A Novel method to generate on‐board 4D MRI using prior 4D MRI and on‐board kV projections from a conventional LINAC for target localization in liver SBRT

Purpose On‐board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on‐board MRI in clinics is extremely limited. On the contrary, on‐board kV imaging systems are widely available on radiotherapy machines, but its capability to localize tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) Jg. 45; H. 7; S. 3238 - 3245
Hauptverfasser: Harris, Wendy, Wang, Chunhao, Yin, Fang‐Fang, Cai, Jing, Ren, Lei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.07.2018
Schlagworte:
ISSN:0094-2405, 2473-4209, 2473-4209
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose On‐board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on‐board MRI in clinics is extremely limited. On the contrary, on‐board kV imaging systems are widely available on radiotherapy machines, but its capability to localize tumors in soft tissue is limited due to its poor soft tissue contrast. This study aims to explore the feasibility of using an on‐board kV imaging system and patient prior knowledge to generate on‐board four‐dimensional (4D)‐MRI for target localization in liver SBRT. Methods Prior 4D MRI volumes were separated into end of expiration (EOE) phase (MRIprior) and all other phases. MRIprior was used to generate a synthetic CT at EOE phase (sCTprior). On‐board 4D MRI at each respiratory phase was considered a deformation of MRIprior. The deformation field map (DFM) was estimated by matching DRRs of the deformed sCTprior to on‐board kV projections using a motion modeling and free‐form deformation optimization algorithm. The on‐board 4D MRI method was evaluated using both XCAT simulation and real patient data. The accuracy of the estimated on‐board 4D MRI was quantitatively evaluated using Volume Percent Difference (VPD), Volume Dice Coefficient (VDC), and Center of Mass Shift (COMS). Effects of scan angle and number of projections were also evaluated. Results In the XCAT study, VPD/VDC/COMS among all XCAT scenarios were 10.16 ± 1.31%/0.95 ± 0.01/0.88 ± 0.15 mm using orthogonal‐view 30° scan angles with 102 projections. The on‐board 4D MRI method was robust against the various scan angles and projection numbers evaluated. In the patient study, estimated on‐board 4D MRI was generated successfully when compared to the “reference on‐board 4D MRI” for the liver patient case. Conclusions A method was developed to generate on‐board 4D MRI using prior 4D MRI and on‐board limited kV projections. Preliminary results demonstrated the potential for MRI‐based image guidance for liver SBRT using only a kV imaging system on a conventional LINAC.
AbstractList On-board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on-board MRI in clinics is extremely limited. On the contrary, on-board kV imaging systems are widely available on radiotherapy machines, but its capability to localize tumors in soft tissue is limited due to its poor soft tissue contrast. This study aims to explore the feasibility of using an on-board kV imaging system and patient prior knowledge to generate on-board four-dimensional (4D)-MRI for target localization in liver SBRT. Prior 4D MRI volumes were separated into end of expiration (EOE) phase (MRI ) and all other phases. MRI was used to generate a synthetic CT at EOE phase (sCT ). On-board 4D MRI at each respiratory phase was considered a deformation of MRI . The deformation field map (DFM) was estimated by matching DRRs of the deformed sCT to on-board kV projections using a motion modeling and free-form deformation optimization algorithm. The on-board 4D MRI method was evaluated using both XCAT simulation and real patient data. The accuracy of the estimated on-board 4D MRI was quantitatively evaluated using Volume Percent Difference (VPD), Volume Dice Coefficient (VDC), and Center of Mass Shift (COMS). Effects of scan angle and number of projections were also evaluated. In the XCAT study, VPD/VDC/COMS among all XCAT scenarios were 10.16 ± 1.31%/0.95 ± 0.01/0.88 ± 0.15 mm using orthogonal-view 30° scan angles with 102 projections. The on-board 4D MRI method was robust against the various scan angles and projection numbers evaluated. In the patient study, estimated on-board 4D MRI was generated successfully when compared to the "reference on-board 4D MRI" for the liver patient case. A method was developed to generate on-board 4D MRI using prior 4D MRI and on-board limited kV projections. Preliminary results demonstrated the potential for MRI-based image guidance for liver SBRT using only a kV imaging system on a conventional LINAC.
Purpose On‐board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on‐board MRI in clinics is extremely limited. On the contrary, on‐board kV imaging systems are widely available on radiotherapy machines, but its capability to localize tumors in soft tissue is limited due to its poor soft tissue contrast. This study aims to explore the feasibility of using an on‐board kV imaging system and patient prior knowledge to generate on‐board four‐dimensional (4D)‐MRI for target localization in liver SBRT. Methods Prior 4D MRI volumes were separated into end of expiration (EOE) phase (MRIprior) and all other phases. MRIprior was used to generate a synthetic CT at EOE phase (sCTprior). On‐board 4D MRI at each respiratory phase was considered a deformation of MRIprior. The deformation field map (DFM) was estimated by matching DRRs of the deformed sCTprior to on‐board kV projections using a motion modeling and free‐form deformation optimization algorithm. The on‐board 4D MRI method was evaluated using both XCAT simulation and real patient data. The accuracy of the estimated on‐board 4D MRI was quantitatively evaluated using Volume Percent Difference (VPD), Volume Dice Coefficient (VDC), and Center of Mass Shift (COMS). Effects of scan angle and number of projections were also evaluated. Results In the XCAT study, VPD/VDC/COMS among all XCAT scenarios were 10.16 ± 1.31%/0.95 ± 0.01/0.88 ± 0.15 mm using orthogonal‐view 30° scan angles with 102 projections. The on‐board 4D MRI method was robust against the various scan angles and projection numbers evaluated. In the patient study, estimated on‐board 4D MRI was generated successfully when compared to the “reference on‐board 4D MRI” for the liver patient case. Conclusions A method was developed to generate on‐board 4D MRI using prior 4D MRI and on‐board limited kV projections. Preliminary results demonstrated the potential for MRI‐based image guidance for liver SBRT using only a kV imaging system on a conventional LINAC.
On-board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on-board MRI in clinics is extremely limited. On the contrary, on-board kV imaging systems are widely available on radiotherapy machines, but its capability to localize tumors in soft tissue is limited due to its poor soft tissue contrast. This study aims to explore the feasibility of using an on-board kV imaging system and patient prior knowledge to generate on-board four-dimensional (4D)-MRI for target localization in liver SBRT.PURPOSEOn-board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on-board MRI in clinics is extremely limited. On the contrary, on-board kV imaging systems are widely available on radiotherapy machines, but its capability to localize tumors in soft tissue is limited due to its poor soft tissue contrast. This study aims to explore the feasibility of using an on-board kV imaging system and patient prior knowledge to generate on-board four-dimensional (4D)-MRI for target localization in liver SBRT.Prior 4D MRI volumes were separated into end of expiration (EOE) phase (MRIprior ) and all other phases. MRIprior was used to generate a synthetic CT at EOE phase (sCTprior ). On-board 4D MRI at each respiratory phase was considered a deformation of MRIprior . The deformation field map (DFM) was estimated by matching DRRs of the deformed sCTprior to on-board kV projections using a motion modeling and free-form deformation optimization algorithm. The on-board 4D MRI method was evaluated using both XCAT simulation and real patient data. The accuracy of the estimated on-board 4D MRI was quantitatively evaluated using Volume Percent Difference (VPD), Volume Dice Coefficient (VDC), and Center of Mass Shift (COMS). Effects of scan angle and number of projections were also evaluated.METHODSPrior 4D MRI volumes were separated into end of expiration (EOE) phase (MRIprior ) and all other phases. MRIprior was used to generate a synthetic CT at EOE phase (sCTprior ). On-board 4D MRI at each respiratory phase was considered a deformation of MRIprior . The deformation field map (DFM) was estimated by matching DRRs of the deformed sCTprior to on-board kV projections using a motion modeling and free-form deformation optimization algorithm. The on-board 4D MRI method was evaluated using both XCAT simulation and real patient data. The accuracy of the estimated on-board 4D MRI was quantitatively evaluated using Volume Percent Difference (VPD), Volume Dice Coefficient (VDC), and Center of Mass Shift (COMS). Effects of scan angle and number of projections were also evaluated.In the XCAT study, VPD/VDC/COMS among all XCAT scenarios were 10.16 ± 1.31%/0.95 ± 0.01/0.88 ± 0.15 mm using orthogonal-view 30° scan angles with 102 projections. The on-board 4D MRI method was robust against the various scan angles and projection numbers evaluated. In the patient study, estimated on-board 4D MRI was generated successfully when compared to the "reference on-board 4D MRI" for the liver patient case.RESULTSIn the XCAT study, VPD/VDC/COMS among all XCAT scenarios were 10.16 ± 1.31%/0.95 ± 0.01/0.88 ± 0.15 mm using orthogonal-view 30° scan angles with 102 projections. The on-board 4D MRI method was robust against the various scan angles and projection numbers evaluated. In the patient study, estimated on-board 4D MRI was generated successfully when compared to the "reference on-board 4D MRI" for the liver patient case.A method was developed to generate on-board 4D MRI using prior 4D MRI and on-board limited kV projections. Preliminary results demonstrated the potential for MRI-based image guidance for liver SBRT using only a kV imaging system on a conventional LINAC.CONCLUSIONSA method was developed to generate on-board 4D MRI using prior 4D MRI and on-board limited kV projections. Preliminary results demonstrated the potential for MRI-based image guidance for liver SBRT using only a kV imaging system on a conventional LINAC.
Author Yin, Fang‐Fang
Harris, Wendy
Cai, Jing
Ren, Lei
Wang, Chunhao
Author_xml – sequence: 1
  givenname: Wendy
  surname: Harris
  fullname: Harris, Wendy
  organization: Duke University
– sequence: 2
  givenname: Chunhao
  surname: Wang
  fullname: Wang, Chunhao
  organization: Duke University Medical Center
– sequence: 3
  givenname: Fang‐Fang
  surname: Yin
  fullname: Yin, Fang‐Fang
  organization: Duke Kunshan University
– sequence: 4
  givenname: Jing
  surname: Cai
  fullname: Cai, Jing
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Lei
  surname: Ren
  fullname: Ren, Lei
  email: lei.ren@duke.edu
  organization: Duke University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29799620$$D View this record in MEDLINE/PubMed
BookMark eNp1kdtuEzEQhi1URA8g8QTIl9xsmPV6D75BCuEUKS2oFG6tiXc2dfHaqXcTVK54BF6Al-NJ2CRtKQiuLM3_zzcz_g_Zng-eGHucwigFEM_a5SgVSlX32IGQZZZIAWqPHQAomQgJ-T477LoLACiyHB6wfaFKpQoBB-zHmJ-ENTneUn8eat4HviBPEXviwf_89n0eMNZcvuTHp1O-6qxf8GW0Id6U0Nd3jZ8_DXK4INPb4DvexNBy5Cb4NflNCR2fTU_GE94MiB7jgnrugkFnv-JG59ZzZ9cU-YcXp2cP2f0GXUePrt8j9vH1q7PJ22T27s10Mp4lRqZQJYgIEoqmLtW8yYs8LzNTYYpgUKpUUgllhllVS1UoQVUJkpCoMAqMqOpKZUfs-Y67XM1bqs2wa0Snh0NbjFc6oNV_Kt6e60VY6yJNIdsCnl4DYrhcUdfr1naGnENPYdVpATIXVSELOVif3J11O-Qmk98sE0PXRWpuLSnoTdy6Xept3IN19JfV2H77j8OW1v2rIdk1fLGOrv4L1sfvd_5fb4e8rg
CitedBy_id crossref_primary_10_1002_pro6_1143
crossref_primary_10_3389_fonc_2022_816678
crossref_primary_10_1002_mp_17269
crossref_primary_10_1002_mp_14398
crossref_primary_10_1016_j_ejmp_2019_05_012
crossref_primary_10_1002_mp_15542
crossref_primary_10_1002_mp_14312
crossref_primary_10_1016_j_media_2021_102250
crossref_primary_10_1088_1361_6560_adbeb5
Cites_doi 10.1016/j.ijrobp.2011.11.047
10.1016/j.semradonc.2014.02.008
10.1118/1.598803
10.1016/j.ijrobp.2016.02.011
10.1371/journal.pone.0076665
10.1118/1.2955743
10.1016/S0360-3016(97)00546-4
10.1118/1.2779945
10.1088/0031-9155/54/12/N01
10.1088/1361-6560/aa5200
10.1118/1.4825097
10.1002/mp.12102
10.1118/1.1915012
10.1016/j.ijrobp.2011.11.056
10.1118/1.3658737
10.1109/TMI.2016.2623745
10.1088/1361-6560/aa9746
10.1118/1.4861820
10.1016/j.ijrobp.2013.11.245
10.1016/j.radonc.2017.10.011
10.1088/0031-9155/60/20/8141
10.1016/j.ejmp.2017.02.017
10.1016/j.radonc.2017.10.004
10.1002/mp.12256
10.1016/j.ijrobp.2009.06.031
10.1118/1.595715
10.1118/1.3125662
10.1118/1.1339879
10.1088/0031-9155/58/24/8621
10.1088/0031-9155/59/24/7793
10.1120/jacmp.v15i5.4851
10.1016/S0360-3016(01)01659-5
10.1118/1.2349696
10.1016/j.radonc.2015.02.022
10.1118/1.599009
ContentType Journal Article
Copyright 2018 American Association of Physicists in Medicine
2018 American Association of Physicists in Medicine.
Copyright_xml – notice: 2018 American Association of Physicists in Medicine
– notice: 2018 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mp.12998
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3245
ExternalDocumentID PMC6110389
29799620
10_1002_mp_12998
MP12998
Genre commentary
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01‐CA184173
– fundername: NVIDIA
– fundername: ARO Equipment
  funderid: W911NF‐13‐l‐0344
– fundername: NCI NIH HHS
  grantid: R01 CA184173
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4108-aaa0406fd79bf565573c8a1a0ca4914e7073a38d49692e8704eaee6c90c28d893
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438211400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 01:54:48 EST 2025
Fri Sep 05 09:50:23 EDT 2025
Thu Apr 03 07:02:47 EDT 2025
Sat Nov 29 06:02:36 EST 2025
Tue Nov 18 22:35:10 EST 2025
Wed Jan 22 16:53:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords deformable image registration
liver SBRT
MR guided radiotherapy
on-board imaging
prior knowledge
4D MRI
Language English
License 2018 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-aaa0406fd79bf565573c8a1a0ca4914e7073a38d49692e8704eaee6c90c28d893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6110389
PMID 29799620
PQID 2045286464
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6110389
proquest_miscellaneous_2045286464
pubmed_primary_29799620
crossref_primary_10_1002_mp_12998
crossref_citationtrail_10_1002_mp_12998
wiley_primary_10_1002_mp_12998_MP12998
PublicationCentury 2000
PublicationDate July 2018
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2018
References 2017; 62
2012; 83
2010; 76
2017; 63
2000; 27
2006; 33
2017; 44
2013; 40
1999; 26
2016; 95
2014; 24
2008; 35
2001; 28
2014; 41
1998; 40
2013; 8
2011; 38
2007; 34
2014; 88
2009; 36
2013; 58
2009; 54
2015; 115
2015; 60
2017; 36
2017; 35
2014; 59
2014; 15
2005; 32
1985; 12
2017; 125
2001; 51
2012; 84
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 40
  start-page: 121701
  year: 2013
  article-title: A technique for estimating 4D‐CBCT using prior knowledge and limited‐angle projections
  publication-title: Med Phys
– volume: 83
  start-page: e5
  year: 2012
  end-page: e11
  article-title: An atlas‐based electron density mapping method for magnetic resonance imaging (MRI)‐alone treatment planning and adaptive MRI‐based prostate radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 44
  start-page: 1089
  year: 2017
  end-page: 1104
  article-title: Estimating 4D CBCT from prior information and extremely limited angle projections using structural PCA and weighted free‐form deformation for lung radiotherapy
  publication-title: Med Phys
– volume: 58
  start-page: 8621
  year: 2013
  end-page: 8645
  article-title: Deformable motion reconstruction for scanned proton beam therapy using on‐line x‐ray imaging
  publication-title: Phys Med Biol
– volume: 84
  start-page: 125
  year: 2012
  end-page: 129
  article-title: Improved clinical outcomes with high‐dose image guided radiotherapy compared with non‐IGRT for the treatment of clinically localized prostate cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 36
  start-page: 2084
  year: 2009
  end-page: 2088
  article-title: First MR images obtained during megavoltage photon irradiation from a prototype integrated linac‐MR system
  publication-title: Med Phys
– volume: 32
  start-page: 1647
  year: 2005
  end-page: 1659
  article-title: Accuracy of finite element model‐based multi‐organ deformable image registration
  publication-title: Med Phys
– volume: 12
  start-page: 252
  year: 1985
  end-page: 255
  article-title: Fast calculation of the exact radiological path for a three‐dimensional CT array
  publication-title: Med Phys
– volume: 38
  start-page: 6384
  year: 2011
  end-page: 6394
  article-title: Four‐dimensional magnetic resonance imaging (4D‐MRI) using image‐based respiratory surrogate: a feasibility study
  publication-title: Med Phys
– volume: 24
  start-page: 196
  year: 2014
  end-page: 199
  article-title: The ViewRay system: magnetic resonance‐guided and controlled radiotherapy
  publication-title: Semin Radiat Oncol
– volume: 40
  start-page: 197
  year: 1998
  end-page: 205
  article-title: Image registration: an essential part of radiation therapy treatment planning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 63
  start-page: 01NT01
  year: 2017
  article-title: Accelerating volumetric cine MRI (VC‐MRI) using undersampling for real‐time 3D target localization/tracking in radiation therapy: a feasibility study
  publication-title: Phys Med Biol
– volume: 59
  start-page: 7793
  year: 2014
  end-page: 7817
  article-title: Online image guided tumour tracking with scanned proton beams: a comprehensive simulation study
  publication-title: Phys Med Biol
– volume: 88
  start-page: 907
  year: 2014
  end-page: 912
  article-title: Four‐dimensional magnetic resonance imaging using axial body area as respiratory surrogate: initial patient results
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 8
  start-page: e76665
  year: 2013
  article-title: Efficient parallel Levenberg‐Marquardt model fitting towards real‐time automated parametric imaging microscopy
  publication-title: PLoS ONE
– volume: 76
  start-page: 583
  year: 2010
  end-page: 596
  article-title: Results of a multi‐institution deformable registration accuracy study (MIDRAS)
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 26
  start-page: 2635
  year: 1999
  end-page: 2647
  article-title: Cone‐beam computed tomography with a flat‐panel imager: effects of image lag
  publication-title: Med Phys
– volume: 62
  start-page: 1358
  year: 2017
  end-page: 1377
  article-title: Generation of synthetic CT data using patient specific daily MR image data and image registration
  publication-title: Phys Med Biol
– volume: 60
  start-page: 8141
  year: 2015
  end-page: 8159
  article-title: Improving 4D plan quality for PBS‐based liver tumour treatments by combining online image guided beam gating with rescanning
  publication-title: Phys Med Biol
– volume: 115
  start-page: 22
  year: 2015
  end-page: 29
  article-title: Preliminary clinical evaluation of a 4D‐CBCT estimation technique using prior information and limited‐angle projections
  publication-title: Radiother Oncol
– volume: 35
  start-page: 3800
  year: 2008
  end-page: 3808
  article-title: Realistic CT simulation using the 4D XCAT phantom
  publication-title: Med Phys
– volume: 34
  start-page: 3768
  year: 2007
  end-page: 3776
  article-title: Accelerating reconstruction of reference digital tomosynthesis using graphics hardware
  publication-title: Med Phys
– volume: 15
  start-page: 4851
  year: 2014
  article-title: Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning
  publication-title: J Appl Clin Med Phys
– volume: 54
  start-page: N229
  year: 2009
  end-page: N237
  article-title: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept
  publication-title: Phys Med Biol
– volume: 35
  start-page: 7
  year: 2017
  end-page: 17
  article-title: Evaluation of a multi‐atlas CT synthesis approach for MRI‐only radiotherapy treatment planning
  publication-title: Phys Med
– volume: 33
  start-page: 3874
  year: 2006
  end-page: 3900
  article-title: The management of respiratory motion in radiation oncology report of AAPM Task Group 76
  publication-title: Med Phys
– volume: 27
  start-page: 1311
  year: 2000
  end-page: 1323
  article-title: Cone‐beam computed tomography with a flat‐panel imager: initial performance characterization
  publication-title: Med Phys
– volume: 44
  start-page: e43
  year: 2017
  end-page: e76
  article-title: Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132
  publication-title: Med Phys
– volume: 28
  start-page: 220
  year: 2001
  end-page: 231
  article-title: Cone‐beam computed tomography with a flat‐panel imager: magnitude and effects of x‐ray scatter
  publication-title: Med Phys
– volume: 51
  start-page: 255
  year: 2001
  end-page: 260
  article-title: Multimodality image registration quality assurance for conformal three‐dimensional treatment planning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 41
  start-page: 020701
  year: 2014
  article-title: A limited‐angle intrafraction verification (LIVE) system for radiation therapy
  publication-title: Med Phys
– volume: 125
  start-page: 411
  year: 2017
  end-page: 419
  article-title: Intensity‐based dual model method for generation of synthetic CT images from standard T2‐weighted MR images ‐ generalized technique for four different MR scanners
  publication-title: Radiother Oncol
– volume: 36
  start-page: 641
  year: 2017
  end-page: 652
  article-title: A biomechanical modeling guided CBCT estimation technique
  publication-title: IEEE Trans Med Imaging
– volume: 95
  start-page: 844
  year: 2016
  end-page: 853
  article-title: A technique for generating volumetric cine‐magnetic resonance imaging
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 125
  start-page: 478
  year: 2017
  end-page: 484
  article-title: Automated, reference‐free local error assessment of multimodal deformable image registration for radiotherapy in the head and neck
  publication-title: Radiother Oncol
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ijrobp.2011.11.047
– ident: e_1_2_7_14_1
  doi: 10.1016/j.semradonc.2014.02.008
– ident: e_1_2_7_11_1
  doi: 10.1118/1.598803
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ijrobp.2016.02.011
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.pone.0076665
– ident: e_1_2_7_29_1
  doi: 10.1118/1.2955743
– ident: e_1_2_7_15_1
  doi: 10.1016/S0360-3016(97)00546-4
– ident: e_1_2_7_31_1
  doi: 10.1118/1.2779945
– ident: e_1_2_7_13_1
  doi: 10.1088/0031-9155/54/12/N01
– ident: e_1_2_7_3_1
  doi: 10.1088/1361-6560/aa5200
– ident: e_1_2_7_21_1
  doi: 10.1118/1.4825097
– ident: e_1_2_7_7_1
  doi: 10.1002/mp.12102
– ident: e_1_2_7_20_1
  doi: 10.1118/1.1915012
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ijrobp.2011.11.056
– ident: e_1_2_7_32_1
  doi: 10.1118/1.3658737
– ident: e_1_2_7_36_1
  doi: 10.1109/TMI.2016.2623745
– ident: e_1_2_7_22_1
  doi: 10.1088/1361-6560/aa9746
– ident: e_1_2_7_8_1
  doi: 10.1118/1.4861820
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ijrobp.2013.11.245
– ident: e_1_2_7_35_1
  doi: 10.1016/j.radonc.2017.10.011
– ident: e_1_2_7_25_1
  doi: 10.1088/0031-9155/60/20/8141
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ejmp.2017.02.017
– ident: e_1_2_7_17_1
  doi: 10.1016/j.radonc.2017.10.004
– ident: e_1_2_7_18_1
  doi: 10.1002/mp.12256
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ijrobp.2009.06.031
– ident: e_1_2_7_30_1
  doi: 10.1118/1.595715
– ident: e_1_2_7_12_1
  doi: 10.1118/1.3125662
– ident: e_1_2_7_10_1
  doi: 10.1118/1.1339879
– ident: e_1_2_7_23_1
  doi: 10.1088/0031-9155/58/24/8621
– ident: e_1_2_7_24_1
  doi: 10.1088/0031-9155/59/24/7793
– ident: e_1_2_7_34_1
  doi: 10.1120/jacmp.v15i5.4851
– ident: e_1_2_7_16_1
  doi: 10.1016/S0360-3016(01)01659-5
– ident: e_1_2_7_4_1
  doi: 10.1118/1.2349696
– ident: e_1_2_7_5_1
  doi: 10.1016/j.radonc.2015.02.022
– ident: e_1_2_7_9_1
  doi: 10.1118/1.599009
SSID ssj0006350
Score 2.3403718
Snippet Purpose On‐board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on‐board MRI in clinics is...
On-board MRI can provide superb soft tissue contrast for improving liver SBRT localization. However, the availability of on-board MRI in clinics is extremely...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3238
SubjectTerms 4D MRI
deformable image registration
Humans
Imaging, Three-Dimensional - methods
Liver - diagnostic imaging
Liver - radiation effects
liver SBRT
Magnetic Resonance Imaging
MR guided radiotherapy
on‐board imaging
Particle Accelerators
Phantoms, Imaging
prior knowledge
Radiosurgery
Title A Novel method to generate on‐board 4D MRI using prior 4D MRI and on‐board kV projections from a conventional LINAC for target localization in liver SBRT
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.12998
https://www.ncbi.nlm.nih.gov/pubmed/29799620
https://www.proquest.com/docview/2045286464
https://pubmed.ncbi.nlm.nih.gov/PMC6110389
Volume 45
WOSCitedRecordID wos000438211400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iHSBeuAwG4TIdJARPYYnnxvZj2aiYtFZT2VDfIsd2toouqdpuz_wE_gB_br9ktnOh1UBC4ilScpJYyXcusr_zGeCdDXeKKaXDjFAV0jxnodSChobwRGdGRxnN_WYTbDjk47E4rlmVrhem0odoJ9ycZ_h47RxcZovd36KhF7OPNlcJvgGbxMK224HNg1H_9KiNwzaVVg0o9tU2b3Ub6dmI7Db3riejWxXmbaLkagHrM1D_0f-M_TE8rOtO7FVAeQJ3TLEF9wf1yvoW3PNUULV4Cr96OCyvzBSrzaVxWeKZ16ZeGiyL6x8_s9KiCukBDkaH6HjzZzibT8p5c0oWetXw-zesp3scwtH1s6DEVbY7Hh0Oe_toy2esiOnoM2zdIYqTAqeOPYJfP41OnsFp__PJ_pew3sQhVDSOeCiltHEiyTUTWW6rxy7bU1zGMlKSipgaZmOM3OOaikQQY6MHNdKYRIlIEa5tNbUNnaIszAtAHcU655EkMs6pjBNJcuHk_phgtkjMVQAfmr-Zqlrh3G20MU0rbWaSXsxS_90DeNtazipVjz_ZNIBIrcu5dRRZmPJykToFfwtlmtAAnlcAaZ9C3DJpQqIA2Bp0WgMn571-pZice1nvJHZi9SKA9x46fx1YOjj2x5f_avgKHtgyj1ck49fQWc4vzRu4q66Wk8V8BzbYmO_UznMDn78ewg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB2VltsLl0LBXAcJwZOpvd3aXvEUWqJWJFEVUtQ3a727biNSO0rSPvMJ_AA_x5cwu76QqCAh8WTJHtsr-8zM0e7MWYDXFO5UrJT2M8aVz_M89qUW3DcsiXRmdJDx3G02EQ8GycmJOFqD900vTKUP0U64Wc9w8do6uJ2Q3v6tGno-fUfJSiTXYIMTigjeG_vD7nGvDcSUS6sOFHo3Ja7dRns2YNvNvavZ6ArFvFopucxgXQrq3v2vwd-DOzXzxE4FlfuwZopNuNmv19Y34YYrBlXzB_Cjg4Py0kyw2l4aFyWeOnXqhcGy-Pnte1YSrpDvY394iLZy_hSns3E5a07JQi8bfv2C9YSPxTjajhaUuFzvjr3DQWcPiUBjVZqOLsfWPaI4LnBi60fw84fh6CEcdz-O9g78ehsHX_EwSHwpJUWKKNexyHLij7vxjkpkKAMluQi5iSnKyJ1EcxEJZih-cCONiZQIFEs08aktWC_KwjwG1EGo8ySQTIY5l2EkWS6s4F8sYqKJufLgbfM7U1VrnNutNiZppc7M0vNp6r67B69ay2ml6_EnmwYRKTmdXUmRhSkv5qnV8Ccw84h78KhCSPsUZhdKIxZ4EK9gpzWwgt6rV4rxmRP2jkIrVy88eOOw89eBpf0jd3zyr4Yv4dbBqN9L6Wd-egq3ifQlVcnxM1hfzC7Mc7iuLhfj-exF7UO_APOeIco
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB2VFCpeCpSbuQ4Sgie39nZre8VTaIioaKIotKhv1novJSK1rSTtM5_AD_Tn-iXdXV9IVJCQeLJkj-2VfXbmaHfmDMBb4-5ELIT0M0KFT7WOfS4Z9RVJIpkpGWRUu2YT8XCYnJyw0Rp8aGphKn2IdsHNzgznr-0EV6XUO79VQ8_KbROsWHIL1qntIdOB9d64f3zYOmITS6sKFPNuE7j2Gu3ZgOw0965GoxsU82am5DKDdSGof--_Bn8fNmvmid0KKg9gTeVbsDGo99a34I5LBhXzh3DZxWFxoaZYtZfGRYGnTp16obDIr37-ygqDK6Q9HIwP0GbOn2I5mxSz5hTP5bLhj29YL_hYjKOtaEGOy_nueHgw7O6jIdBYpaaji7F1jShOcpza_BH8-nF89AiO-5-O9j_7dRsHX9AwSHzOufEUkZYxy7Thj3vxrkh4yAPBKQupio2X4buJpCxiRBn_QRVXKhIsECSRhk89hk5e5OopoAxCqZOAEx5qysOIE82s4F_MYkMTtfDgffM7U1FrnNtWG9O0Umcm6VmZuu_uwZvWsqx0Pf5k0yAiNZPO7qTwXBXn89Rq-Bsw04h68KRCSPsUYjdKIxJ4EK9gpzWwgt6rV_LJdyfsHYVWrp558M5h568DSwcjd3z2r4avYWPU66fmX355DncN50uqjOMX0FnMztVLuC0uFpP57FU9ha4BT8MhRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+method+to+generate+on%E2%80%90board+4D+MRI+using+prior+4D+MRI+and+on%E2%80%90board+kV+projections+from+a+conventional+LINAC+for+target+localization+in+liver+SBRT&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Harris%2C+Wendy&rft.au=Wang%2C+Chunhao&rft.au=Yin%2C+Fang%E2%80%90Fang&rft.au=Cai%2C+Jing&rft.date=2018-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=45&rft.issue=7&rft.spage=3238&rft.epage=3245&rft_id=info:doi/10.1002%2Fmp.12998&rft.externalDBID=10.1002%252Fmp.12998&rft.externalDocID=MP12998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon