Strong Oceanic Forcing on Decadal Surface Temperature Variability Over Global Ocean

Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability i...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 51; no. 8
Main Authors: Gu, Peng, Liu, Zhengyu, Delworth, Thomas L.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 28.04.2024
Wiley
Subjects:
ISSN:0094-8276, 1944-8007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins. Plain Language Summary Decadal variabilities in SST create large climate responses, ranging from heat waves to droughts to enhanced hurricanes. However, there has been considerable uncertainty over whether decadal SST variations are driven primarily by atmospheric forcing or ocean forcing related to ocean circulation. Using a newly developed theoretical framework, we provide the first quantitative estimation of decadal oceanic forcing across the global ocean in observations and state‐of‐the‐art climate model. Our estimation shows that decadal ocean forcing is stronger than the atmospheric forcing by about 2–3 times in the mid‐ and high latitude, but comparable or even weaker than atmospheric forcing in the subtropics. Key Points In the mid‐ and high latitude, decadal oceanic forcing is stronger than atmospheric forcing by about 2–3 times across world ocean basins In the subtropics, decadal oceanic forcing is comparable to or even weaker than atmospheric forcing Decadal oceanic forcing is likely contributed predominantly by the wind‐driven oceanic circulation
AbstractList Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins. Plain Language Summary Decadal variabilities in SST create large climate responses, ranging from heat waves to droughts to enhanced hurricanes. However, there has been considerable uncertainty over whether decadal SST variations are driven primarily by atmospheric forcing or ocean forcing related to ocean circulation. Using a newly developed theoretical framework, we provide the first quantitative estimation of decadal oceanic forcing across the global ocean in observations and state‐of‐the‐art climate model. Our estimation shows that decadal ocean forcing is stronger than the atmospheric forcing by about 2–3 times in the mid‐ and high latitude, but comparable or even weaker than atmospheric forcing in the subtropics. Key Points In the mid‐ and high latitude, decadal oceanic forcing is stronger than atmospheric forcing by about 2–3 times across world ocean basins In the subtropics, decadal oceanic forcing is comparable to or even weaker than atmospheric forcing Decadal oceanic forcing is likely contributed predominantly by the wind‐driven oceanic circulation
Abstract Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins.
Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins.
Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms that drive decadal SST variability, however, remain highly uncertain. Many previous studies have examined the role of atmospheric variability in driving decadal SST variations. Here we assess the strength of oceanic forcing in driving decadal SST variability in observations and state‐of‐the‐art climate models by analyzing the relationship between surface heat flux and SST. We find a largely similar pattern of decadal oceanic forcing across all ocean basins, characterized by oceanic forcing about twice the strength of the atmospheric forcing in the mid‐ and high latitude regions, but comparable or weaker than the atmospheric forcing in the subtropics. The decadal oceanic forcing is hypothesized to be associated with the wind‐driven oceanic circulation, which is common across all ocean basins. Decadal variabilities in SST create large climate responses, ranging from heat waves to droughts to enhanced hurricanes. However, there has been considerable uncertainty over whether decadal SST variations are driven primarily by atmospheric forcing or ocean forcing related to ocean circulation. Using a newly developed theoretical framework, we provide the first quantitative estimation of decadal oceanic forcing across the global ocean in observations and state‐of‐the‐art climate model. Our estimation shows that decadal ocean forcing is stronger than the atmospheric forcing by about 2–3 times in the mid‐ and high latitude, but comparable or even weaker than atmospheric forcing in the subtropics. In the mid‐ and high latitude, decadal oceanic forcing is stronger than atmospheric forcing by about 2–3 times across world ocean basins In the subtropics, decadal oceanic forcing is comparable to or even weaker than atmospheric forcing Decadal oceanic forcing is likely contributed predominantly by the wind‐driven oceanic circulation
Author Gu, Peng
Delworth, Thomas L.
Liu, Zhengyu
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0009-0008-5301-6037
  surname: Gu
  fullname: Gu, Peng
  email: gu.911@osu.edu
  organization: The Ohio State University
– sequence: 2
  givenname: Zhengyu
  orcidid: 0000-0003-4554-2666
  surname: Liu
  fullname: Liu, Zhengyu
  email: liu.7022@osu.edu
  organization: The Ohio State University
– sequence: 3
  givenname: Thomas L.
  orcidid: 0000-0003-4865-5391
  surname: Delworth
  fullname: Delworth, Thomas L.
  organization: Geophysical Fluid Dynamics Laboratory/NOAA
BookMark eNqFkU1vEzEQhi1UJNLCjR-wElcC44_dtY-o0FApUqSm7dUa2-PK0XYdvBtQ_j1ugxDiAKf50DPvO6M5Z2djHomxtxw-cBDmowAhV2sOvQL-gi24UWqpAfoztgAwNRd994qdT9MOACRIvmDb7Vzy-NBsPOGYfHOVi0-1zmPzmTwGHJrtoUT01NzS454KzodCzT2WhC4NaT42m-9UmtWQXWWfZV6zlxGHid78ihfs7urL7eXX5Xqzur78tF56xUEvHZjQe-7Qt4KjcLGF6NA44hAJBQZpSMgAXPM-alOXpwgGQtTc1cuMvGDXJ92QcWf3JT1iOdqMyT43cnmwWObkB7KolQqtxtDJoHrHHemOR2gVxMADyar17qS1L_nbgabZ7vKhjHV9K0G13GgwXaXenyhf8jQVir9dOdinF9g_X1Bx8Rfu04xzyuNcMA3_GfqRBjr-08CubtZdL7WWPwEq4JgI
CitedBy_id crossref_primary_10_1007_s40808_025_02478_w
crossref_primary_10_1029_2024GL108552
crossref_primary_10_1029_2024GL110333
Cites_doi 10.1007/s10872‐006‐0041‐y
10.1175/JCLI‐D‐22‐0063.1
10.1029/2022GL099046
10.1175/2009JCLI3060.1
10.1175/JCLI‐D‐16‐0810.1
10.1175/JCLI‐D‐20‐0167.1
10.1029/2018GL081307
10.1029/2019RG000644
10.1175/1520‐0442(2004)017<3109:PICVLB>2.0.CO;2
10.1007/s40641‐017‐0068‐8
10.1175/2008JCLI2561.1
10.1175/1520‐0442(1994)007<0141:IVINAS>2.0.CO;2
10.1038/s41586‐023‐06489‐4
10.1126/science.abc5810
10.1175/JCLI3521.1
10.1175/1520‐0442(1993)006<1993:IVOTTC>2.0.CO;2
10.1126/science.aab3980
10.1007/s00382‐017‐3834‐3
10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2
10.1175/JCLI‐D‐16‐0803.1
10.1175/1520‐0477(1997)078<1069:APICOW>2.0.CO;2
10.1029/2007GL032838
10.1007/s00382‐015‐2932‐3
10.1175/1520‐0442(1998)011<2310:ASFITN>2.0.CO;2
10.1175/2011JCLI3980.1
10.1175/JCLI4272.1
10.1175/1520‐0485(1997)027<1533:ASMOTD>2.0.CO;2
10.1029/2018GL079077
10.1126/science.aaf2575
10.1175/1520‐0442(1997)010<1821:ATOICV>2.0.CO;2
10.1002/2017GL074342
10.1111/j.2153‐3490.1976.tb00696.x
10.1175/1520‐0442(1997)010<1004:ELIV>2.0.CO;2
10.1175/JCLI‐D‐15‐0508.1
10.1111/j.2153‐3490.1977.tb00740.x
10.1038/nature10946
10.1175/2007JCLI1532.1
10.1007/s003820050158
10.1139/f98‐104
10.1002/2013GL057877
10.1038/nature12268
10.1016/S0065‐2687(08)60005‐9
10.1007/s00382‐002‐0253‐9
10.1175/JCLI‐D‐13‐00316.1
10.1175/JCLI‐D‐20‐0505.1
10.1029/2006GL026267
10.1175/JCLI‐D‐22‐0432.1
10.1126/science.266.5185.634
10.1126/science.1109496
10.1175/1520‐0485(1981)011<0324:OOMFMI>2.0.CO;2
10.1007/s00382‐002‐0294‐0
10.1038/ngeo955
10.1007/s00382‐008‐0452‐0
10.1175/2008JCLI2195.1
10.1029/2003JC002005
10.1175/JCLI‐D‐17‐0159.1
10.1175/2007JCLI1826.1
10.1175/JCLI‐D‐13‐00337.1
10.1002/2016GL067925
10.1029/2002JD002670
10.1126/science.1060040
10.1175/JCLI‐D‐16‐0537.1
10.1007/s003820000075
10.1126/science.aaf1660
10.1175/1520‐0442(2001)014<1399:ASOTIO>2.0.CO;2
10.1002/2015GL065364
ContentType Journal Article
Copyright 2024. The Authors.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2023GL107401
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList

Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a844d58ad63d47b1be861f0540fd1de3
10_1029_2023GL107401
GRL67388
Genre article
GrantInformation_xml – fundername: National Oceanic and Atmospheric Administration
  funderid: NA20OAR4310403
– fundername: National Science Foundation
  funderid: AGS2321042
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
AFFHD
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c4108-b09d7c1bac521a2bf50fba9be10fea2ad39e23d01817f89827ef090df81b94493
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001201868000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Tue Oct 14 19:05:00 EDT 2025
Fri Jul 25 10:34:26 EDT 2025
Tue Nov 18 20:51:13 EST 2025
Sat Nov 29 02:17:46 EST 2025
Wed Aug 20 07:24:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-b09d7c1bac521a2bf50fba9be10fea2ad39e23d01817f89827ef090df81b94493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4865-5391
0009-0008-5301-6037
0000-0003-4554-2666
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107401
PQID 3045198096
PQPubID 54723
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_a844d58ad63d47b1be861f0540fd1de3
proquest_journals_3045198096
crossref_primary_10_1029_2023GL107401
crossref_citationtrail_10_1029_2023GL107401
wiley_primary_10_1029_2023GL107401_GRL67388
PublicationCentury 2000
PublicationDate 28 April 2024
PublicationDateYYYYMMDD 2024-04-28
PublicationDate_xml – month: 04
  year: 2024
  text: 28 April 2024
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2012; 484
2023; 36
2017; 3
2002; 19
2006; 33
2017; 44
2019; 57
1977; 29
2014; 27
2023; 622
2008; 35
2018; 45
1976; 28
1989; 46
1993; 6
1994; 266
2017; 30
2001; 293
2000; 16
2021; 34
2006; 62
1997; 10
2015; 42
1997; 13
2016; 43
2016; 352
2008; 21
2005; 309
2007; 20
2012; 25
2010; 3
2001; 14
2016; 47
1998; 11
1998; 55
2009; 22
2013; 40
2008
1997; 27
2004; 109
2022; 49
2015; 350
2009; 33
2003; 108
2004; 17
2019; 46
1997; 78
1964; 10
2013; 499
2021; 371
2018; 50
2016; 29
2005; 18
2003; 20
1994; 7
1981; 11
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_68_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_66_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_64_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_62_1
e_1_2_13_60_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_7_1
e_1_2_13_61_1
Philander S. G. (e_1_2_13_50_1) 1989; 46
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_5_1
e_1_2_13_3_1
e_1_2_13_28_1
References_xml – volume: 293
  start-page: 474
  issue: 5529
  year: 2001
  end-page: 479
  article-title: The recent increase in Atlantic hurricane activity: Causes and implications
  publication-title: Science
– volume: 17
  start-page: 3109
  issue: 16
  year: 2004
  end-page: 3124
  article-title: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during Boreal Winter since 1900
  publication-title: Journal of Climate
– volume: 29
  start-page: 4399
  issue: 12
  year: 2016
  end-page: 4427
  article-title: The Pacific decadal oscillation, revisited
  publication-title: Journal of Climate
– volume: 13
  start-page: 167
  year: 1997
  end-page: 180
  article-title: Can local linear stochastic theory explain sea surface temperature and salinity variability?
  publication-title: Climate Dynamics
– volume: 19
  start-page: 649
  year: 2002
  end-page: 655
  article-title: The surface heat flux feedback. Part II: Direct and indirect estimates in the ECHAM4/OPA8 coupled GCM
  publication-title: Climate Dynamics
– volume: 350
  start-page: 320
  issue: 6258
  year: 2015
  end-page: 324
  article-title: The Atlantic Multidecadal Oscillation without a role for ocean circulation
  publication-title: Science
– volume: 30
  start-page: 6309
  issue: 16
  year: 2017
  end-page: 6328
  article-title: Diagnosis of decadal predictability of Southern Ocean Sea Surface temperature in the GFDL CM2.1 model
  publication-title: Journal of Climate
– volume: 33
  issue: 17
  year: 2006
  article-title: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes
  publication-title: Geophysical Research Letters
– volume: 34
  start-page: 1417
  issue: 4
  year: 2021
  end-page: 1438
– volume: 46
  start-page: X
  year: 1989
  end-page: 289
  article-title: El Niño, La Niña, and the southern oscillation
  publication-title: International Geophysics Series
– volume: 50
  start-page: 3687
  year: 2018
  end-page: 3698
  article-title: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble
  publication-title: Climate Dynamics
– volume: 622
  start-page: 521
  issue: 7983
  year: 2023
  end-page: 527
  article-title: Tropical Atlantic multidecadal variability is dominated by external forcing
  publication-title: Nature
– volume: 11
  start-page: 324
  issue: 3
  year: 1981
  end-page: 336
  article-title: Open Ocean momentum flux measurements in moderate to strong winds
  publication-title: Journal of Physical Oceanography
– volume: 371
  start-page: 1014
  issue: 6533
  year: 2021
  end-page: 1019
  article-title: Multidecadal climate oscillations during the past millennium driven by volcanic forcing
  publication-title: Science
– volume: 42
  issue: 24
  year: 2015
  article-title: Predicted slowdown in the rate of Atlantic sea ice loss
  publication-title: Geophysical Research Letters
– volume: 78
  start-page: 1069
  issue: 6
  year: 1997
  end-page: 1080
  article-title: A Pacific interdecadal climate oscillation with impacts on Salmon production
  publication-title: Bulletin of the American Meteorological Society
– volume: 28
  start-page: 473
  issue: 6
  year: 1976
  end-page: 485
  article-title: Stochastic climate models Part I. Theory
  publication-title: Tellus
– volume: 109
  issue: C4
  year: 2004
  article-title: Interannual to interdecadal variability of sea surface salinity in the Atlantic and its link to the atmosphere in a coupled model
  publication-title: Journal of Geophysical Research
– volume: 33
  start-page: 45
  year: 2009
  end-page: 62
  article-title: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model
  publication-title: Climate Dynamics
– volume: 36
  start-page: 55
  issue: 1
  year: 2023
  end-page: 80
  article-title: Strong red noise ocean forcing on Atlantic multidecadal variability assessed from surface heat flux: Theory and application
  publication-title: Journal of Climate
– volume: 309
  start-page: 115
  issue: 5731
  year: 2005
  end-page: 118
  article-title: Atlantic Ocean forcing of North American and European Summer climate
  publication-title: Science
– volume: 57
  start-page: 316
  issue: 2
  year: 2019
  end-page: 375
  article-title: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts
  publication-title: Reviews of Geophysics
– volume: 3
  start-page: 688
  issue: 10
  year: 2010
  end-page: 694
  article-title: External forcing as a metronome for Atlantic multidecadal variability
  publication-title: Nature Geoscience
– volume: 7
  start-page: 141
  issue: 1
  year: 1994
  end-page: 157
  article-title: Interdecadal variations in North Atlantic Sea Surface temperature and associated atmospheric conditions
  publication-title: Journal of Climate
– volume: 21
  start-page: 134
  issue: 1
  year: 2008
  end-page: 148
  article-title: On the assessment of nonlocal climate feedback. Part I: The generalized Equilibrium feedback assessment
  publication-title: Journal of Climate
– volume: 34
  start-page: 4835
  issue: 12
  year: 2021
  end-page: 4849
  article-title: Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy
  publication-title: Journal of Climate
– volume: 108
  issue: D14
  year: 2003
– year: 2008
– volume: 22
  start-page: 1469
  issue: 6
  year: 2009
  end-page: 1481
  article-title: Forced and internal twentieth‐century SST trends in the North Atlantic
  publication-title: Journal of Climate
– volume: 10
  start-page: 1821
  issue: 8
  year: 1997
  end-page: 1835
  article-title: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system
  publication-title: Journal of Climate
– volume: 484
  start-page: 228
  issue: 7393
  year: 2012
  end-page: 232
  article-title: Aerosols implicated as a prime driver of twentieth‐century North Atlantic climate variability
  publication-title: Nature
– volume: 25
  start-page: 1963
  issue: 6
  year: 2012
  end-page: 1995
  article-title: Dynamics of interdecadal climate variability: A historical perspective
  publication-title: Journal of Climate
– volume: 20
  start-page: 555
  year: 2003
  end-page: 565
  article-title: On the interannual variability of surface salinity in the Atlantic
  publication-title: Climate Dynamics
– volume: 20
  start-page: 4497
  issue: 18
  year: 2007
  end-page: 4525
  article-title: The double‐ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis
  publication-title: Journal of Climate
– volume: 62
  start-page: 155
  year: 2006
  end-page: 170
– volume: 36
  start-page: 3833
  issue: 11
  year: 2023
  end-page: 3847
  article-title: Subtropical impact on the tropical double‐ITCZ bias in the GFDL CM2.1 model
  publication-title: Journal of Climate
– volume: 45
  start-page: 7719
  issue: 15
  year: 2018
  end-page: 7730
  article-title: The signature of oceanic processes in decadal extratropical SST anomalies
  publication-title: Geophysical Research Letters
– volume: 27
  start-page: 4996
  issue: 13
  year: 2014
  end-page: 5018
  article-title: Low‐Frequency SST and upper‐ocean heat content variability in the North Atlantic
  publication-title: Journal of Climate
– volume: 18
  start-page: 4582
  issue: 21
  year: 2005
  end-page: 4599
  article-title: Estimation of the surface heat flux response to Sea Surface temperature anomalies over the global oceans
  publication-title: Journal of Climate
– volume: 55
  start-page: 2127
  issue: 9
  year: 1998
  end-page: 2140
  article-title: Comparison of methods to account for autocorrelation in correlation analyses of fish data
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 30
  start-page: 7529
  issue: 18
  year: 2017
  end-page: 7553
  article-title: Low‐pass filtering, heat flux, and Atlantic multidecadal variability
  publication-title: Journal of Climate
– volume: 16
  start-page: 661
  issue: 9
  year: 2000
  end-page: 676
  article-title: Observed and simulated multidecadal variability in the Northern Hemisphere
  publication-title: Climate Dynamics
– volume: 21
  start-page: 6044
  issue: 22
  year: 2008
  end-page: 6051
  article-title: A joint statistical and dynamical assessment of atmospheric response to North Pacific oceanic variability in CCSM3
  publication-title: Journal of Climate
– volume: 21
  start-page: 2001
  issue: 10
  year: 2008
  end-page: 2018
  article-title: Beyond thermal interaction between Ocean and atmosphere: On the extratropical climate variability due to the wind‐induced SST
  publication-title: Journal of Climate
– volume: 46
  start-page: 3387
  issue: 6
  year: 2019
  end-page: 3397
  article-title: Estimates of decadal climate predictability from an interactive ensemble model
  publication-title: Geophysical Research Letters
– volume: 29
  start-page: 289
  issue: 4
  year: 1977
  end-page: 305
  article-title: Stochastic climate models, Part II Application to sea‐surface temperature anomalies and thermocline variability
  publication-title: Tellus
– volume: 40
  start-page: 5497
  issue: 20
  year: 2013
  end-page: 5502
  article-title: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability
  publication-title: Geophysical Research Letters
– volume: 27
  start-page: 1533
  issue: 8
  year: 1997
  end-page: 1546
  article-title: A simple model of the decadal response of the Ocean to stochastic wind forcing
  publication-title: Journal of Physical Oceanography
– volume: 6
  start-page: 1993
  issue: 11
  year: 1993
  end-page: 2011
  article-title: Interdecadal variations of the thermohaline circulation in a coupled oceanocean‐atmosphere model
  publication-title: Journal of Climate
– volume: 499
  start-page: 464
  issue: 7459
  year: 2013
  end-page: 467
  article-title: North Atlantic Ocean control on surface heat flux on multidecadal timescales
  publication-title: Nature
– volume: 30
  start-page: 6279
  issue: 16
  year: 2017
  end-page: 6295
  article-title: Contribution of Atlantic and Pacific multidecadal variability to twentieth‐century temperature changes
  publication-title: Journal of Climate
– volume: 22
  start-page: 5251
  issue: 19
  year: 2009
  end-page: 5272
  article-title: A U.S. CLIVAR Project to assess and compare the responses of global climate models to drought‐related SST forcing patterns: Overview and results
  publication-title: Journal of Climate
– volume: 35
  issue: 8
  year: 2008
  article-title: North Pacific Gyre Oscillation links ocean climate and ecosystem change
  publication-title: Geophysical Research Letters
– volume: 266
  start-page: 634
  issue: 5185
  year: 1994
  end-page: 637
  article-title: Causes of decadal climate variability over the North Pacific and North America
  publication-title: Science, New Series
– volume: 27
  start-page: 1765
  issue: 4
  year: 2014
  end-page: 1780
  article-title: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems
  publication-title: Journal of Climate
– volume: 44
  start-page: 7865
  issue: 15
  year: 2017
  end-page: 7875
  article-title: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability: Persistence and Coherence of SST and SSS
  publication-title: Geophysical Research Letters
– volume: 14
  start-page: 1399
  issue: 7
  year: 2001
  end-page: 1421
  article-title: A study of the interaction of the North Atlantic oscillation with ocean circulation
  publication-title: Journal of Climate
– volume: 3
  start-page: 163
  year: 2017
  end-page: 173
  article-title: Southern Ocean decadal variability and predictability
  publication-title: Current Climate Change Reports
– volume: 47
  start-page: 1775
  year: 2016
  end-page: 1792
  article-title: The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations
  publication-title: Climate Dynamics
– volume: 43
  start-page: 2810
  issue: 6
  year: 2016
  end-page: 2818
  article-title: The signature of low‐frequency oceanic forcing in the Atlantic Multidecadal Oscillation
  publication-title: Geophysical Research Letters
– volume: 49
  issue: 16
  year: 2022
  article-title: Decadal variability of southern subtropical SST wavenumber‐4 pattern and its impact
  publication-title: Geophysical Research Letters
– volume: 352
  issue: 6293
  year: 2016
  article-title: Comment on “the Atlantic multidecadal oscillation without a role for ocean circulation.”
  publication-title: Science
– volume: 10
  start-page: 2147
  issue: 9
  year: 1997
  end-page: 2153
  article-title: A method to estimate the statistical significance of a correlation when the data are serially correlated
  publication-title: Journal of Climate
– volume: 10
  start-page: 1
  year: 1964
  end-page: 82
  article-title: Atlantic air‐sea interaction
  publication-title: Advances in Geophysics
– volume: 11
  start-page: 2310
  issue: 9
  year: 1998
  end-page: 2324
  article-title: Air–Sea feedback in the North Atlantic and surface boundary conditions for ocean models
  publication-title: Journal of Climate
– volume: 352
  issue: 6293
  year: 2016
  article-title: Response to comment on “the Atlantic multidecadal oscillation without a role for ocean circulation.”
  publication-title: Science
– volume: 30
  start-page: 8207
  issue: 20
  year: 2017
  end-page: 8221
  article-title: Scale dependence of midlatitude air–sea interaction
  publication-title: Journal of Climate
– volume: 10
  start-page: 1004
  issue: 5
  year: 1997
  end-page: 1020
  article-title: ENSO‐Like interdecadal variability: 1900–93
  publication-title: Journal of Climate
– ident: e_1_2_13_24_1
  doi: 10.1007/s10872‐006‐0041‐y
– ident: e_1_2_13_36_1
  doi: 10.1175/JCLI‐D‐22‐0063.1
– ident: e_1_2_13_54_1
  doi: 10.1029/2022GL099046
– ident: e_1_2_13_53_1
  doi: 10.1175/2009JCLI3060.1
– ident: e_1_2_13_7_1
  doi: 10.1175/JCLI‐D‐16‐0810.1
– ident: e_1_2_13_44_1
  doi: 10.1175/JCLI‐D‐20‐0167.1
– ident: e_1_2_13_67_1
  doi: 10.1029/2018GL081307
– ident: e_1_2_13_66_1
  doi: 10.1029/2019RG000644
– ident: e_1_2_13_12_1
  doi: 10.1175/1520‐0442(2004)017<3109:PICVLB>2.0.CO;2
– ident: e_1_2_13_29_1
  doi: 10.1007/s40641‐017‐0068‐8
– ident: e_1_2_13_58_1
  doi: 10.1175/2008JCLI2561.1
– ident: e_1_2_13_26_1
  doi: 10.1175/1520‐0442(1994)007<0141:IVINAS>2.0.CO;2
– ident: e_1_2_13_23_1
  doi: 10.1038/s41586‐023‐06489‐4
– ident: e_1_2_13_38_1
  doi: 10.1126/science.abc5810
– ident: e_1_2_13_49_1
  doi: 10.1175/JCLI3521.1
– ident: e_1_2_13_10_1
  doi: 10.1175/1520‐0442(1993)006<1993:IVOTTC>2.0.CO;2
– ident: e_1_2_13_8_1
  doi: 10.1126/science.aab3980
– ident: e_1_2_13_2_1
  doi: 10.1007/s00382‐017‐3834‐3
– ident: e_1_2_13_14_1
  doi: 10.1175/1520‐0442(1997)010<2147:AMTETS>2.0.CO;2
– ident: e_1_2_13_56_1
  doi: 10.1175/JCLI‐D‐16‐0803.1
– ident: e_1_2_13_39_1
  doi: 10.1175/1520‐0477(1997)078<1069:APICOW>2.0.CO;2
– ident: e_1_2_13_13_1
  doi: 10.1029/2007GL032838
– ident: e_1_2_13_59_1
  doi: 10.1007/s00382‐015‐2932‐3
– ident: e_1_2_13_15_1
  doi: 10.1175/1520‐0442(1998)011<2310:ASFITN>2.0.CO;2
– ident: e_1_2_13_35_1
  doi: 10.1175/2011JCLI3980.1
– ident: e_1_2_13_33_1
  doi: 10.1175/JCLI4272.1
– ident: e_1_2_13_18_1
  doi: 10.1175/1520‐0485(1997)027<1533:ASMOTD>2.0.CO;2
– ident: e_1_2_13_47_1
  doi: 10.1029/2018GL079077
– ident: e_1_2_13_9_1
  doi: 10.1126/science.aaf2575
– ident: e_1_2_13_25_1
  doi: 10.1175/1520‐0442(1997)010<1821:ATOICV>2.0.CO;2
– ident: e_1_2_13_63_1
  doi: 10.1002/2017GL074342
– ident: e_1_2_13_22_1
  doi: 10.1111/j.2153‐3490.1976.tb00696.x
– ident: e_1_2_13_68_1
  doi: 10.1175/1520‐0442(1997)010<1004:ELIV>2.0.CO;2
– ident: e_1_2_13_45_1
  doi: 10.1175/JCLI‐D‐15‐0508.1
– ident: e_1_2_13_16_1
  doi: 10.1111/j.2153‐3490.1977.tb00740.x
– ident: e_1_2_13_5_1
  doi: 10.1038/nature10946
– ident: e_1_2_13_30_1
  doi: 10.1175/2007JCLI1532.1
– ident: e_1_2_13_21_1
  doi: 10.1007/s003820050158
– ident: e_1_2_13_51_1
  doi: 10.1139/f98‐104
– ident: e_1_2_13_32_1
  doi: 10.1002/2013GL057877
– ident: e_1_2_13_20_1
  doi: 10.1038/nature12268
– ident: e_1_2_13_4_1
  doi: 10.1016/S0065‐2687(08)60005‐9
– ident: e_1_2_13_17_1
  doi: 10.1007/s00382‐002‐0253‐9
– ident: e_1_2_13_6_1
  doi: 10.1175/JCLI‐D‐13‐00316.1
– ident: e_1_2_13_55_1
  doi: 10.1175/JCLI‐D‐20‐0505.1
– ident: e_1_2_13_64_1
  doi: 10.1029/2006GL026267
– ident: e_1_2_13_61_1
– ident: e_1_2_13_34_1
  doi: 10.1175/JCLI‐D‐22‐0432.1
– ident: e_1_2_13_28_1
  doi: 10.1126/science.266.5185.634
– ident: e_1_2_13_57_1
  doi: 10.1126/science.1109496
– volume: 46
  start-page: X
  year: 1989
  ident: e_1_2_13_50_1
  article-title: El Niño, La Niña, and the southern oscillation
  publication-title: International Geophysics Series
– ident: e_1_2_13_27_1
  doi: 10.1175/1520‐0485(1981)011<0324:OOMFMI>2.0.CO;2
– ident: e_1_2_13_41_1
  doi: 10.1007/s00382‐002‐0294‐0
– ident: e_1_2_13_48_1
  doi: 10.1038/ngeo955
– ident: e_1_2_13_43_1
  doi: 10.1007/s00382‐008‐0452‐0
– ident: e_1_2_13_69_1
  doi: 10.1175/2008JCLI2195.1
– ident: e_1_2_13_42_1
  doi: 10.1029/2003JC002005
– ident: e_1_2_13_3_1
  doi: 10.1175/JCLI‐D‐17‐0159.1
– ident: e_1_2_13_37_1
  doi: 10.1175/2007JCLI1826.1
– ident: e_1_2_13_31_1
  doi: 10.1175/JCLI‐D‐13‐00337.1
– ident: e_1_2_13_46_1
  doi: 10.1002/2016GL067925
– ident: e_1_2_13_52_1
  doi: 10.1029/2002JD002670
– ident: e_1_2_13_19_1
  doi: 10.1126/science.1060040
– ident: e_1_2_13_62_1
  doi: 10.1175/JCLI‐D‐16‐0537.1
– ident: e_1_2_13_11_1
  doi: 10.1007/s003820000075
– ident: e_1_2_13_65_1
  doi: 10.1126/science.aaf1660
– ident: e_1_2_13_40_1
  doi: 10.1175/1520‐0442(2001)014<1399:ASOTIO>2.0.CO;2
– ident: e_1_2_13_60_1
  doi: 10.1002/2015GL065364
SSID ssj0003031
Score 2.46952
Snippet Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The mechanisms...
Abstract Sea surface temperature (SST) variability on decadal timescales has been associated with global and regional climate variability and impacts. The...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atlantic multidecadal variability
atmosphere‐ocean interaction
Atmospheric forcing
Atmospheric models
Atmospheric variability
Climate
Climate models
Climate variability
decadal variability
Drought
Global climate
Heat flux
Heat transfer
Heat waves
Heatwaves
Hurricanes
Latitude
Ocean basins
Ocean circulation
Ocean currents
Oceans
Pacific decadal variability
Regional climates
Sea surface
Sea surface temperature
Surface temperature
Temperature variability
Variability
Water circulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCl7EJ9YXOehJFnezaZMcfbUeiopV8bbkMRFBttJWwX_vJNlKPagXb8syDMPMJDOzO3wfIQfCMceBqaxkCgeUkvNMu7KTCd7WTEoruY-Q-X1xdSUfH9XNDNVX2AlL8MDJccdacu7aUrtO6bgwhQHZKXxoNLwrHEScz1yo6TDV3MF4MSeuPMUzyUSnWXnPmQrTftnrhz3EhghmWowiZv-3RnO2XY31prtClptGkZ4kA1fJHNRrZLEXiXg_8CmubtrxOhkMwtfsJ3ptQdfPlnaHI4v1iA5reg5WO1QyeBt5bYHeATbJCUSZPuCQnDC6P-g15jNN6P9JzQa5717cnV1mDVVCZnmRy8zkyglbGG2xHGtmfDv3RisDRe5BM3S_Ala6gM4lvFToEvC5yp3HrlVxrspNMl8Pa9giVDJoAxguncLIeauLQJILRmhuBNe8RY6mPqtsgyMe6Cxeqvg_m6lq1sMtcvgl_ZrwM36QOw3u_5IJqNfxBeZC1eRC9VcutMjuNHhVcxTHVRkRdCSOamh5DOivhlS9235gQpXb_2HRDllC5XHVh8ldMj8ZvcEeWbDvk-fxaD_m7Cdom-me
  priority: 102
  providerName: Directory of Open Access Journals
Title Strong Oceanic Forcing on Decadal Surface Temperature Variability Over Global Ocean
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107401
https://www.proquest.com/docview/3045198096
https://doaj.org/article/a844d58ad63d47b1be861f0540fd1de3
Volume 51
WOSCitedRecordID wos001201868000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Research Library
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYlaaGX9E2dpkaH9lSW7kpaSzo2TeweXHuxkxJ6WfQYhUBZh3USyL_vSLsxzqGFkItYiZEQ0oxmNDv6hpBP0jMvgOmMM40XFC5EZjwfZVKUhinllAgJMn8qZzN1dqar3uEW38J0-BAbh1uUjHReRwE3dt2DDUSMzJj3ezKN8YTx-dZuUXAZuZqJanMS4_HcZczTIlNMjvrAd-z_dbv3PZWUkPvvmZvbRmvSOuMXj53vS7LX25v0W8cgr8gTaF6TZ5OUz_cWv1IEqFu_IctldIqf07kD01w4Ol61DtUaXTX0CJzxOMjyug3GAT0BtLU7LGb6C-_aHdT3LZ2jWNAuiUA3zFtyOj4--f4j6zMuZE4Uucpsrr10hTUOtbphNpR5sEZbKPIAhuEuamDcR5AvGZTGNYWQ69wHNH61EJq_IzvNqoH3hCoGJYAVymtkgOBMEXPtgpVGWCmMGJAvd4teux6OPGbF-FOn3-JM19sLNiCfN9SXHQzHP-gO4_5taCJ4dmpYted1L4u1UUL4Uhk_4l5IW1hQoyJE2zX4wgMfkIO73a97iV7XPAHxKLzx4czTPv93IvVkMY0JVdX-g6g_kOfYnkKDmDogO1ftNXwkT93N1cW6HSbuHpLdw-NZtRgm9wHWjhbj0ynWfrJ5KqtYyiWWVfn7L2Ed_L4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdQB4IL34jCAB_ghCISx6ntIzDaIUKH1g7tZvnjeZqE0indJu2_59nxqu4AEuIWRS-W5fdp5_n3I-St8MxzYKqomcINSs15YXw9KQRvDJPSSR4SZH4r5nN5fKx-ZJ7TeBdmwIfYHLhFz0jxOjp4PJDOaAMRJDMSf8_a2FAY72_tcLSkZkR29g6nR-0mGGOEHkjzFC8kE5Pc-44jfNj-_kZWSuD9NyrO7bo1JZ7pg_-e8kNyP9ec9ONgJI_ILegekzuzxOl7hU-pC9Stn5DFIh6Mn9ADB6Y7dXS66h2mNrrq6B4443GQxUUfjAO6BKy3Bzxm-hP32wPc9xU9QNegA5HAMMxTcjT9svy8X2TWhcLxqpSFLZUXrrLGYWY3zIamDNYoC1UZwDDUpAJW-wj0JYJUuKgQSlX6gAWw4lzVz8ioW3XwnFDJoAGwXHqFRhCcqSLfLlhhuBXc8DF5f73q2mVI8siM8UunX-NM6e0FG5N3G-mzAYrjD3KfogI3MhFAO71Y9Sc6-6M2knPfSOMntefCVhbkpAqxfg2-8lCPye61-nX26rWuExiPxF0fzjwp-q8T0bPDNpKqyhf_JP2G3N1ffm91-3X-7SW5hzKpVYjJXTI67y_gFbntLs9P1_3rbOy_AeEN-jU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQeagX3hWBAj7ACa3Y9c7G9hEoCYgojUhBvVl-jKtKaFNt2kr994y92yg9gIS4rVZjy_J4HrbH38fYGxlEABS6qIWmDUoNUNhQjwsJjRVKeQUxQ-bP5Hyujo_1YuA5TW9henyIzYFbsozsr5OB41mIA9pAAslMxN_TWSooTO-3bkNDbjZBO8Ni44rJP_eUeRoKJeR4qHyn9u-3W9-ISRm6_0a-uZ215rAzefDfA37I7g8ZJ__QL5FH7Ba2j9ndaWb0vaKvXAPq10_YcpmOxU_4oUfbnno-WXWeAhtftfwAvQ3UyfKii9YjP0LKtns0Zv6Tdts92PcVPyTD4D2NQN_NU_Zj8vno05di4FwoPFSlKlypg_SVs57iuhUuNmV0VjusyohWkB41ijokmC8ZlaZJxVjqMkRKfzWArvfYTrtq8RnjSmCD6EAFTUsgelsltl100oKTYGHE3l3PuvEDIHnixfhl8sW40GZ7wkbs7Ub6rAfi-IPcx6TAjUyCz84_Vt2JGazRWAUQGmXDuA4gXeVQjauYstcYqoD1iO1fq98MNr02dYbiUbTno5FnRf91IGb6fZYoVdXzf5J-ze4tDiZm9nX-7QXbJZFcJyTUPts57y7wJbvjL89P192rvNJ_A-5O-B4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Oceanic+Forcing+on+Decadal+Surface+Temperature+Variability+Over+Global+Ocean&rft.jtitle=Geophysical+research+letters&rft.au=Gu%2C+Peng&rft.au=Liu%2C+Zhengyu&rft.au=Delworth%2C+Thomas+L.&rft.date=2024-04-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=8&rft_id=info:doi/10.1029%2F2023GL107401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GL107401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon