEb0hS1gNEuSvjAF1DNNpuo9GDbmSitP80xRKeqS95zqmO2zZguyEKXJt8MocfZ_A5qzcDWdN5craLkGivikMnAVzYXRGlpsJiHeV_hKpZtuso7ub4NJeHr4ii9gs4k3BLgqdcWxwg5SfwwoD6cXmo-39ySah88H44dhwJ1ErznC1zbezgaPoXN3YANARtwZAg41z7gTCTDGNZf3Brq7vOieXWW1iELmOMlVZougcsA4XovICyOd59Qr5aGpMNI4aYVjXoAzuc21KYxm2udW8cBk7gVjm2h-9DAKWwgH5jjvS2IJE5x4yMk1JIPgxnizLHxooKOpN0tXWxWFLoZleummupz1fQMdfvUeV8waP_Q7jRPz1SfyYacGiJKyjpLyryhpoN3ptJb1Ip2UVAE8I4BIFViepvpXQ8rmTQvwmVTb_2HRDlqKg8fSEyJ20fzT43PYQwvu5WkwedxP0fwJQ1vziA
  priority: 102
  providerName: Directory of Open Access Journals
Title Seasonally Evolving Trends Explain the North‐South Dipole Pattern Observed in Tibetan Plateau Precipitation
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL104891
https://www.proquest.com/docview/2863914168
https://doaj.org/article/99ed64f62fe54b8a87ca6f6b5877b112
Volume 50
WOSCitedRecordID wos001059712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (ProQuest)
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQCxIX3ohAiXyAE1qxu_b6caQ0CUghXaWtqLis_AqKFDZR0iL1xk_gN_JLmPG6UXoACXGxdq2xZNkz9ufx-BtCXnkXvLCSZYWodMaVLTMjSgeGJ7nIlVG-6pJNyMlEnZ_rOjnc8C1Mxw-xdbihZcT1Gg3c2E0iG0COTMz7PRrDaULh4_X9omAKUzeUvN6uxLA8dxnzNM9UKUUKfIf2b3db39iSInP_Dbi5C1rjrjO8_7_9fUDuJbxJ33UK8pDcCu0jcmcU8_lewVeMAHWbx-TbSTARli-u6ADWLHQ00C5ilmKgnpm3FMAijRc9v378jLn36NF8tVwEWkeWzpYeW3TyBk9B-HRuAyBPWi8AzppLWiOPxipRgj8hZ8PB6fsPWcrFkDle5CqzVVA5QCWvBdLLSOd56ZXyUFUZaZy0wjEvpLTc5tpURjPtc6t4YDL3grGnZK9dtuEZoYE5zmeysAUTvPBwtNdwpoRRQQe18KFH3lxPR-NSrzBfxqKJF-albnaHskdeb6VXHUHHH-QOcWa3MkirHSuW669NstJGa9BcPhPlLFTcgqZKZ8RM2ApU1wIy7ZGDa71okq1vmlIByisA2CroedSAv3akGU3HAPOkev5P0i_IXazHUJVCHJC9i_VleEluu-8X8826H_W-T_YPB5N62o-OBfg7mg7PxvD3qTyOZY2lPIGyrr5A-fnj5DcICwgK
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqAqIXylNNW4oP5YRW7MPrxxFKm1akIYIgerP8CoqUbqKkReqNn8Bv7C9hxutG6aFIFbeVNZYs74z9eTz-PkL2vQueW1FlBa9VxqQtM8NLB4EnGM-lkb5uxSZEvy_PztQg6ZziW5iWH2KZcMPIiOs1BjgmpBPbAJJkovB3twfHCYmv1x8wwBqo3fDjpL9cimF9biXzFMtkKXiqfIf-71d739qTInX_Lby5ilrjtnO0-d8DfkqeJMRJP7Qu8oysheY5edSNir5X8BVrQN3iBTn_FkwE5pMregirFqYaaFszS7FUz4wbCnCRxque699_ovoe_TSeTSeBDiJPZ0O_WEzzBk_BeDi2AbAnHUwA0JpLOkAmjVkiBX9Jvh8dDg-Os6TGkDlW5DKzdZA5gCWvOBLMCOdZ6aX00FQbYZyw3FWeC2GZzZWpjaqUz61koRK551X1iqw30yZsERoqx9hIFLaoOCs8HO4VnCphVjBFzX3okHc3_0O7NCpUzJjoeGVeKr06lR3ydmk9ayk67rD7iL92aYPE2rFhOv-pU5xqpcB32YiXo1AzC74qnOEjbmtwXgvYtEN2bxxDp2hf6FICzisA2koYeXSBfw5Ed7_2AOgJuX0v6zfk8fHwtKd7J_3PO2QDbbBwpeC7ZP1ifhlek4fu18V4Md-LQfAXOGsDTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQCqgX3ohAAR_ghFbsw-vHEUgTEFFYlVbqzfJrUaSwiZK2Um_8BH4jv4QZrxulB5AQt5U1u7LWM-PP9vj7CHnlXfDciioreK0yJm2ZGV46CDzBeC6N9HUvNiFmM3l6qpqkc4p3YXp-iO2GG0ZGzNcY4GHl28Q2gCSZKPw9mcJyQuLt9T2GOjIDsjc6Gp9Mt8kYMnQvmqdYJkvBU-07fOHt7vvXZqVI3n8Nce7i1jjxjO_-d5fvkTsJc9J3vZPcJzdC94DcmkRN30t4ilWgbvOQfP8aTITmi0t6CHkLNxtoXzVLsVjPzDsKgJHGw55fP35G_T06mq-Wi0CbyNTZ0S8WN3qDp2B8PLcB0CdtFgBpzTltkEtjlWjBH5GT8eHxh49Z0mPIHCtymdk6yBzgklccKWaE86z0Unpoqo0wTljuKs-FsMzmytRGVcrnVrJQidzzqnpMBt2yC08IDZVjrBWFLSrOCg_LewXrSvgruEnNfRiSN1fjoV3qFWpmLHQ8NC-V3v2VQ_J6a73qSTr-YPceh3Zrg9TasWG5_qZTpGqlwHtZy8s21MyCtwpneMttDe5rAZ0OycGVY-gU7xtdSkB6BYBbCT2PLvDXjujJ0RSgnpBP_8n6JbndjMZ6-mn2-RnZRxOsXCn4ARmcrc_Dc3LTXZzNN-sXKQp-A-MKA_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonally+Evolving+Trends+Explain+the+North%E2%80%90South+Dipole+Pattern+Observed+in+Tibetan+Plateau+Precipitation&rft.jtitle=Geophysical+research+letters&rft.au=Ma%2C+Jieru&rft.au=Ren%2C+Hong%E2%80%90Li&rft.au=Cai%2C+Ming&rft.au=Huang%2C+Jianping&rft.date=2023-09-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=17&rft_id=info:doi/10.1029%2F2023GL104891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL104891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon