Seasonally Evolving Trends Explain the North‐South Dipole Pattern Observed in Tibetan Plateau Precipitation
The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute...
Uloženo v:
| Vydáno v: | Geophysical research letters Ročník 50; číslo 17 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
16.09.2023
Wiley |
| Témata: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction.
Plain Language Summary
The Tibetan Plateau (TP) is experiencing the north‐wetting‐south‐drying trend due to the imbalance of the Asian water tower since 1979, influencing the water supply to billions of people and regional and global climate. However, the characteristics of the seasonally evolving variations of precipitation across seasons on multiyear timescales, as well as the associated major circulation patterns, remain unknown. Here we identify four primary seasonally evolving patterns (SEPs) and focus on investigating their corresponding long‐term trends and interdecadal variations. These four modes collectively contribute by 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the trend of the second SEP that features a north‐south dipole explains the spatio‐temporal disparity of the total precipitation trend, displaying the strongest amplitude in summer over the TP. Our findings provide insight into the climate variability manifested in SEPs as a major source for the interdecadal prediction of rainfall evolution in the Asian water tower.
Key Points
Seasonally evolving patterns (SEPs) explain 60%–90% of the spatial mean amplitude of total precipitation trend over the Tibetan Plateau
The second SEP trend with a north‐south dipole pattern mainly contributes to the spatio‐temporal disparity of the total precipitation trend
The seasonally evolving north‐south dipole trend is linked to the Silk Road pattern and the Indian monsoon variations |
|---|---|
| AbstractList | The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction.
The Tibetan Plateau (TP) is experiencing the north‐wetting‐south‐drying trend due to the imbalance of the Asian water tower since 1979, influencing the water supply to billions of people and regional and global climate. However, the characteristics of the seasonally evolving variations of precipitation across seasons on multiyear timescales, as well as the associated major circulation patterns, remain unknown. Here we identify four primary seasonally evolving patterns (SEPs) and focus on investigating their corresponding long‐term trends and interdecadal variations. These four modes collectively contribute by 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the trend of the second SEP that features a north‐south dipole explains the spatio‐temporal disparity of the total precipitation trend, displaying the strongest amplitude in summer over the TP. Our findings provide insight into the climate variability manifested in SEPs as a major source for the interdecadal prediction of rainfall evolution in the Asian water tower.
Seasonally evolving patterns (SEPs) explain 60%–90% of the spatial mean amplitude of total precipitation trend over the Tibetan Plateau The second SEP trend with a north‐south dipole pattern mainly contributes to the spatio‐temporal disparity of the total precipitation trend The seasonally evolving north‐south dipole trend is linked to the Silk Road pattern and the Indian monsoon variations The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction. Abstract The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction. The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally evolving patterns (SEPs) that explain approximately 50% of the total variance in precipitation variability over the TP. These SEPs contribute 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the second SEP that features a north‐south dipole pattern dominates the annual mean trend of the precipitation over the TP. The interdecadal variability of the seasonally evolving north‐south dipole pattern is linked to the interdecadal variations of summer Silk Road Pattern and Indian monsoon. These findings suggest that the climate variability expressed through SEPs could potentially serve as a significant source for the interdecadal rainfall prediction. Plain Language Summary The Tibetan Plateau (TP) is experiencing the north‐wetting‐south‐drying trend due to the imbalance of the Asian water tower since 1979, influencing the water supply to billions of people and regional and global climate. However, the characteristics of the seasonally evolving variations of precipitation across seasons on multiyear timescales, as well as the associated major circulation patterns, remain unknown. Here we identify four primary seasonally evolving patterns (SEPs) and focus on investigating their corresponding long‐term trends and interdecadal variations. These four modes collectively contribute by 60%–90% of the spatial mean amplitude of precipitation trends across seasons. In particular, the trend of the second SEP that features a north‐south dipole explains the spatio‐temporal disparity of the total precipitation trend, displaying the strongest amplitude in summer over the TP. Our findings provide insight into the climate variability manifested in SEPs as a major source for the interdecadal prediction of rainfall evolution in the Asian water tower. Key Points Seasonally evolving patterns (SEPs) explain 60%–90% of the spatial mean amplitude of total precipitation trend over the Tibetan Plateau The second SEP trend with a north‐south dipole pattern mainly contributes to the spatio‐temporal disparity of the total precipitation trend The seasonally evolving north‐south dipole trend is linked to the Silk Road pattern and the Indian monsoon variations |
| Author | Ma, Jieru Cai, Ming Huang, Jianping Ren, Hong‐Li |
| Author_xml | – sequence: 1 givenname: Jieru orcidid: 0009-0007-4260-0791 surname: Ma fullname: Ma, Jieru organization: Chinese Academy of Meteorological Sciences – sequence: 2 givenname: Hong‐Li orcidid: 0000-0001-7194-0567 surname: Ren fullname: Ren, Hong‐Li email: renhl@cma.gov.cn organization: Chinese Academy of Meteorological Sciences – sequence: 3 givenname: Ming orcidid: 0000-0002-1614-1102 surname: Cai fullname: Cai, Ming organization: Florida State University – sequence: 4 givenname: Jianping orcidid: 0000-0003-2845-797X surname: Huang fullname: Huang, Jianping organization: Lanzhou University |
| BookMark | eNqFkc1uEzEUhS1UJNLCjgewxJaA_8Y_S1TSUCmiEQ1r687Y0zhyx4PtBLLjEXhGnoSBVAixgNW9uvruOdI55-hsSINH6Dklryhh5jUjjC9XlAht6CM0o0aIuSZEnaEZIWbamZJP0HkpO0IIJ5zO0P2th5IGiPGIF4cUD2G4w5vsB1fw4ssYIQy4bj1-n3Ldfv_67Tbt6xa_DWOKHq-hVp8HfNMWnw_e4QnehNZXGPA6QvWwx-vsuzCGCjWk4Sl63EMs_tnDvEAfrxaby3fz1c3y-vLNat4JSvS8bbwmknFnJG2kUJ0TzGntplMDCjrVyo47qVQrWmKgAcONI60WniviJOcX6Pqk6xLs7JjDPeSjTRDsr0PKdxZyDV301hjvpOgl630jWg1adSB72TZ6kqeUTVovTlpjTp_2vlS7S_s8JVYs05IbKqjUE_XyRHU5lZJ9_9uVEvuzHPtnORPO_sK7h4hqhhD_8_Q5RH_8p4FdflhJyZXmPwDWtqKD |
| CitedBy_id | crossref_primary_10_1016_j_scib_2024_06_026 crossref_primary_10_3390_atmos15010117 crossref_primary_10_1016_j_jhydrol_2025_133508 crossref_primary_10_1016_j_eiar_2025_107888 crossref_primary_10_1038_s43247_024_01563_9 crossref_primary_10_1016_j_fmre_2023_12_006 crossref_primary_10_1029_2025GL117001 crossref_primary_10_3390_rs16142585 |
| Cites_doi | 10.1175/JAS-D-12-023.1 10.1007/s10584-011-0099-4 10.1175/JCLI-D-21-0207.1 10.1038/srep13711 10.1175/JCLI-D-14-00303.1 10.2151/jmsj.87.561 10.1175/BAMS-D-17-0057.1 10.1016/j.gloplacha.2013.12.001 10.1007/s00382-008-0437-z 10.1038/nclimate1580 10.1175/JCLI-D-18-0364.1 10.1029/2020GL088631 10.1175/JHM609.1 10.6038/cjg20130406 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 10.1002/qj.3803 10.3390/atmos8030052 10.3390/atmos9040138 10.1038/s41598-017-04615-7 10.1029/2005GL022709 10.1175/JCLI-D-17-0340.1 10.1029/2008GL034330 10.1038/s43017-022-00299-4 10.1038/nclimate2055 10.1175/JCLI-D-16-0814.1 10.1038/ncomms10925 10.1126/sciadv.abf9395 10.1126/science.1183188 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2 10.1002/asl.677 10.1002/2016JD025515 10.1029/2008GL035867 10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2 10.1002/jgrd.50290 10.1038/s41586-019-1822-y 10.1007/s00382-014-2310-6 10.1016/j.scib.2022.12.026 10.2151/jmsj.2016-015 10.1175/JCLI-D-19-0471.1 10.1088/1748-9326/5/1/015101 10.1088/1748-9326/abcb36 |
| ContentType | Journal Article |
| Copyright | 2023. The Authors. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
| DOI | 10.1029/2023GL104891 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (LUT) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_99ed64f62fe54b8a87ca6f6b5877b112 10_1029_2023GL104891 GRL66378 |
| Genre | article |
| GeographicLocations | Tibetan Plateau |
| GeographicLocations_xml | – name: Tibetan Plateau |
| GrantInformation_xml | – fundername: Special Project for Innovation and Development of CMA funderid: CXFZ2023J050 – fundername: National Natural Science Foundation of China funderid: U2242206 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-c4108-b5e80623d9615647cd42d88d6235a7ac7b6c3d677b4b09a5a939d0b84e370d633 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Fri Oct 03 12:50:29 EDT 2025 Fri Jul 25 18:59:09 EDT 2025 Sat Nov 29 08:09:51 EST 2025 Tue Nov 18 22:23:22 EST 2025 Wed Jan 22 16:15:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4108-b5e80623d9615647cd42d88d6235a7ac7b6c3d677b4b09a5a939d0b84e370d633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7194-0567 0000-0003-2845-797X 0000-0002-1614-1102 0009-0007-4260-0791 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL104891 |
| PQID | 2863914168 |
| PQPubID | 54723 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_99ed64f62fe54b8a87ca6f6b5877b112 proquest_journals_2863914168 crossref_primary_10_1029_2023GL104891 crossref_citationtrail_10_1029_2023GL104891 wiley_primary_10_1029_2023GL104891_GRL66378 |
| PublicationCentury | 2000 |
| PublicationDate | 16 September 2023 |
| PublicationDateYYYYMMDD | 2023-09-16 |
| PublicationDate_xml | – month: 09 year: 2023 text: 16 September 2023 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 7 2017; 7 2017; 8 2015; 5 2009; 87 2010; 328 2019; 32 2020; 16 2008; 35 2016; 94 2020; 146 2020; 33 2008; 31 2016; 17 2019; 100 2014; 45 2014; 112 2018; 9 2017; 30 2016; 7 2015; 28 2023; 68 2011; 109 2012; 2 2014; 4 2022; 3 2021 2013; 56 2013; 118 1997; 78 2007; 8 2022; 35 2020; 577 2020; 47 2005; 32 2012; 69 2017; 122 2010; 5 2001; 14 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 Harris I. C. (e_1_2_9_9_1) 2021 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 5 issue: 1 year: 2010 article-title: Review of climate and cryospheric change in the Tibetan Plateau publication-title: Environmental Research Letters – volume: 87 start-page: 561 issue: 3 year: 2009 end-page: 580 article-title: Analysis on the dynamics of a wave‐like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations publication-title: Journal of the Meteorological Society of Japan – volume: 14 start-page: 4073 issue: 20 year: 2001 end-page: 4090 article-title: Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific‐East Asian monsoons publication-title: Journal of Climate – volume: 7 issue: 24 year: 2021 article-title: Skillful prediction of summer rainfall in the Tibetan Plateau on multiyear time scales publication-title: Science Advances – volume: 100 start-page: 423 issue: 3 year: 2019 end-page: 444 article-title: Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis publication-title: Bulletin of the American Meteorological Society – volume: 7 issue: 1 year: 2017 article-title: Mechanism of non‐appearance of hiatus in Tibetan Plateau publication-title: Scientific Reports – volume: 33 start-page: 8507 issue: 19 year: 2020 end-page: 8522 article-title: Why has the inner Tibetan Plateau become wetter since the mid‐1990s? publication-title: Journal of Climate – volume: 35 issue: 14 year: 2008 article-title: Tibetan Plateau warming and precipitation changes in East Asia publication-title: Geophysical Research Letters – volume: 56 start-page: 1102 issue: 4 year: 2013 end-page: 1111 article-title: A gridded daily observation dataset over China region and comparison with the other datasets publication-title: Chinese Journal of Geophysics – volume: 32 issue: 15 year: 2005 article-title: A method for detecting season‐dependent modes of climate variability: S‐EOF analysis publication-title: Geophysical Research Letters – volume: 8 start-page: 770 issue: 4 year: 2007 end-page: 789 article-title: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate publication-title: Journal of Hydrometeorology – volume: 3 start-page: 618 issue: 10 year: 2022 end-page: 632 article-title: The imbalance of the Asian water tower publication-title: Nature Reviews Earth & Environment – volume: 28 start-page: 1707 issue: 4 year: 2015 end-page: 1722 article-title: Detecting long‐term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations publication-title: Journal of Climate – volume: 4 start-page: 68 issue: 1 year: 2014 end-page: 73 article-title: Mid‐latitude westerlies as a driver of glacier variability in monsoonal High Asia publication-title: Nature Climate Change – volume: 16 issue: 1 year: 2020 article-title: Mechanisms of the decadal variability of monsoon rainfall in the southern Tibetan Plateau publication-title: Environmental Research Letters – volume: 30 start-page: 8973 issue: 22 year: 2017 end-page: 8985 article-title: Effect of Indian Ocean SST on Tibetan Plateau precipitation in the early rainy season publication-title: Journal of Climate – volume: 328 start-page: 1382 issue: 5984 year: 2010 end-page: 1385 article-title: Climate change will affect the Asian water towers publication-title: Science – volume: 78 start-page: 2539 issue: 11 year: 1997 end-page: 2558 article-title: Global precipitation: A 17‐year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs publication-title: Bulletin of the American Meteorological Society – volume: 45 start-page: 791 issue: 3–4 year: 2014 end-page: 806 article-title: Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau publication-title: Climate Dynamics – year: 2021 – volume: 8 issue: 3 year: 2017 article-title: Evaluating the hydrological cycle over land using the newly‐corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC) publication-title: Atmosphere – volume: 122 start-page: 614 issue: 2 year: 2017 end-page: 630 article-title: Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau publication-title: Journal of Geophysical Research: Atmospheres – volume: 69 start-page: 1706 issue: 5 year: 2012 end-page: 1712 article-title: Process‐based decomposition of the global surface temperature response to El Niño in boreal winter publication-title: Journal of the Atmospheric Sciences – volume: 94 start-page: 269 issue: 3 year: 2016 end-page: 302 article-title: The JRA‐55 Reanalysis: Representation of atmospheric circulation and climate variability publication-title: Journal of the Meteorological Society of Japan – volume: 577 start-page: 364 issue: 7790 year: 2020 end-page: 369 article-title: Importance and vulnerability of the world’s water towers publication-title: Nature – volume: 2 start-page: 663 issue: 9 year: 2012 end-page: 667 article-title: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings publication-title: Nature Climate Change – volume: 47 issue: 17 year: 2020 article-title: Southward shift of westerlies intensifies the East Asian early summer rainband following El Niño publication-title: Geophysical Research Letters – volume: 30 start-page: 9915 issue: 24 year: 2017 end-page: 9932 article-title: Interdecadal variations of the Silk Road pattern publication-title: Journal of Climate – volume: 9 issue: 4 year: 2018 article-title: The global precipitation climatology project (GPCP) monthly analysis (new version 23) and a review of 2017 global precipitation publication-title: Atmosphere – volume: 68 start-page: 105 issue: 1 year: 2023 end-page: 116 article-title: Pushing the boundary of seasonal prediction with the lever of varying annual cycles publication-title: Science Bulletin – volume: 31 start-page: 823 issue: 7–8 year: 2008 end-page: 841 article-title: The modulated annual cycle: An alternative reference frame for climate anomalies publication-title: Climate Dynamics – volume: 14 start-page: 2896 issue: 13 year: 2001 end-page: 2909 article-title: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation publication-title: Journal of Climate – volume: 17 start-page: 446 issue: 8 year: 2016 end-page: 452 article-title: Interdecadal circumglobal teleconnection pattern during boreal summer publication-title: Atmospheric Science Letters – volume: 35 start-page: 1679 issue: 5 year: 2022 end-page: 1694 article-title: Dominant anomalous circulation patterns of Tibetan Plateau summer climate generated by ENSO‐forced and ENSO‐independent teleconnections publication-title: Journal of Climate – volume: 7 issue: 1 year: 2016 article-title: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent publication-title: Nature Communications – volume: 32 start-page: 4103 issue: 13 year: 2019 end-page: 4119 article-title: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms publication-title: Journal of Climate – volume: 146 start-page: 1999 issue: 730 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 109 start-page: 517 issue: 3–4 year: 2011 end-page: 534 article-title: Response of hydrological cycle to recent climate changes in the Tibetan Plateau publication-title: Climatic Change – volume: 118 start-page: 3534 issue: 9 year: 2013 end-page: 3544 article-title: Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau publication-title: Journal of Geophysical Research: Atmospheres – volume: 35 issue: 20 year: 2008 article-title: World water tower: An atmospheric perspective publication-title: Geophysical Research Letters – volume: 5 issue: 1 year: 2015 article-title: Does the climate warming hiatus exist over the Tibetan Plateau? publication-title: Scientific Reports – volume: 112 start-page: 79 year: 2014 end-page: 91 article-title: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review publication-title: Global and Planetary Change – ident: e_1_2_9_4_1 doi: 10.1175/JAS-D-12-023.1 – ident: e_1_2_9_37_1 doi: 10.1007/s10584-011-0099-4 – ident: e_1_2_9_12_1 doi: 10.1175/JCLI-D-21-0207.1 – ident: e_1_2_9_6_1 doi: 10.1038/srep13711 – ident: e_1_2_9_19_1 doi: 10.1175/JCLI-D-14-00303.1 – ident: e_1_2_9_17_1 doi: 10.2151/jmsj.87.561 – ident: e_1_2_9_40_1 doi: 10.1175/BAMS-D-17-0057.1 – ident: e_1_2_9_36_1 doi: 10.1016/j.gloplacha.2013.12.001 – ident: e_1_2_9_33_1 doi: 10.1007/s00382-008-0437-z – ident: e_1_2_9_39_1 doi: 10.1038/nclimate1580 – ident: e_1_2_9_43_1 doi: 10.1175/JCLI-D-18-0364.1 – ident: e_1_2_9_16_1 doi: 10.1029/2020GL088631 – volume-title: CRU TS4.05: Climatic research unit (CRU) time‐series (TS) version 4.05 of high‐resolution gridded data of month‐by‐month variation in climate (January 1901–December 2020) year: 2021 ident: e_1_2_9_9_1 – ident: e_1_2_9_31_1 doi: 10.1175/JHM609.1 – ident: e_1_2_9_32_1 doi: 10.6038/cjg20130406 – ident: e_1_2_9_34_1 doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 – ident: e_1_2_9_10_1 doi: 10.1002/qj.3803 – ident: e_1_2_9_23_1 doi: 10.3390/atmos8030052 – ident: e_1_2_9_2_1 doi: 10.3390/atmos9040138 – ident: e_1_2_9_20_1 doi: 10.1038/s41598-017-04615-7 – ident: e_1_2_9_25_1 doi: 10.1029/2005GL022709 – ident: e_1_2_9_28_1 doi: 10.1175/JCLI-D-17-0340.1 – ident: e_1_2_9_26_1 doi: 10.1029/2008GL034330 – ident: e_1_2_9_38_1 doi: 10.1038/s43017-022-00299-4 – ident: e_1_2_9_22_1 doi: 10.1038/nclimate2055 – ident: e_1_2_9_3_1 doi: 10.1175/JCLI-D-16-0814.1 – ident: e_1_2_9_5_1 doi: 10.1038/ncomms10925 – ident: e_1_2_9_11_1 doi: 10.1126/sciadv.abf9395 – ident: e_1_2_9_14_1 doi: 10.1126/science.1183188 – ident: e_1_2_9_27_1 doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2 – ident: e_1_2_9_30_1 doi: 10.1002/asl.677 – ident: e_1_2_9_29_1 doi: 10.1002/2016JD025515 – ident: e_1_2_9_35_1 doi: 10.1029/2008GL035867 – ident: e_1_2_9_18_1 doi: 10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2 – ident: e_1_2_9_7_1 doi: 10.1002/jgrd.50290 – ident: e_1_2_9_13_1 doi: 10.1038/s41586-019-1822-y – ident: e_1_2_9_41_1 doi: 10.1007/s00382-014-2310-6 – ident: e_1_2_9_21_1 doi: 10.1016/j.scib.2022.12.026 – ident: e_1_2_9_8_1 doi: 10.2151/jmsj.2016-015 – ident: e_1_2_9_24_1 doi: 10.1175/JCLI-D-19-0471.1 – ident: e_1_2_9_15_1 doi: 10.1088/1748-9326/5/1/015101 – ident: e_1_2_9_42_1 doi: 10.1088/1748-9326/abcb36 |
| SSID | ssj0003031 |
| Score | 2.4814806 |
| Snippet | The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary seasonally... Abstract The Tibetan Plateau (TP) precipitation is experiencing the north‐south dipole tendency pattern since 1979. In this study, we identify four primary... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Amplitude Amplitudes Annual precipitation Circulation patterns Climate Climate variability Dipoles Evolution Global climate Interdecadal variability north‐south dipole pattern Plateaus Precipitation Precipitation trends Precipitation variability Rainfall Rainfall forecasting seasonal cycle seasonal evolving trend Seasons Summer Tibetan Plateau Towers Trends Variability Variation Water supply Water towers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSxxBEG2CRPAixg9cswl9SE4yONPT0911jEY3BzFLVPA29EcNLKzr4mpgb_4Ef6O_JNU9s7IeohdvQ1MMRXVN9aue4j3GvknvwSqtMkRoMuldGYXcbWaDl00j8sqjS2IT-uzMXF3BcEnqK86EtfTAbeAOADAo2SjRYCWdsUZ7qxrlKqO1K5K-sCDUs2imuhpMhbnVygOZGaFVN_KeC4jdfjk4pS7EQPHiMEqc_S-A5jJcTefNyQZb74Ai_9E6-Il9wMkmWx0kId45PaXRTT_bYtfnaBOeHs_5MRWbeEPA21FXHifsqPXnhPJ4-kPz9PCYRPP4z9H0Zox8mOg1J_y3i7ezGDgZX4wcEmTkwzHhUHvPh5EAY9pxeW-zy5Pji6NfWSeikHlZ5CZzFZqcME4AFXlhtA9SBGMCLVVWW6-d8mVQFEzpcrCVhRJC7ozEUudBleUOW5ncTHCXcfSW9s5TbZUgsXAG8qaqghANWFQGemx_Ec3ad15FoYtxnf50C6iXY99j35-tpy2zxn_sDuPGPNtEPuy0QFlSd1lSv5UlPdZfbGvdfaSzWhiCZwUhUkOep61-1ZF68OeU8Jk2e-_h0We2Fl8eR08K1Wcrd7f3-IV99H_vRrPbrymb_wE0KvVu priority: 102 providerName: Directory of Open Access Journals |
| Title | Seasonally Evolving Trends Explain the North‐South Dipole Pattern Observed in Tibetan Plateau Precipitation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL104891 https://www.proquest.com/docview/2863914168 https://doaj.org/article/99ed64f62fe54b8a87ca6f6b5877b112 |
| Volume | 50 |
| WOSCitedRecordID | wos001059712000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Collection customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: PCBAR dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: PATMY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library (NC LIVE) customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M2O dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access (LUT) customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hFiQuUF4i0EZ7gBOysNfrfRwpTVKkkFppKyou1r6MIgUnSlqk3vgJ_EZ-CTNrN0oPIFVcVvZqVlp7Z8efx-PvI-QNd04bIUUSgq4T7myOQu4mMd7xumZp4YKNYhNyMlEXF7rsEm74L0zLD7FJuOHOiPEaN7ix645sADkyUfd7NIa3CYU_r-9mWa5QuoHxchOJITy3inmaJ4pJ0RW-w_j326NvPZIic_8tuLkNWuNTZ_j4f-e7Rx51eJN-aB3kCbkXmqfkwSjq-V7DUawAdetn5PtpMBGWz6_pAGIWJhpoWzFLsVDPzBoKYJHGDz2_f_6K2nv0aLZczAMtI0tnQ08sJnmDp2B8NrMBkCct5wBnzRUtkUdj2VGCPyfnw8HZx-Ok02JIHM9SldgiqBSgktcC6WWk85x5pTx0FUYaJ61wuRdSWm5TbQqjc-1Tq3jIZepFnr8gO82iCS8JDc6ACzgI0VzzkFml07ooPGO1NkEo3SPvbpajct2sUC9jXsUP5kxX27eyR95urJctQcdf7A5xZTc2SKsdOxarb1W3Syutgxe8FqwOBbfKKOmMqIUtFFwYINMe2b_xi6rb6-uKKUB5GQBbBTOPHvDPiVSj6RhgnlSv7mT9mjzEfixVycQ-2blcXYUDct_9uJytV_3o932yeziYlNN-TCzA2dF0eD6Gs8_sJLYltvIU2rL4Cu2XT5M_i7UJ8A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqAqIXylNNW4oP5YRWbHa9fhyhtGlFGiIIojfLr0WR0k2UtEi98RP4jf0lzHjdKD0UqeK2ssaSdz0z_tYefx8h-8w5ZbjgWQiqzpizJQq5m8x4x-q6yCsXbBSbEIOBPDtTw6RzindhWn6I5YYbRkbM1xjguCGd2AaQJBOFv3t9-J2QeHv9AQOsgdoNP04Gy1QM-bmVzFMsk4XgqfId-r9f7X1rTYrU_bfw5ipqjcvO0eZ_D_gpeZIQJ_3Qusgzshaa5-RRLyr6XsFTrAF1ixfk_FswEZhPrughZC3caqBtzSzFUj0zbijARRqPeq5__4nqe_TTeDadBDqMPJ0N_WJxmzd4CsajsQ2APelwAoDWXNIhMmnMEin4S_L96HB0cJwlNYbMsW4uM1sFmQNY8oojwYxwnhVeSg9NlRHGCctd6bkQltlcmcqoUvncShZKkXtelq_IejNtwhahwRlwAgdJmikWulaqvK4qXxS1MoFL1SHvbuZDuzQqVMyY6HhkXii9-ik75O3SetZSdNxh9xGndmmDxNqxYTr_qVOcaqWC56zmRR0qZqWRwhlec1tJeDHAph2ye-MYOkX7QhcScF4XoK2EkUcX-OdAdO9rH4CekNv3sn5DHh-PTvu6fzL4vEM20AYLV7p8l6xfzC_Da_LQ_boYL-Z7MQj-AnK7BTM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hFFAvlKcItLAHOCELx17v40ibJiCiYJVW6s3aJ4oUnChpK_XGT-A38kuYWW-j9AAS4matxtbaOzP7eXf2-wh5w6xVmgueea9CxqwpUchdZ9pZFkKRV9abKDYhplN5fq7qpHOKZ2E6fojNghtGRszXGOB-6UJiG0CSTBT-Hk_gd0Li6fUdhjoyPbIzPBmdTTbJGDJ0J5qnWCYLwVPtOzzh_fb9t2alSN5_C3Fu49Y48Yz2_rvLD8mDhDnph85JHpE7vn1M7o2jpu81XMUqULt-Qr5_9TpC8_k1PYa8hYsNtKuapVisp2ctBcBI42bPrx8_o_4eHc6Wi7mndWTqbOkXgwu93lEwPp0ZD-iT1nOAtPqS1silsUy04E_J2ej49OhjlvQYMssGucxM5WUOcMkpjhQzwjpWOCkdNFVaaCsMt6XjQhhmcqUrrUrlciOZL0XueFk-I7120frnhHqrwQ0spGmmmB8YqfJQVa4ogtKeS9Un727Go7GpV6iZMW_ipnmhmu1P2SdvN9bLjqTjD3aHOLQbG6TWjg2L1bcmRWqjlHecBV4EXzEjtRRW88BNJeHFAJ32yf6NYzQp3tdNIQHpDQDcSuh5dIG_dqQZn0wA6gn54p-sX5P79XDUTD5NP78ku2iClSsDvk96F6tLf0Du2quL2Xr1KkXBbyHlBdw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonally+Evolving+Trends+Explain+the+North%E2%80%90South+Dipole+Pattern+Observed+in+Tibetan+Plateau+Precipitation&rft.jtitle=Geophysical+research+letters&rft.au=Ma%2C+Jieru&rft.au=Ren%2C+Hong%E2%80%90Li&rft.au=Cai%2C+Ming&rft.au=Huang%2C+Jianping&rft.date=2023-09-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=17&rft_id=info:doi/10.1029%2F2023GL104891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL104891 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |