Strong Oceanic Forcing on Decadal Surface Temperature Variability Over Global Ocean
Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability i...
Saved in:
| Published in: | Geophysical research letters Vol. 51; no. 8 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
John Wiley & Sons, Inc
28.04.2024
Wiley |
| Subjects: | |
| ISSN: | 0094-8276, 1944-8007 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins.
Plain Language Summary
Decadal variabilities in SST create large climate responses, ranging from heat waves to droughts to enhanced hurricanes. However, there has been considerable uncertainty over whether decadal SST variations are driven primarily by atmospheric forcing or ocean forcing related to ocean circulation. Using a newly developed theoretical framework, we provide the first quantitative estimation of decadal oceanic forcing across the global ocean in observations and state‐of‐the‐art climate model. Our estimation shows that decadal ocean forcing is stronger than the atmospheric forcing by about 2–3 times in the mid‐ and high latitude, but comparable or even weaker than atmospheric forcing in the subtropics.
Key Points
In the mid‐ and high latitude, decadal oceanic forcing is stronger than atmospheric forcing by about 2–3 times across world ocean basins
In the subtropics, decadal oceanic forcing is comparable to or even weaker than atmospheric forcing
Decadal oceanic forcing is likely contributed predominantly by the wind‐driven oceanic circulation |
|---|---|
| AbstractList | Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins.
Plain Language Summary
Decadal variabilities in SST create large climate responses, ranging from heat waves to droughts to enhanced hurricanes. However, there has been considerable uncertainty over whether decadal SST variations are driven primarily by atmospheric forcing or ocean forcing related to ocean circulation. Using a newly developed theoretical framework, we provide the first quantitative estimation of decadal oceanic forcing across the global ocean in observations and state‐of‐the‐art climate model. Our estimation shows that decadal ocean forcing is stronger than the atmospheric forcing by about 2–3 times in the mid‐ and high latitude, but comparable or even weaker than atmospheric forcing in the subtropics.
Key Points
In the mid‐ and high latitude, decadal oceanic forcing is stronger than atmospheric forcing by about 2–3 times across world ocean basins
In the subtropics, decadal oceanic forcing is comparable to or even weaker than atmospheric forcing
Decadal oceanic forcing is likely contributed predominantly by the wind‐driven oceanic circulation Abstract Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins. Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins. Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins. Decadal variabilities in SST create large climate responses, ranging from heat waves to droughts to enhanced hurricanes. However, there has been considerable uncertainty over whether decadal SST variations are driven primarily by atmospheric forcing or ocean forcing related to ocean circulation. Using a newly developed theoretical framework, we provide the first quantitative estimation of decadal oceanic forcing across the global ocean in observations and state‐of‐the‐art climate model. Our estimation shows that decadal ocean forcing is stronger than the atmospheric forcing by about 2–3 times in the mid‐ and high latitude, but comparable or even weaker than atmospheric forcing in the subtropics. In the mid‐ and high latitude, decadal oceanic forcing is stronger than atmospheric forcing by about 2–3 times across world ocean basins In the subtropics, decadal oceanic forcing is comparable to or even weaker than atmospheric forcing Decadal oceanic forcing is likely contributed predominantly by the wind‐driven oceanic circulation |
| Author | Gu, Peng Delworth, Thomas L. Liu, Zhengyu |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0009-0008-5301-6037 surname: Gu fullname: Gu, Peng email: gu.911@osu.edu organization: The Ohio State University – sequence: 2 givenname: Zhengyu orcidid: 0000-0003-4554-2666 surname: Liu fullname: Liu, Zhengyu email: liu.7022@osu.edu organization: The Ohio State University – sequence: 3 givenname: Thomas L. orcidid: 0000-0003-4865-5391 surname: Delworth fullname: Delworth, Thomas L. organization: Geophysical Fluid Dynamics Laboratory/NOAA |
| BookMark | eNqFkU1vEzEQhi1UJNLCjR-wElcC44_dtY-o0FApUqSm7dUa2-PK0XYdvBtQ_j1ugxDiAKf50DPvO6M5Z2djHomxtxw-cBDmowAhV2sOvQL-gi24UWqpAfoztgAwNRd994qdT9MOACRIvmDb7Vzy-NBsPOGYfHOVi0-1zmPzmTwGHJrtoUT01NzS454KzodCzT2WhC4NaT42m-9UmtWQXWWfZV6zlxGHid78ihfs7urL7eXX5Xqzur78tF56xUEvHZjQe-7Qt4KjcLGF6NA44hAJBQZpSMgAXPM-alOXpwgGQtTc1cuMvGDXJ92QcWf3JT1iOdqMyT43cnmwWObkB7KolQqtxtDJoHrHHemOR2gVxMADyar17qS1L_nbgabZ7vKhjHV9K0G13GgwXaXenyhf8jQVir9dOdinF9g_X1Bx8Rfu04xzyuNcMA3_GfqRBjr-08CubtZdL7WWPwEq4JgI |
| CitedBy_id | crossref_primary_10_1007_s40808_025_02478_w crossref_primary_10_1029_2024GL108552 crossref_primary_10_1029_2024GL110333 |
| Cites_doi | 10.1007/s10872‐006‐0041‐y 10.1175/JCLI‐D‐22‐0063.1 10.1029/2022GL099046 10.1175/2009JCLI3060.1 10.1175/JCLI‐D‐16‐0810.1 10.1175/JCLI‐D‐20‐0167.1 10.1029/2018GL081307 10.1029/2019RG000644 10.1175/1520‐0442(2004)017<3109:PICVLB>2.0.CO;2 10.1007/s40641‐017‐0068‐8 10.1175/2008JCLI2561.1 10.1175/1520‐0442(1994)007<0141:IVINAS>2.0.CO;2 10.1038/s41586‐023‐06489‐4 10.1126/science.abc5810 10.1175/JCLI3521.1 10.1175/1520‐0442(1993)006<1993:IVOTTC>2.0.CO;2 10.1126/science.aab3980 10.1007/s00382‐017‐3834‐3 10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2 10.1175/JCLI‐D‐16‐0803.1 10.1175/1520‐0477(1997)078<1069:APICOW>2.0.CO;2 10.1029/2007GL032838 10.1007/s00382‐015‐2932‐3 10.1175/1520‐0442(1998)011<2310:ASFITN>2.0.CO;2 10.1175/2011JCLI3980.1 10.1175/JCLI4272.1 10.1175/1520‐0485(1997)027<1533:ASMOTD>2.0.CO;2 10.1029/2018GL079077 10.1126/science.aaf2575 10.1175/1520‐0442(1997)010<1821:ATOICV>2.0.CO;2 10.1002/2017GL074342 10.1111/j.2153‐3490.1976.tb00696.x 10.1175/1520‐0442(1997)010<1004:ELIV>2.0.CO;2 10.1175/JCLI‐D‐15‐0508.1 10.1111/j.2153‐3490.1977.tb00740.x 10.1038/nature10946 10.1175/2007JCLI1532.1 10.1007/s003820050158 10.1139/f98‐104 10.1002/2013GL057877 10.1038/nature12268 10.1016/S0065‐2687(08)60005‐9 10.1007/s00382‐002‐0253‐9 10.1175/JCLI‐D‐13‐00316.1 10.1175/JCLI‐D‐20‐0505.1 10.1029/2006GL026267 10.1175/JCLI‐D‐22‐0432.1 10.1126/science.266.5185.634 10.1126/science.1109496 10.1175/1520‐0485(1981)011<0324:OOMFMI>2.0.CO;2 10.1007/s00382‐002‐0294‐0 10.1038/ngeo955 10.1007/s00382‐008‐0452‐0 10.1175/2008JCLI2195.1 10.1029/2003JC002005 10.1175/JCLI‐D‐17‐0159.1 10.1175/2007JCLI1826.1 10.1175/JCLI‐D‐13‐00337.1 10.1002/2016GL067925 10.1029/2002JD002670 10.1126/science.1060040 10.1175/JCLI‐D‐16‐0537.1 10.1007/s003820000075 10.1126/science.aaf1660 10.1175/1520‐0442(2001)014<1399:ASOTIO>2.0.CO;2 10.1002/2015GL065364 |
| ContentType | Journal Article |
| Copyright | 2024. The Authors. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. The Authors. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
| DOI | 10.1029/2023GL107401 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_a844d58ad63d47b1be861f0540fd1de3 10_1029_2023GL107401 GRL67388 |
| Genre | article |
| GrantInformation_xml | – fundername: National Oceanic and Atmospheric Administration funderid: NA20OAR4310403 – fundername: National Science Foundation funderid: AGS2321042 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PHGZM PHGZT PQGLB PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX AFFHD CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-c4108-b09d7c1bac521a2bf50fba9be10fea2ad39e23d01817f89827ef090df81b94493 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001201868000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Tue Oct 14 19:05:00 EDT 2025 Fri Jul 25 10:34:26 EDT 2025 Tue Nov 18 20:51:13 EST 2025 Sat Nov 29 02:17:46 EST 2025 Wed Aug 20 07:24:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4108-b09d7c1bac521a2bf50fba9be10fea2ad39e23d01817f89827ef090df81b94493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4865-5391 0009-0008-5301-6037 0000-0003-4554-2666 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107401 |
| PQID | 3045198096 |
| PQPubID | 54723 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a844d58ad63d47b1be861f0540fd1de3 proquest_journals_3045198096 crossref_primary_10_1029_2023GL107401 crossref_citationtrail_10_1029_2023GL107401 wiley_primary_10_1029_2023GL107401_GRL67388 |
| PublicationCentury | 2000 |
| PublicationDate | 28 April 2024 |
| PublicationDateYYYYMMDD | 2024-04-28 |
| PublicationDate_xml | – month: 04 year: 2024 text: 28 April 2024 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2012; 484 2023; 36 2017; 3 2002; 19 2006; 33 2017; 44 2019; 57 1977; 29 2014; 27 2023; 622 2008; 35 2018; 45 1976; 28 1989; 46 1993; 6 1994; 266 2017; 30 2001; 293 2000; 16 2021; 34 2006; 62 1997; 10 2015; 42 1997; 13 2016; 43 2016; 352 2008; 21 2005; 309 2007; 20 2012; 25 2010; 3 2001; 14 2016; 47 1998; 11 1998; 55 2009; 22 2013; 40 2008 1997; 27 2004; 109 2022; 49 2015; 350 2009; 33 2003; 108 2004; 17 2019; 46 1997; 78 1964; 10 2013; 499 2021; 371 2018; 50 2016; 29 2005; 18 2003; 20 1994; 7 1981; 11 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_68_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_66_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_64_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_62_1 e_1_2_13_60_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_7_1 e_1_2_13_61_1 Philander S. G. (e_1_2_13_50_1) 1989; 46 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_52_1 e_1_2_13_5_1 e_1_2_13_3_1 e_1_2_13_28_1 |
| References_xml | – volume: 293 start-page: 474 issue: 5529 year: 2001 end-page: 479 article-title: The recent increase in Atlantic hurricane activity: Causes and implications publication-title: Science – volume: 17 start-page: 3109 issue: 16 year: 2004 end-page: 3124 article-title: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during Boreal Winter since 1900 publication-title: Journal of Climate – volume: 29 start-page: 4399 issue: 12 year: 2016 end-page: 4427 article-title: The Pacific decadal oscillation, revisited publication-title: Journal of Climate – volume: 13 start-page: 167 year: 1997 end-page: 180 article-title: Can local linear stochastic theory explain sea surface temperature and salinity variability? publication-title: Climate Dynamics – volume: 19 start-page: 649 year: 2002 end-page: 655 article-title: The surface heat flux feedback. Part II: Direct and indirect estimates in the ECHAM4/OPA8 coupled GCM publication-title: Climate Dynamics – volume: 350 start-page: 320 issue: 6258 year: 2015 end-page: 324 article-title: The Atlantic Multidecadal Oscillation without a role for ocean circulation publication-title: Science – volume: 30 start-page: 6309 issue: 16 year: 2017 end-page: 6328 article-title: Diagnosis of decadal predictability of Southern Ocean Sea Surface temperature in the GFDL CM2.1 model publication-title: Journal of Climate – volume: 33 issue: 17 year: 2006 article-title: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes publication-title: Geophysical Research Letters – volume: 34 start-page: 1417 issue: 4 year: 2021 end-page: 1438 – volume: 46 start-page: X year: 1989 end-page: 289 article-title: El Niño, La Niña, and the southern oscillation publication-title: International Geophysics Series – volume: 50 start-page: 3687 year: 2018 end-page: 3698 article-title: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble publication-title: Climate Dynamics – volume: 622 start-page: 521 issue: 7983 year: 2023 end-page: 527 article-title: Tropical Atlantic multidecadal variability is dominated by external forcing publication-title: Nature – volume: 11 start-page: 324 issue: 3 year: 1981 end-page: 336 article-title: Open Ocean momentum flux measurements in moderate to strong winds publication-title: Journal of Physical Oceanography – volume: 371 start-page: 1014 issue: 6533 year: 2021 end-page: 1019 article-title: Multidecadal climate oscillations during the past millennium driven by volcanic forcing publication-title: Science – volume: 42 issue: 24 year: 2015 article-title: Predicted slowdown in the rate of Atlantic sea ice loss publication-title: Geophysical Research Letters – volume: 78 start-page: 1069 issue: 6 year: 1997 end-page: 1080 article-title: A Pacific interdecadal climate oscillation with impacts on Salmon production publication-title: Bulletin of the American Meteorological Society – volume: 28 start-page: 473 issue: 6 year: 1976 end-page: 485 article-title: Stochastic climate models Part I. Theory publication-title: Tellus – volume: 109 issue: C4 year: 2004 article-title: Interannual to interdecadal variability of sea surface salinity in the Atlantic and its link to the atmosphere in a coupled model publication-title: Journal of Geophysical Research – volume: 33 start-page: 45 year: 2009 end-page: 62 article-title: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model publication-title: Climate Dynamics – volume: 36 start-page: 55 issue: 1 year: 2023 end-page: 80 article-title: Strong red noise ocean forcing on Atlantic multidecadal variability assessed from surface heat flux: Theory and application publication-title: Journal of Climate – volume: 309 start-page: 115 issue: 5731 year: 2005 end-page: 118 article-title: Atlantic Ocean forcing of North American and European Summer climate publication-title: Science – volume: 57 start-page: 316 issue: 2 year: 2019 end-page: 375 article-title: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts publication-title: Reviews of Geophysics – volume: 3 start-page: 688 issue: 10 year: 2010 end-page: 694 article-title: External forcing as a metronome for Atlantic multidecadal variability publication-title: Nature Geoscience – volume: 7 start-page: 141 issue: 1 year: 1994 end-page: 157 article-title: Interdecadal variations in North Atlantic Sea Surface temperature and associated atmospheric conditions publication-title: Journal of Climate – volume: 21 start-page: 134 issue: 1 year: 2008 end-page: 148 article-title: On the assessment of nonlocal climate feedback. Part I: The generalized Equilibrium feedback assessment publication-title: Journal of Climate – volume: 34 start-page: 4835 issue: 12 year: 2021 end-page: 4849 article-title: Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy publication-title: Journal of Climate – volume: 108 issue: D14 year: 2003 – year: 2008 – volume: 22 start-page: 1469 issue: 6 year: 2009 end-page: 1481 article-title: Forced and internal twentieth‐century SST trends in the North Atlantic publication-title: Journal of Climate – volume: 10 start-page: 1821 issue: 8 year: 1997 end-page: 1835 article-title: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system publication-title: Journal of Climate – volume: 484 start-page: 228 issue: 7393 year: 2012 end-page: 232 article-title: Aerosols implicated as a prime driver of twentieth‐century North Atlantic climate variability publication-title: Nature – volume: 25 start-page: 1963 issue: 6 year: 2012 end-page: 1995 article-title: Dynamics of interdecadal climate variability: A historical perspective publication-title: Journal of Climate – volume: 20 start-page: 555 year: 2003 end-page: 565 article-title: On the interannual variability of surface salinity in the Atlantic publication-title: Climate Dynamics – volume: 20 start-page: 4497 issue: 18 year: 2007 end-page: 4525 article-title: The double‐ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis publication-title: Journal of Climate – volume: 62 start-page: 155 year: 2006 end-page: 170 – volume: 36 start-page: 3833 issue: 11 year: 2023 end-page: 3847 article-title: Subtropical impact on the tropical double‐ITCZ bias in the GFDL CM2.1 model publication-title: Journal of Climate – volume: 45 start-page: 7719 issue: 15 year: 2018 end-page: 7730 article-title: The signature of oceanic processes in decadal extratropical SST anomalies publication-title: Geophysical Research Letters – volume: 27 start-page: 4996 issue: 13 year: 2014 end-page: 5018 article-title: Low‐Frequency SST and upper‐ocean heat content variability in the North Atlantic publication-title: Journal of Climate – volume: 18 start-page: 4582 issue: 21 year: 2005 end-page: 4599 article-title: Estimation of the surface heat flux response to Sea Surface temperature anomalies over the global oceans publication-title: Journal of Climate – volume: 55 start-page: 2127 issue: 9 year: 1998 end-page: 2140 article-title: Comparison of methods to account for autocorrelation in correlation analyses of fish data publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 30 start-page: 7529 issue: 18 year: 2017 end-page: 7553 article-title: Low‐pass filtering, heat flux, and Atlantic multidecadal variability publication-title: Journal of Climate – volume: 16 start-page: 661 issue: 9 year: 2000 end-page: 676 article-title: Observed and simulated multidecadal variability in the Northern Hemisphere publication-title: Climate Dynamics – volume: 21 start-page: 6044 issue: 22 year: 2008 end-page: 6051 article-title: A joint statistical and dynamical assessment of atmospheric response to North Pacific oceanic variability in CCSM3 publication-title: Journal of Climate – volume: 21 start-page: 2001 issue: 10 year: 2008 end-page: 2018 article-title: Beyond thermal interaction between Ocean and atmosphere: On the extratropical climate variability due to the wind‐induced SST publication-title: Journal of Climate – volume: 46 start-page: 3387 issue: 6 year: 2019 end-page: 3397 article-title: Estimates of decadal climate predictability from an interactive ensemble model publication-title: Geophysical Research Letters – volume: 29 start-page: 289 issue: 4 year: 1977 end-page: 305 article-title: Stochastic climate models, Part II Application to sea‐surface temperature anomalies and thermocline variability publication-title: Tellus – volume: 40 start-page: 5497 issue: 20 year: 2013 end-page: 5502 article-title: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability publication-title: Geophysical Research Letters – volume: 27 start-page: 1533 issue: 8 year: 1997 end-page: 1546 article-title: A simple model of the decadal response of the Ocean to stochastic wind forcing publication-title: Journal of Physical Oceanography – volume: 6 start-page: 1993 issue: 11 year: 1993 end-page: 2011 article-title: Interdecadal variations of the thermohaline circulation in a coupled oceanocean‐atmosphere model publication-title: Journal of Climate – volume: 499 start-page: 464 issue: 7459 year: 2013 end-page: 467 article-title: North Atlantic Ocean control on surface heat flux on multidecadal timescales publication-title: Nature – volume: 30 start-page: 6279 issue: 16 year: 2017 end-page: 6295 article-title: Contribution of Atlantic and Pacific multidecadal variability to twentieth‐century temperature changes publication-title: Journal of Climate – volume: 22 start-page: 5251 issue: 19 year: 2009 end-page: 5272 article-title: A U.S. CLIVAR Project to assess and compare the responses of global climate models to drought‐related SST forcing patterns: Overview and results publication-title: Journal of Climate – volume: 35 issue: 8 year: 2008 article-title: North Pacific Gyre Oscillation links ocean climate and ecosystem change publication-title: Geophysical Research Letters – volume: 266 start-page: 634 issue: 5185 year: 1994 end-page: 637 article-title: Causes of decadal climate variability over the North Pacific and North America publication-title: Science, New Series – volume: 27 start-page: 1765 issue: 4 year: 2014 end-page: 1780 article-title: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems publication-title: Journal of Climate – volume: 44 start-page: 7865 issue: 15 year: 2017 end-page: 7875 article-title: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability: Persistence and Coherence of SST and SSS publication-title: Geophysical Research Letters – volume: 14 start-page: 1399 issue: 7 year: 2001 end-page: 1421 article-title: A study of the interaction of the North Atlantic oscillation with ocean circulation publication-title: Journal of Climate – volume: 3 start-page: 163 year: 2017 end-page: 173 article-title: Southern Ocean decadal variability and predictability publication-title: Current Climate Change Reports – volume: 47 start-page: 1775 year: 2016 end-page: 1792 article-title: The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations publication-title: Climate Dynamics – volume: 43 start-page: 2810 issue: 6 year: 2016 end-page: 2818 article-title: The signature of low‐frequency oceanic forcing in the Atlantic Multidecadal Oscillation publication-title: Geophysical Research Letters – volume: 49 issue: 16 year: 2022 article-title: Decadal variability of southern subtropical SST wavenumber‐4 pattern and its impact publication-title: Geophysical Research Letters – volume: 352 issue: 6293 year: 2016 article-title: Comment on “the Atlantic multidecadal oscillation without a role for ocean circulation.” publication-title: Science – volume: 10 start-page: 2147 issue: 9 year: 1997 end-page: 2153 article-title: A method to estimate the statistical significance of a correlation when the data are serially correlated publication-title: Journal of Climate – volume: 10 start-page: 1 year: 1964 end-page: 82 article-title: Atlantic air‐sea interaction publication-title: Advances in Geophysics – volume: 11 start-page: 2310 issue: 9 year: 1998 end-page: 2324 article-title: Air–Sea feedback in the North Atlantic and surface boundary conditions for ocean models publication-title: Journal of Climate – volume: 352 issue: 6293 year: 2016 article-title: Response to comment on “the Atlantic multidecadal oscillation without a role for ocean circulation.” publication-title: Science – volume: 30 start-page: 8207 issue: 20 year: 2017 end-page: 8221 article-title: Scale dependence of midlatitude air–sea interaction publication-title: Journal of Climate – volume: 10 start-page: 1004 issue: 5 year: 1997 end-page: 1020 article-title: ENSO‐Like interdecadal variability: 1900–93 publication-title: Journal of Climate – ident: e_1_2_13_24_1 doi: 10.1007/s10872‐006‐0041‐y – ident: e_1_2_13_36_1 doi: 10.1175/JCLI‐D‐22‐0063.1 – ident: e_1_2_13_54_1 doi: 10.1029/2022GL099046 – ident: e_1_2_13_53_1 doi: 10.1175/2009JCLI3060.1 – ident: e_1_2_13_7_1 doi: 10.1175/JCLI‐D‐16‐0810.1 – ident: e_1_2_13_44_1 doi: 10.1175/JCLI‐D‐20‐0167.1 – ident: e_1_2_13_67_1 doi: 10.1029/2018GL081307 – ident: e_1_2_13_66_1 doi: 10.1029/2019RG000644 – ident: e_1_2_13_12_1 doi: 10.1175/1520‐0442(2004)017<3109:PICVLB>2.0.CO;2 – ident: e_1_2_13_29_1 doi: 10.1007/s40641‐017‐0068‐8 – ident: e_1_2_13_58_1 doi: 10.1175/2008JCLI2561.1 – ident: e_1_2_13_26_1 doi: 10.1175/1520‐0442(1994)007<0141:IVINAS>2.0.CO;2 – ident: e_1_2_13_23_1 doi: 10.1038/s41586‐023‐06489‐4 – ident: e_1_2_13_38_1 doi: 10.1126/science.abc5810 – ident: e_1_2_13_49_1 doi: 10.1175/JCLI3521.1 – ident: e_1_2_13_10_1 doi: 10.1175/1520‐0442(1993)006<1993:IVOTTC>2.0.CO;2 – ident: e_1_2_13_8_1 doi: 10.1126/science.aab3980 – ident: e_1_2_13_2_1 doi: 10.1007/s00382‐017‐3834‐3 – ident: e_1_2_13_14_1 doi: 10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2 – ident: e_1_2_13_56_1 doi: 10.1175/JCLI‐D‐16‐0803.1 – ident: e_1_2_13_39_1 doi: 10.1175/1520‐0477(1997)078<1069:APICOW>2.0.CO;2 – ident: e_1_2_13_13_1 doi: 10.1029/2007GL032838 – ident: e_1_2_13_59_1 doi: 10.1007/s00382‐015‐2932‐3 – ident: e_1_2_13_15_1 doi: 10.1175/1520‐0442(1998)011<2310:ASFITN>2.0.CO;2 – ident: e_1_2_13_35_1 doi: 10.1175/2011JCLI3980.1 – ident: e_1_2_13_33_1 doi: 10.1175/JCLI4272.1 – ident: e_1_2_13_18_1 doi: 10.1175/1520‐0485(1997)027<1533:ASMOTD>2.0.CO;2 – ident: e_1_2_13_47_1 doi: 10.1029/2018GL079077 – ident: e_1_2_13_9_1 doi: 10.1126/science.aaf2575 – ident: e_1_2_13_25_1 doi: 10.1175/1520‐0442(1997)010<1821:ATOICV>2.0.CO;2 – ident: e_1_2_13_63_1 doi: 10.1002/2017GL074342 – ident: e_1_2_13_22_1 doi: 10.1111/j.2153‐3490.1976.tb00696.x – ident: e_1_2_13_68_1 doi: 10.1175/1520‐0442(1997)010<1004:ELIV>2.0.CO;2 – ident: e_1_2_13_45_1 doi: 10.1175/JCLI‐D‐15‐0508.1 – ident: e_1_2_13_16_1 doi: 10.1111/j.2153‐3490.1977.tb00740.x – ident: e_1_2_13_5_1 doi: 10.1038/nature10946 – ident: e_1_2_13_30_1 doi: 10.1175/2007JCLI1532.1 – ident: e_1_2_13_21_1 doi: 10.1007/s003820050158 – ident: e_1_2_13_51_1 doi: 10.1139/f98‐104 – ident: e_1_2_13_32_1 doi: 10.1002/2013GL057877 – ident: e_1_2_13_20_1 doi: 10.1038/nature12268 – ident: e_1_2_13_4_1 doi: 10.1016/S0065‐2687(08)60005‐9 – ident: e_1_2_13_17_1 doi: 10.1007/s00382‐002‐0253‐9 – ident: e_1_2_13_6_1 doi: 10.1175/JCLI‐D‐13‐00316.1 – ident: e_1_2_13_55_1 doi: 10.1175/JCLI‐D‐20‐0505.1 – ident: e_1_2_13_64_1 doi: 10.1029/2006GL026267 – ident: e_1_2_13_61_1 – ident: e_1_2_13_34_1 doi: 10.1175/JCLI‐D‐22‐0432.1 – ident: e_1_2_13_28_1 doi: 10.1126/science.266.5185.634 – ident: e_1_2_13_57_1 doi: 10.1126/science.1109496 – volume: 46 start-page: X year: 1989 ident: e_1_2_13_50_1 article-title: El Niño, La Niña, and the southern oscillation publication-title: International Geophysics Series – ident: e_1_2_13_27_1 doi: 10.1175/1520‐0485(1981)011<0324:OOMFMI>2.0.CO;2 – ident: e_1_2_13_41_1 doi: 10.1007/s00382‐002‐0294‐0 – ident: e_1_2_13_48_1 doi: 10.1038/ngeo955 – ident: e_1_2_13_43_1 doi: 10.1007/s00382‐008‐0452‐0 – ident: e_1_2_13_69_1 doi: 10.1175/2008JCLI2195.1 – ident: e_1_2_13_42_1 doi: 10.1029/2003JC002005 – ident: e_1_2_13_3_1 doi: 10.1175/JCLI‐D‐17‐0159.1 – ident: e_1_2_13_37_1 doi: 10.1175/2007JCLI1826.1 – ident: e_1_2_13_31_1 doi: 10.1175/JCLI‐D‐13‐00337.1 – ident: e_1_2_13_46_1 doi: 10.1002/2016GL067925 – ident: e_1_2_13_52_1 doi: 10.1029/2002JD002670 – ident: e_1_2_13_19_1 doi: 10.1126/science.1060040 – ident: e_1_2_13_62_1 doi: 10.1175/JCLI‐D‐16‐0537.1 – ident: e_1_2_13_11_1 doi: 10.1007/s003820000075 – ident: e_1_2_13_65_1 doi: 10.1126/science.aaf1660 – ident: e_1_2_13_40_1 doi: 10.1175/1520‐0442(2001)014<1399:ASOTIO>2.0.CO;2 – ident: e_1_2_13_60_1 doi: 10.1002/2015GL065364 |
| SSID | ssj0003031 |
| Score | 2.46952 |
| Snippet | Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms... Abstract Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Atlantic multidecadal variability atmosphere‐ocean interaction Atmospheric forcing Atmospheric models Atmospheric variability Climate Climate models Climate variability decadal variability Drought Global climate Heat flux Heat transfer Heat waves Heatwaves Hurricanes Latitude Ocean basins Ocean circulation Ocean currents Oceans Pacific decadal variability Regional climates Sea surface Sea surface temperature Surface temperature Temperature variability Variability Water circulation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCl7EJ9YXOehJFnezaZMcfbUeiopV8bbkMRFBttJWwX_vJNlKPagXb8syDMPMJDOzO3wfIQfCMceBqaxkCgeUkvNMu7KTCd7WTEoruY-Q-X1xdSUfH9XNDNVX2AlL8MDJccdacu7aUrtO6bgwhQHZKXxoNLwrHEScz1yo6TDV3MF4MSeuPMUzyUSnWXnPmQrTftnrhz3EhghmWowiZv-3RnO2XY31prtClptGkZ4kA1fJHNRrZLEXiXg_8CmubtrxOhkMwtfsJ3ptQdfPlnaHI4v1iA5reg5WO1QyeBt5bYHeATbJCUSZPuCQnDC6P-g15jNN6P9JzQa5717cnV1mDVVCZnmRy8zkyglbGG2xHGtmfDv3RisDRe5BM3S_Ala6gM4lvFToEvC5yp3HrlVxrspNMl8Pa9giVDJoAxguncLIeauLQJILRmhuBNe8RY6mPqtsgyMe6Cxeqvg_m6lq1sMtcvgl_ZrwM36QOw3u_5IJqNfxBeZC1eRC9VcutMjuNHhVcxTHVRkRdCSOamh5DOivhlS9235gQpXb_2HRDllC5XHVh8ldMj8ZvcEeWbDvk-fxaD_m7Cdom-me priority: 102 providerName: Directory of Open Access Journals |
| Title | Strong Oceanic Forcing on Decadal Surface Temperature Variability Over Global Ocean |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107401 https://www.proquest.com/docview/3045198096 https://doaj.org/article/a844d58ad63d47b1be861f0540fd1de3 |
| Volume | 51 |
| WOSCitedRecordID | wos001201868000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1944-8007 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1944-8007 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: PCBAR dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1944-8007 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1944-8007 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: PATMY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1944-8007 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Research Library customDbUrl: eissn: 1944-8007 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M2O dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1944-8007 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYlaaGX9E2dpkaH9lSW7kpaSzo2TeweXHuxkxJ6WfQYhUBZh3USyL_vSLsxzqGFkItYiZEQ0oxmNDv6hpBP0jMvgOmMM40XFC5EZjwfZVKUhinllAgJMn8qZzN1dqar3uEW38J0-BAbh1uUjHReRwE3dt2DDUSMzJj3ezKN8YTx-dZuUXAZuZqJanMS4_HcZczTIlNMjvrAd-z_dbv3PZWUkPvvmZvbRmvSOuMXj53vS7LX25v0W8cgr8gTaF6TZ5OUz_cWv1IEqFu_IctldIqf07kD01w4Ol61DtUaXTX0CJzxOMjyug3GAT0BtLU7LGb6C-_aHdT3LZ2jWNAuiUA3zFtyOj4--f4j6zMuZE4Uucpsrr10hTUOtbphNpR5sEZbKPIAhuEuamDcR5AvGZTGNYWQ69wHNH61EJq_IzvNqoH3hCoGJYAVymtkgOBMEXPtgpVGWCmMGJAvd4teux6OPGbF-FOn3-JM19sLNiCfN9SXHQzHP-gO4_5taCJ4dmpYted1L4u1UUL4Uhk_4l5IW1hQoyJE2zX4wgMfkIO73a97iV7XPAHxKLzx4czTPv93IvVkMY0JVdX-g6g_kOfYnkKDmDogO1ftNXwkT93N1cW6HSbuHpLdw-NZtRgm9wHWjhbj0ynWfrJ5KqtYyiWWVfn7L2Ed_L4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdQB4IL34jCAB_ghCISx6ntIzDaIUKH1g7tZvnjeZqE0indJu2_59nxqu4AEuIWRS-W5fdp5_n3I-St8MxzYKqomcINSs15YXw9KQRvDJPSSR4SZH4r5nN5fKx-ZJ7TeBdmwIfYHLhFz0jxOjp4PJDOaAMRJDMSf8_a2FAY72_tcLSkZkR29g6nR-0mGGOEHkjzFC8kE5Pc-44jfNj-_kZWSuD9NyrO7bo1JZ7pg_-e8kNyP9ec9ONgJI_ILegekzuzxOl7hU-pC9Stn5DFIh6Mn9ADB6Y7dXS66h2mNrrq6B4443GQxUUfjAO6BKy3Bzxm-hP32wPc9xU9QNegA5HAMMxTcjT9svy8X2TWhcLxqpSFLZUXrrLGYWY3zIamDNYoC1UZwDDUpAJW-wj0JYJUuKgQSlX6gAWw4lzVz8ioW3XwnFDJoAGwXHqFRhCcqSLfLlhhuBXc8DF5f73q2mVI8siM8UunX-NM6e0FG5N3G-mzAYrjD3KfogI3MhFAO71Y9Sc6-6M2knPfSOMntefCVhbkpAqxfg2-8lCPye61-nX26rWuExiPxF0fzjwp-q8T0bPDNpKqyhf_JP2G3N1ffm91-3X-7SW5hzKpVYjJXTI67y_gFbntLs9P1_3rbOy_AeEN-jU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQeagX3hWBAj7ACa3Y9c7G9hEoCYgojUhBvVl-jKtKaFNt2kr994y92yg9gIS4rVZjy_J4HrbH38fYGxlEABS6qIWmDUoNUNhQjwsJjRVKeQUxQ-bP5Hyujo_1YuA5TW9henyIzYFbsozsr5OB41mIA9pAAslMxN_TWSooTO-3bkNDbjZBO8Ni44rJP_eUeRoKJeR4qHyn9u-3W9-ISRm6_0a-uZ215rAzefDfA37I7g8ZJ__QL5FH7Ba2j9ndaWb0vaKvXAPq10_YcpmOxU_4oUfbnno-WXWeAhtftfwAvQ3UyfKii9YjP0LKtns0Zv6Tdts92PcVPyTD4D2NQN_NU_Zj8vno05di4FwoPFSlKlypg_SVs57iuhUuNmV0VjusyohWkB41ijokmC8ZlaZJxVjqMkRKfzWArvfYTrtq8RnjSmCD6EAFTUsgelsltl100oKTYGHE3l3PuvEDIHnixfhl8sW40GZ7wkbs7Ub6rAfi-IPcx6TAjUyCz84_Vt2JGazRWAUQGmXDuA4gXeVQjauYstcYqoD1iO1fq98MNr02dYbiUbTno5FnRf91IGb6fZYoVdXzf5J-ze4tDiZm9nX-7QXbJZFcJyTUPts57y7wJbvjL89P192rvNJ_A-5O-B4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Oceanic+Forcing+on+Decadal+Surface+Temperature+Variability+Over+Global+Ocean&rft.jtitle=Geophysical+research+letters&rft.au=Gu%2C+Peng&rft.au=Liu%2C+Zhengyu&rft.au=Delworth%2C+Thomas+L.&rft.date=2024-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=8&rft_id=info:doi/10.1029%2F2023GL107401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL107401 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |