A New Age of SAR: How Can Commercial Smallsat Constellations Contribute to NASA's Surface Deformation and Change Mission?

In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and space science (Hoboken, N.J.) Jg. 12; H. 1
Hauptverfasser: Huang, Stacey A., Osmanoğlu, Batuhan, Scheuchl, Bernd, Oveisgharan, Shadi, Sauber, Jeanne M., Jo, MinJeong, Khazendar, Ala, Tymofyeyeva, Ekaterina, Wusk, Betsy, Albayrak, Arif
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken John Wiley & Sons, Inc 01.01.2025
American Geophysical Union (AGU)
Schlagworte:
ISSN:2333-5084, 2333-5084
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼ ${\sim} $65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches. Plain Language Summary The Surface Deformation and Change (SDC) mission was identified as one of the five Earth observatories based on the findings of the 2017 Decadal Survey. Characterizing and understanding surface motion and change is critical for studying a variety of Earth processes from earthquakes, volcanoes, and landslides and associated hazard forecasts and disaster managements to glacier dynamics, groundwater, sea level rise, and landscape change. To achieve these aims, precise radar instruments with precise orbit control and knowledge that are capable of observing all land and ice covered surfaces of the Earth are required. Due to the recent rapid growth in the commercial SAR industry, we assessed the current state of the industry to better understand how NASA could potentially leverage commercial smallsat products to meet the needs of the SDC science mission. We have found that current commercial offerings make a small, but significant, contribution to SDC mission goals and have unique science capabilities. However, even by 2030, planned commercial constellations are expected to cover only ∼ ${\sim} $65% of the area needed to match NISAR coverage. Future innovations on smallsat constellation concepts and a demonstrated market need from NASA could potentially increase the role of commercial SAR for science and applications. Key Points The science goals of NASA's Surface Deformation and Change (SDC) mission require capabilities not currently offered by commercial smallsat SAR data Commercial SAR smallsats do provide unique science contributions that augment SDC goals with high‐resolution and rapid repeat observations NASA's need for global coverage at longer wavelengths is not met by current market demand but could be provided by future commercial data
AbstractList In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼ ${\sim} $65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches. Plain Language Summary The Surface Deformation and Change (SDC) mission was identified as one of the five Earth observatories based on the findings of the 2017 Decadal Survey. Characterizing and understanding surface motion and change is critical for studying a variety of Earth processes from earthquakes, volcanoes, and landslides and associated hazard forecasts and disaster managements to glacier dynamics, groundwater, sea level rise, and landscape change. To achieve these aims, precise radar instruments with precise orbit control and knowledge that are capable of observing all land and ice covered surfaces of the Earth are required. Due to the recent rapid growth in the commercial SAR industry, we assessed the current state of the industry to better understand how NASA could potentially leverage commercial smallsat products to meet the needs of the SDC science mission. We have found that current commercial offerings make a small, but significant, contribution to SDC mission goals and have unique science capabilities. However, even by 2030, planned commercial constellations are expected to cover only ∼ ${\sim} $65% of the area needed to match NISAR coverage. Future innovations on smallsat constellation concepts and a demonstrated market need from NASA could potentially increase the role of commercial SAR for science and applications. Key Points The science goals of NASA's Surface Deformation and Change (SDC) mission require capabilities not currently offered by commercial smallsat SAR data Commercial SAR smallsats do provide unique science contributions that augment SDC goals with high‐resolution and rapid repeat observations NASA's need for global coverage at longer wavelengths is not met by current market demand but could be provided by future commercial data
Abstract In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches.
In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼ ${\sim} $65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches.
In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover 65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches. The Surface Deformation and Change (SDC) mission was identified as one of the five Earth observatories based on the findings of the 2017 Decadal Survey. Characterizing and understanding surface motion and change is critical for studying a variety of Earth processes from earthquakes, volcanoes, and landslides and associated hazard forecasts and disaster managements to glacier dynamics, groundwater, sea level rise, and landscape change. To achieve these aims, precise radar instruments with precise orbit control and knowledge that are capable of observing all land and ice covered surfaces of the Earth are required. Due to the recent rapid growth in the commercial SAR industry, we assessed the current state of the industry to better understand how NASA could potentially leverage commercial smallsat products to meet the needs of the SDC science mission. We have found that current commercial offerings make a small, but significant, contribution to SDC mission goals and have unique science capabilities. However, even by 2030, planned commercial constellations are expected to cover only 65% of the area needed to match NISAR coverage. Future innovations on smallsat constellation concepts and a demonstrated market need from NASA could potentially increase the role of commercial SAR for science and applications. The science goals of NASA's Surface Deformation and Change (SDC) mission require capabilities not currently offered by commercial smallsat SAR data Commercial SAR smallsats do provide unique science contributions that augment SDC goals with high‐resolution and rapid repeat observations NASA's need for global coverage at longer wavelengths is not met by current market demand but could be provided by future commercial data
Author Huang, Stacey A.
Scheuchl, Bernd
Osmanoğlu, Batuhan
Jo, MinJeong
Khazendar, Ala
Tymofyeyeva, Ekaterina
Wusk, Betsy
Sauber, Jeanne M.
Albayrak, Arif
Oveisgharan, Shadi
Author_xml – sequence: 1
  givenname: Stacey A.
  orcidid: 0000-0002-7906-8467
  surname: Huang
  fullname: Huang, Stacey A.
  email: stacey.a.huang@nasa.gov
  organization: University of Maryland Baltimore County
– sequence: 2
  givenname: Batuhan
  orcidid: 0000-0002-5857-2883
  surname: Osmanoğlu
  fullname: Osmanoğlu, Batuhan
  organization: NASA Goddard Space Flight Center
– sequence: 3
  givenname: Bernd
  orcidid: 0000-0001-5947-7709
  surname: Scheuchl
  fullname: Scheuchl, Bernd
  organization: University of California
– sequence: 4
  givenname: Shadi
  surname: Oveisgharan
  fullname: Oveisgharan, Shadi
  organization: Jet Propulsion Laboratory
– sequence: 5
  givenname: Jeanne M.
  orcidid: 0000-0002-3620-0712
  surname: Sauber
  fullname: Sauber, Jeanne M.
  organization: NASA Goddard Space Flight Center
– sequence: 6
  givenname: MinJeong
  surname: Jo
  fullname: Jo, MinJeong
  organization: NASA Goddard Space Flight Center
– sequence: 7
  givenname: Ala
  orcidid: 0000-0003-0412-8792
  surname: Khazendar
  fullname: Khazendar, Ala
  organization: Jet Propulsion Laboratory
– sequence: 8
  givenname: Ekaterina
  orcidid: 0000-0001-5638-366X
  surname: Tymofyeyeva
  fullname: Tymofyeyeva, Ekaterina
  organization: Jet Propulsion Laboratory
– sequence: 9
  givenname: Betsy
  surname: Wusk
  fullname: Wusk, Betsy
  organization: NASA Langley Research Center
– sequence: 10
  givenname: Arif
  surname: Albayrak
  fullname: Albayrak, Arif
  organization: NASA Goddard Space Flight Center
BookMark eNp9kV1rFDEUhgepYK298wcEvPDG1ZNkPr2RYVxtoVZw9Dokk5OaJTOpSZZl_73Z3QpF0KucvDznPV_Pi7PFL1gULym8pcC6dwxYue4BeMvZk-Kccc5XFbTl2aP4WXEZ4wYAKKvqzJ8X-57c4o70d0i8IWP_7T258jsyyIUMfp4xTFY6Ms7SuShT1paY0DmZbI4O3xSs2iYkyZPbfuxfRzJug5ETko9ofJiPJJGLJsNPueQyX2yMWfrwonhqpIt4-fBeFD8-rb8PV6ubr5-vh_5mNZUU6lVVazYBLbXiQBtWVXVVAuXMNNBy3bR8QuxMHtBwrRVlDdOGoupo0yDwqeIXxfXJV3u5EffBzjLshZdWHAUf7oQMyU4ORQ2tajTSWnaszKaqlYDKNEpV0oA6eL06ed0H_2uLMYmN34Ylty84zQvtKG26TLETNQUfY0AjJpuOe0hBWicoiMPFxOOL5aQ3fyX9afUf-EONnXW4_y8r1uPIaMdr_huW_qO3
CitedBy_id crossref_primary_10_1016_j_actaastro_2025_07_043
crossref_primary_10_1016_j_xinn_2025_100949
Cites_doi 10.1016/j.actaastro.2011.12.014
10.1016/s0034‐4257(96)00148‐4
10.2514/6.2014-4205
10.1109/LGRS.2019.2962574
10.1080/13658816.2018.1504949
10.1109/IGARSS.2004.1369069
10.1016/j.spacepol.2007.09.011
10.22541/essoar.173134230.03179851/v1
10.1109/IGARSS.2017.8126911
10.1109/AERO.2019.8741813
10.2514/6.2014-4117
10.1109/IGARSS47720.2021.9554486
10.1109/IGARSS52108.2023.10283030
10.1117/12.818484
10.1109/tgrs.2013.2272791
10.1029/97RG03139
10.1073/pnas.2220924120
10.1109/AERO.2008.4526278
10.3390/rs12162546
10.3390/rs70809587
10.5194/tc‐12‐867‐2018
10.1109/IGARSS52108.2023.10282735
10.1109/MAES.2019.2928612
10.1080/01431160801914952
10.3390/RS12091364
10.1002/navi.216
10.1016/j.rse.2003.07.007
10.1596/0-8213-5930-4
10.1016/j.actaastro.2023.09.041
10.3390/rs16193600
10.1073/pnas.2404766121
10.1109/IGARSS.2019.8899231
10.1109/36.175330
10.1109/IGARSS.2014.6946711
10.1109/jproc.2018.2793179
10.1016/j.actaastro.2021.07.009
10.1016/j.paerosci.2016.11.002
10.1016/j.tecto.2011.10.013
10.1093/gji/ggu276
10.1016/B978-0-323-91166-5.00002-1
10.1109/lgrs.2015.2409885
10.1016/j.actaastro.2020.01.034
10.1126/science.adn2838
10.1016/j.spacepol.2021.101422
10.1109/5.838084
10.1109/IGARSS47720.2021.9553966
10.1109/RADAR.2017.7944237
10.1109/mgrs.2013.2248301
10.1109/jstars.2014.2317287
10.1109/RADAR.2007.374311
10.1109/IGARSS.2014.6947215
10.1109/IGARSS53475.2024.10641030
10.1109/tgrs.2009.2037432
10.7927/H4S180F9
10.3390/rs13101959
10.1007/s00190‐012‐0571‐6
10.3390/rs15143622
10.1109/AERO50100.2021.9438290
10.1109/mgrs.2015.2437353
10.1016/j.actaastro.2010.04.017
10.1109/tgrs.2010.2051333
10.1109/lgrs.2023.3347030
10.1130/0091‐7613(1996)024<0495:aoalfo>2.3.co;2
10.3390/rs11192230
10.5194/isprs‐archives‐xlviii‐m‐1‐2023‐225‐2023
10.1109/tgrs.2017.2776140
10.1109/36.239913
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1029/2024EA003832
DatabaseName Wiley Online Library : Open Access journals [open access]
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2333-5084
EndPage n/a
ExternalDocumentID oai_doaj_org_article_608b7de16a9249f3b8a0ebf7bb5af0b5
10_1029_2024EA003832
ESS21936
Genre researchArticle
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAMMB
AAZKR
ABDBF
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEUYN
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IEP
IGS
ITC
KQ8
O9-
OK1
PCBAR
PHGZM
PHGZT
PIMPY
WIN
AAYXX
AFFHD
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
M~E
ID FETCH-LOGICAL-c4106-56d2c014db30172556540132f7083d783cee9f333f3ddb1272df1eb9177e03c53
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001401035600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2333-5084
IngestDate Tue Oct 14 19:06:25 EDT 2025
Wed Aug 13 03:28:35 EDT 2025
Tue Nov 18 22:36:14 EST 2025
Sat Nov 29 02:25:30 EST 2025
Wed Aug 20 07:26:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4106-56d2c014db30172556540132f7083d783cee9f333f3ddb1272df1eb9177e03c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5857-2883
0000-0001-5947-7709
0000-0003-0412-8792
0000-0002-3620-0712
0000-0001-5638-366X
0000-0002-7906-8467
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024EA003832
PQID 3160291179
PQPubID 4368366
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_608b7de16a9249f3b8a0ebf7bb5af0b5
proquest_journals_3160291179
crossref_citationtrail_10_1029_2024EA003832
crossref_primary_10_1029_2024EA003832
wiley_primary_10_1029_2024EA003832_ESS21936
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2009; 7308
2013; 1
2019; 11
2017; 88
2000; 88
2020; 17
2024; 383
2020; 12
2004; 1
2024
2010; 67
2023; 21
2021; 50100
2000
1997; 59
2008; 29
2020; 170
1993; 31
2013; 52
2023; 213
1996; 24
2014; 7
2007; 23
2003; 88
2015; 12
2015; 3
2023; 120
2018; 106
2023; 15
2019; 33
2019; 34
2008
2007
2024; 121
2005
2021; 187
2014; 199
2018; 65
2024; 16
2015; 7
2012; 74
1992; 30
2021; 13
2010; 48
2021; 56
2023
2022
2021
2023; 48
2020
2017; 56
2019
2018
2017
2015
2012; 514–517
2014
2013
2018; 12
2012; 86
1998; 36
e_1_2_9_75_1
e_1_2_9_31_1
Kraus T. (e_1_2_9_37_1) 2024
e_1_2_9_52_1
e_1_2_9_73_1
e_1_2_9_79_1
Fornaro G. (e_1_2_9_21_1) 2024
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Euroconsult (e_1_2_9_18_1) 2020
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Friedl M. (e_1_2_9_22_1) 2015
e_1_2_9_28_1
e_1_2_9_47_1
Harrison T. (e_1_2_9_26_1) 2022
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
NISAR (e_1_2_9_50_1) 2018
e_1_2_9_76_1
National Academies of Sciences (e_1_2_9_49_1) 2018
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
Scheuchl B. (e_1_2_9_70_1) 2013
e_1_2_9_29_1
References_xml – volume: 65
  start-page: 15
  issue: 1
  year: 2018
  end-page: 24
  article-title: Precise Orbit and Baseline Determination for the SAOCOM‐CS Bistatic Radar Mission
  publication-title: Navigation
– start-page: 0410
  year: 2017
  end-page: 0414
– year: 2005
– volume: 12
  start-page: 1
  issue: 9
  year: 2020
  end-page: 18
  article-title: Radar interferometry: 20 years of development in time series techniques and future perspectives
  publication-title: Remote Sensing
– volume: 12
  start-page: 1486
  issue: 7
  year: 2015
  end-page: 1490
  article-title: Role of the orbital tube in interferometric spaceborne SAR missions
  publication-title: IEEE Geoscience and Remote Sensing Letters
– year: 2021
– volume: 52
  start-page: 3421
  issue: 6
  year: 2013
  end-page: 3427
  article-title: Joint correction of ionosphere noise and orbital error in L‐band SAR interferometry of interseismic deformation in southern California
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 2024
– volume: 59
  start-page: 141
  issue: 2
  year: 1997
  end-page: 156
  article-title: The use of imaging radars for ecological applications—A review
  publication-title: Remote sensing of environment
– start-page: 231
  year: 2022
  end-page: 251
– start-page: 1513
  year: 2023
  end-page: 1516
– volume: 56
  start-page: 2147
  issue: 4
  year: 2017
  end-page: 2158
  article-title: Performance of 3‐D surface deformation estimation for simultaneous squinted SAR acquisitions
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 15
  issue: 14
  year: 2023
  article-title: Monitoring braided river‐bed dynamics at the sub‐event time scale using time series of Sentinel‐1 SAR imagery
  publication-title: Remote Sensing
– volume: 120
  issue: 20
  year: 2023
  article-title: Melt rates in the kilometer‐size grounding zone of Petermann Glacier, Greenland, before and during a retreat
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 1573
  year: 2023
  end-page: 1576
– year: 2018
– year: 2014
– volume: 170
  start-page: 93
  year: 2020
  end-page: 105
  article-title: Small satellites an overview and assessment
  publication-title: Acta Astronautica
– volume: 187
  start-page: 458
  year: 2021
  end-page: 474
  article-title: Small satellite synthetic aperture radar (SAR) design: A trade space exploration model
  publication-title: Acta Astronautica
– start-page: 8378
  year: 2019
  end-page: 8380
– start-page: 11326
  year: 2024
  end-page: 11329
– volume: 7
  start-page: 9587
  issue: 8
  year: 2015
  end-page: 9609
  article-title: Sensitivity of multi‐source SAR backscatter to changes in forest aboveground biomass
  publication-title: Remote Sensing
– volume: 31
  start-page: 896
  issue: 4
  year: 1993
  end-page: 906
  article-title: Change detection techniques for ERS‐1 SAR data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 48
  start-page: 4309
  issue: 12
  year: 2010
  end-page: 4321
  article-title: Geodetically accurate InSAR data processor
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 1
  start-page: 485
  year: 2004
  end-page: 488
– start-page: 4205
  year: 2014
– volume: 24
  start-page: 495
  issue: 6
  year: 1996
  end-page: 498
  article-title: Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR‐C radar correlation measurements
  publication-title: Geology
– volume: 199
  start-page: 549
  issue: 1
  year: 2014
  end-page: 560
  article-title: InSAR uncertainty due to orbital errors
  publication-title: Geophysical Journal International
– start-page: 1745
  year: 2021
  end-page: 1748
– year: 2022
– volume: 30
  start-page: 950
  issue: 5
  year: 1992
  end-page: 959
  article-title: Decorrelation in interferometric radar echoes
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 56
  year: 2021
  article-title: Satellite Earth observation and national data regulation
  publication-title: Space Policy
– volume: 29
  start-page: 4285
  issue: 15
  year: 2008
  end-page: 4337
  article-title: An overview of small satellites in remote sensing
  publication-title: International Journal of Remote Sensing
– start-page: 129
  year: 2017
  end-page: 132
– start-page: 3415
  year: 2014
  end-page: 3417
– volume: 3
  start-page: 8
  issue: 2
  year: 2015
  end-page: 23
  article-title: Tandem‐L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 67
  start-page: 584
  issue: 5–6
  year: 2010
  end-page: 595
  article-title: Statistical reliability analysis of satellites by mass category: Does spacecraft size matter?
  publication-title: Acta Astronautica
– start-page: 753
  year: 2024
  end-page: 756
– year: 2015
– volume: 86
  start-page: 1147
  issue: 12
  year: 2012
  end-page: 1164
  article-title: Reliable estimation of orbit errors in spaceborne SAR interferometry: The network approach
  publication-title: Journal of Geodesy
– volume: 23
  start-page: 221
  issue: 4
  year: 2007
  end-page: 233
  article-title: Whose jurisdiction over the US commercial satellite industry? Factors affecting international security and competition
  publication-title: Space Policy
– volume: 88
  start-page: 59
  year: 2017
  end-page: 83
  article-title: CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions
  publication-title: Progress in Aerospace Sciences
– volume: 7
  start-page: 2754
  issue: 7
  year: 2014
  end-page: 2762
  article-title: The COSMO‐SkyMed dual use Earth observation program: Development, qualification, and results of the commissioning of the overall constellation
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– start-page: 1
  year: 2008
  end-page: 10
– volume: 21
  start-page: 1
  year: 2023
  end-page: 5
  article-title: Interferometric assessment of SAOCOM‐1 TOPSAR data
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 213
  start-page: 455
  year: 2023
  end-page: 463
  article-title: Are smallsats taking over bigsats for land Earth observation?
  publication-title: Acta Astronautica
– volume: 33
  start-page: 454
  issue: 3
  year: 2019
  end-page: 465
  article-title: The equal Earth map projection
  publication-title: International Journal of Geographical Information Science
– year: 2000
– start-page: 1493
  year: 2021
  end-page: 1496
– volume: 383
  start-page: 1228
  issue: 6688
  year: 2024
  end-page: 1235
  article-title: Fracturing and tectonic stress drive ultrarapid magma flow into dikes
  publication-title: Science
– volume: 17
  start-page: 2085
  issue: 12
  year: 2020
  end-page: 2089
  article-title: ConGaLSAR: A Constellation of Geostationary and Low Earth Orbit Synthetic Aperture Radar
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 7308
  start-page: 19
  year: 2009
  end-page: 26
– volume: 34
  start-page: 50
  issue: 10
  year: 2019
  end-page: 59
  article-title: Smaller satellites, larger constellations: Trends and design issues for Earth observation systems
  publication-title: IEEE Aerospace and Electronic Systems Magazine
– volume: 48
  start-page: 615
  issue: 2
  year: 2010
  end-page: 622
  article-title: The TerraSAR‐X satellite
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 1457
  year: 2014
  end-page: 1460
– volume: 88
  start-page: 3
  issue: 1–2
  year: 2003
  end-page: 16
  article-title: Government programs for research and operational uses of commercial remote sensing data
  publication-title: Remote Sensing of Environment
– start-page: 740
  year: 2007
  end-page: 745
– volume: 11
  issue: 19
  year: 2019
  article-title: Using long‐term SAR backscatter data to monitor post‐fire vegetation recovery in tundra environment
  publication-title: Remote Sensing
– volume: 48
  start-page: 225
  year: 2023
  end-page: 232
  article-title: Benefit assessment of commercial synthetic aperture radar observations for NASA’s surface deformation and change mission study
  publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 121
  issue: 22
  year: 2024
  article-title: Widespread seawater intrusions beneath the grounded ice of Thwaites Glacier, West Antarctica
  publication-title: Proceedings of the National Academy of Sciences
– year: 2020
– volume: 74
  start-page: 50
  year: 2012
  end-page: 68
  article-title: A survey and assessment of the capabilities of Cubesats for Earth observation
  publication-title: Acta Astronautica
– year: 2023
– volume: 12
  issue: 16
  year: 2020
  article-title: Small‐satellite synthetic aperture radar for continuous global biospheric monitoring: A review
  publication-title: Remote Sensing
– volume: 50100
  start-page: 1
  year: 2021
  end-page: 19
– volume: 13
  issue: 10
  year: 2021
  article-title: Potential of a SAR small‐satellite constellation for rapid monitoring of flood extent
  publication-title: Remote Sensing
– volume: 1
  start-page: 6
  issue: 1
  year: 2013
  end-page: 43
  article-title: A tutorial on synthetic aperture radar
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 36
  start-page: 441
  issue: 4
  year: 1998
  end-page: 500
  article-title: Radar interferometry and its application to changes in the Earth’s surface
  publication-title: Reviews of Geophysics
– volume: 88
  start-page: 333
  issue: 3
  year: 2000
  end-page: 382
  article-title: Synthetic aperture radar interferometry
  publication-title: Proceedings of the IEEE
– volume: 12
  start-page: 867
  issue: 3
  year: 2018
  end-page: 890
  article-title: Using SAR satellite data time series for regional glacier mapping
  publication-title: The Cryosphere
– year: 2017
– start-page: 1
  year: 2019
  end-page: 10
– volume: 16
  issue: 19
  year: 2024
  article-title: Assessment of Hongtu‐1 Multi‐Static X‐Band SAR Constellation Interferometry
  publication-title: Remote Sensing
– volume: 106
  start-page: 404
  issue: 3
  year: 2018
  end-page: 418
  article-title: Radar technologies for Earth remote sensing from CubeSat platforms
  publication-title: Proceedings of the IEEE
– volume: 514–517
  start-page: 1
  year: 2012
  end-page: 13
  article-title: Recent advances in SAR interferometry time series analysis for measuring crustal deformation
  publication-title: Tectonophysics
– year: 2013
– ident: e_1_2_9_71_1
  doi: 10.1016/j.actaastro.2011.12.014
– ident: e_1_2_9_32_1
  doi: 10.1016/s0034‐4257(96)00148‐4
– ident: e_1_2_9_48_1
– ident: e_1_2_9_45_1
  doi: 10.2514/6.2014-4205
– ident: e_1_2_9_82_1
  doi: 10.1109/LGRS.2019.2962574
– ident: e_1_2_9_69_1
  doi: 10.1080/13658816.2018.1504949
– ident: e_1_2_9_9_1
  doi: 10.1109/IGARSS.2004.1369069
– ident: e_1_2_9_86_1
  doi: 10.1016/j.spacepol.2007.09.011
– volume-title: 15th European Conference on Synthetic Aperture Radar, EUSAR 2024
  year: 2024
  ident: e_1_2_9_37_1
– ident: e_1_2_9_29_1
  doi: 10.22541/essoar.173134230.03179851/v1
– ident: e_1_2_9_46_1
  doi: 10.1109/IGARSS.2017.8126911
– ident: e_1_2_9_47_1
– ident: e_1_2_9_51_1
– ident: e_1_2_9_68_1
  doi: 10.1109/AERO.2019.8741813
– ident: e_1_2_9_76_1
  doi: 10.2514/6.2014-4117
– ident: e_1_2_9_31_1
  doi: 10.1109/IGARSS47720.2021.9554486
– ident: e_1_2_9_74_1
– ident: e_1_2_9_19_1
  doi: 10.1109/IGARSS52108.2023.10283030
– ident: e_1_2_9_75_1
  doi: 10.1117/12.818484
– ident: e_1_2_9_38_1
  doi: 10.1109/tgrs.2013.2272791
– ident: e_1_2_9_40_1
  doi: 10.1029/97RG03139
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.2220924120
– ident: e_1_2_9_12_1
  doi: 10.1109/AERO.2008.4526278
– ident: e_1_2_9_53_1
  doi: 10.3390/rs12162546
– volume-title: NASA‐ISRO SAR (NISAR) Mission Science Users’ Handbook
  year: 2018
  ident: e_1_2_9_50_1
– ident: e_1_2_9_30_1
  doi: 10.3390/rs70809587
– ident: e_1_2_9_33_1
– ident: e_1_2_9_81_1
  doi: 10.5194/tc‐12‐867‐2018
– ident: e_1_2_9_59_1
  doi: 10.1109/IGARSS52108.2023.10282735
– ident: e_1_2_9_39_1
  doi: 10.1109/MAES.2019.2928612
– ident: e_1_2_9_36_1
  doi: 10.1080/01431160801914952
– ident: e_1_2_9_41_1
  doi: 10.3390/RS12091364
– ident: e_1_2_9_42_1
  doi: 10.1002/navi.216
– ident: e_1_2_9_5_1
  doi: 10.1016/j.rse.2003.07.007
– ident: e_1_2_9_79_1
– ident: e_1_2_9_13_1
  doi: 10.1596/0-8213-5930-4
– ident: e_1_2_9_11_1
  doi: 10.1016/j.actaastro.2023.09.041
– ident: e_1_2_9_80_1
  doi: 10.3390/rs16193600
– ident: e_1_2_9_60_1
  doi: 10.1073/pnas.2404766121
– ident: e_1_2_9_64_1
  doi: 10.1109/IGARSS.2019.8899231
– ident: e_1_2_9_85_1
  doi: 10.1109/36.175330
– ident: e_1_2_9_23_1
  doi: 10.1109/IGARSS.2014.6946711
– ident: e_1_2_9_54_1
  doi: 10.1109/jproc.2018.2793179
– ident: e_1_2_9_24_1
  doi: 10.1016/j.actaastro.2021.07.009
– ident: e_1_2_9_56_1
  doi: 10.1016/j.paerosci.2016.11.002
– ident: e_1_2_9_27_1
  doi: 10.1016/j.tecto.2011.10.013
– ident: e_1_2_9_20_1
  doi: 10.1093/gji/ggu276
– ident: e_1_2_9_4_1
  doi: 10.1016/B978-0-323-91166-5.00002-1
– ident: e_1_2_9_6_1
– ident: e_1_2_9_58_1
  doi: 10.1109/lgrs.2015.2409885
– ident: e_1_2_9_35_1
  doi: 10.1016/j.actaastro.2020.01.034
– ident: e_1_2_9_73_1
  doi: 10.1126/science.adn2838
– ident: e_1_2_9_25_1
  doi: 10.1016/j.spacepol.2021.101422
– ident: e_1_2_9_63_1
  doi: 10.1109/5.838084
– ident: e_1_2_9_66_1
  doi: 10.1109/IGARSS47720.2021.9553966
– volume-title: Commercial space remote sensing and its role in national security
  year: 2022
  ident: e_1_2_9_26_1
– ident: e_1_2_9_65_1
  doi: 10.1109/RADAR.2017.7944237
– ident: e_1_2_9_44_1
  doi: 10.1109/mgrs.2013.2248301
– volume-title: Thriving on our changing planet
  year: 2018
  ident: e_1_2_9_49_1
– ident: e_1_2_9_7_1
  doi: 10.1109/jstars.2014.2317287
– ident: e_1_2_9_62_1
  doi: 10.1109/RADAR.2007.374311
– ident: e_1_2_9_77_1
– ident: e_1_2_9_2_1
  doi: 10.1109/IGARSS.2014.6947215
– ident: e_1_2_9_16_1
  doi: 10.1109/IGARSS53475.2024.10641030
– ident: e_1_2_9_55_1
  doi: 10.1109/tgrs.2009.2037432
– ident: e_1_2_9_8_1
  doi: 10.7927/H4S180F9
– ident: e_1_2_9_34_1
  doi: 10.3390/rs13101959
– ident: e_1_2_9_78_1
  doi: 10.7927/H4S180F9
– ident: e_1_2_9_3_1
  doi: 10.1007/s00190‐012‐0571‐6
– ident: e_1_2_9_67_1
  doi: 10.3390/rs15143622
– ident: e_1_2_9_28_1
  doi: 10.1109/AERO50100.2021.9438290
– ident: e_1_2_9_43_1
  doi: 10.1109/mgrs.2015.2437353
– ident: e_1_2_9_14_1
  doi: 10.1016/j.actaastro.2010.04.017
– start-page: 753
  volume-title: EUSAR 2024; 15th European Conference on Synthetic Aperture Radar
  year: 2024
  ident: e_1_2_9_21_1
– volume-title: SAR Science Requirements for Ice Sheets
  year: 2013
  ident: e_1_2_9_70_1
– ident: e_1_2_9_83_1
  doi: 10.1109/tgrs.2010.2051333
– ident: e_1_2_9_17_1
  doi: 10.1109/lgrs.2023.3347030
– ident: e_1_2_9_84_1
  doi: 10.1130/0091‐7613(1996)024<0495:aoalfo>2.3.co;2
– ident: e_1_2_9_72_1
– ident: e_1_2_9_15_1
– ident: e_1_2_9_87_1
  doi: 10.3390/rs11192230
– volume-title: Satellite‐Based earth observation 2020
  year: 2020
  ident: e_1_2_9_18_1
– ident: e_1_2_9_52_1
  doi: 10.5194/isprs‐archives‐xlviii‐m‐1‐2023‐225‐2023
– ident: e_1_2_9_57_1
  doi: 10.1109/tgrs.2017.2776140
– ident: e_1_2_9_61_1
  doi: 10.1109/36.239913
– volume-title: MCD12C1 MODIS/Terra+Aqua land cover type yearly L3 global 0.05deg CMG V006
  year: 2015
  ident: e_1_2_9_22_1
SSID ssj0001256024
Score 2.2922652
Snippet In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential...
Abstract In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms commercial SAR
Cryosphere
Earth observation
Earthquakes
Ecosystems
Geometry
Interferometry
interferometry (InSAR)
Landslides & mudslides
Satellites
Science
smallsats (small satellites)
surface deformation and change
synthetic aperture radar (SAR)
Time series
Wavelengths
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhtNBLadOUbpuGOTT0UExkybasXoqb5uOSpXQTyM3oswQ23rK7Sci_z4zsLJtDm0uPNjIMo5HmPVkzj7FPXEZcf1FkVVm4rKi9zkwQLstzFXREQOK5T2ITajyuLy70zzWpL7oT1rcH7h23X_HaKh_yyhBTiNLWhgcblbWlidym7qWIetbIVH-6gplcFMNNdy40kfzisKEfYVI8ykGpVf8jfLmOUlOaOXrFXg74EJrertdsI3Rb7Plx0t-9e8PuGsBtCZrfAWYRJs2vr3Ayu4UD0wGVepB8En49uTLT6cIsgeQ4qUykP5ajx17gKsByBuNm0nxewOR6Ho0L8COsChnBdB76ugM4vaR7st23bXZ-dHh2cJIN6gmZK5DnZWXlhUMC5K0knlciciMuJaJC1OVVLTE9oj-ljNJ7mwslfMyDRfqmApeulG_ZZjfrwjsGgjvENUpp7YuCW2dNYZVFV9o8BMv1iH158GfrhtbipHAxbdMvbqHbde-P2N5q9J--pcZfxn2nqVmNoUbY6QWGRzuER_tUeIzYzsPEtsPqXLQyx-DQ1AwPLU-T_U9DWlwKuLHL6v3_sOgDeyFIQzgd4-ywzeX8Onxkz9zN8nIx301hfA-YpPGD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgCxIXvisWWuQDiAOKcGwnjrlUabulF1ZVF6TeIn9WlZakbLag_ns8jne7PdBLj4mcyNJ4PO-NPfMQ-kCYD_7naVYW3GS8sjJTjposz4WTPgASS2wUmxDTaXV2Jk9Swq1P1ypXe2LcqG1nIEf-heUloRIamO1d_s5ANQpOV5OExkO0BZ3K-Aht7U-mJ6cbWZYQ0SlPN97DD4Ds80kNB2KM3opFsWX_LZy5iVZjuDl6dt-JPkdPE9DE9bAyXqAHrn2JHn-LQr7Xr9B1jcP-hutzhzuPZ_XpV3zc_cUHqsVQMwI6TOHr2S81n_dqiUHXE-pNhvwePA5KWQ4vOzytZ_WnHs-uFl4Zhw_duiISq9bioYABf7-AC7ft3mv082jy4-A4SzIMmeGBMGZFaakJTMpqBoSxCBAQSBn1IsA3KyoW4qz0jDHPrNU5FdT63OnAA4UjzBRsG43arnVvEKbEBIAkhJSWc6KNVlwLHWyhc-c0kWP0eWWQxqQe5SCVMW_iWTmVzab5xujjevTl0JvjP-P2wbbrMdBRO77oFudNctCmJJUW1uWlAkbqma4UcdoLrQvliS7GaGdl7ia5ed_c2DrMPK6WOyfSBJ8KEYKVb-_-2Tv0hILMcMz07KDRcnHldtEj82d50S_epzX-DxnJ_7A
  priority: 102
  providerName: ProQuest
Title A New Age of SAR: How Can Commercial Smallsat Constellations Contribute to NASA's Surface Deformation and Change Mission?
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024EA003832
https://www.proquest.com/docview/3160291179
https://doaj.org/article/608b7de16a9249f3b8a0ebf7bb5af0b5
Volume 12
WOSCitedRecordID wos001401035600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: PCBAR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQCxIXylMsLSsfQBxQhGMnccIFpe2W9tAo6oIop8jPqtKSoM0W1H_PjJOutgcqIY6OHMuyZzwPe76PkDdMeNA_z6MsTUyU5LaIlOMmimPpCg8OiWU2kE3IqsrPz4t6TLhhLcyAD7FOuKFmhPMaFVzpfgQbQIxMiNqTWYk3WwKO4O04FjlSN_Ck3sixgD0PvLZcCBGBL5KMb99hiA-bA9yySgG8_5bHuem3BsNztPO_U35MHo0uJy0HGXlC7rn2KXnwOVD6Xj8j1yWFk46WF452ns7Ls4_0uPtND1RLsXoEGZng7_kPtVj0akWR4RMrT4ZMHzYHzixHVx2tynn5rqfzq6VXxtFDt66NpKq1dChloKeX-PS2_fScfD2afTk4jkZChsgkEDpGaWa5gZjKaoGhYwrOIIZn3Etw5KzMBVjcwsNSe2Gtjrnk1sdOQ0QoHRMmFS_IVtu17iWhnBlwlaQsCpskTButEi01rIyOndOsmJD3NxvSmBGtHEkzFk24NedFs7mYE_J23fvngNLxl377uLfrPoitHT50y4tmVNUmY7mW1sWZwtjUC50r5rSXWqfKM51OyN6NZDSjwveNiEHSCsTXg5kHGbhzIg1oF9gKkb36p9675CFH_uGQAtojW6vllXtN7ptfq8t-OQ3CPyXb-7OqPpuG7AK06pPT-ju0vp1UfwAXvwLy
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKC4ILb8RCAR8oHFCEYydxgoRQum3Zqu2q6hapt-BnVWlJymZLtX-K38hMkl22B3rrgWMiJ7Ls8cw345n5CHnLhIfz53mQxJEJotRmgXLcBGEoXeYBkFhmG7IJORymJyfZ4Qr5Pa-FwbTKuU5sFLWtDMbIP4owYTzDBmZdBuWem12Cf1Z_3t2CzdzgfGf7uD8IOgqBwETg7ARxYrkBL8Bqgc5ODPAFHQruJUAPK1MBNiLzQggvrNUhl9z60GnwYaRjwiAlBH93_jNAliq8ze0oO26RtTTJYjhXa4f9zfxoKaoDCIJHXYY9TBiDC9F2jhdwgl-xfQ1FwBVcu4yOG_O28-B_W5iH5H4HpGneSv4jsuLKx-TO14aoePaEzHIK-pvmp45Wno7yo090UF3Sviop1sQgzxR8PfqhxuNaTSnylmI9TRu_xMeWCczRaUWH-Sh_X9PRxcQr4-iWW1R8UlVa2hZo0IMzTCguvzwl325kKZ6R1bIq3XNCOTMAAKXMMhtFTButIi017L0OndMs65EPcwEoTNeDHalAxkWTC8CzYllcemRjMfq87T3yj3GbKEuLMdgxvHlRTU6LTgEVCUu1tC5MFHrcXuhUMae91DpWnum4R9bn4lV0aqwu_soWzLyRzmsnUoDOAAsokhfX_-wNuTs4Ptgv9neHey_JPY6Uyk1Ua52sTicX7hW5bX5Nz-rJ6-58UfL9poX5D6FOWQ8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VLSAuvBEpBfZAxQFZXe_aXhsJVaZpaFQaRQSk9mS8r6pSapc4pcpf49cx40dID_TWA0dba2ttfzv7zXhmPkLeMuFg_TnuRWGgvSA2iZdbrj3flzZxQEgMM7XYhByN4uPjZLxGfne1MJhW2dnE2lCbUmOMfEf4EeMJNjDbcW1axLg_2L346aGCFP5p7eQ0Gogc2sUVuG_Vx2EfvvU254P9b3sHXqsw4OkAfCEvjAzX4CQYJdAXCoHdoL_BnQRmYmQsYAtJnBDCCWOUzyU3zrcKXBxpmdCoGAHmfwMoeQBrbGM8PBqfrER4gE3woM22h8ljoCHYT_FnnODX9sFaLuAax11lyvVWN3j4P7-kR-RBS7Bp2qyIx2TNFk_I3c-1gPHiKVmkFOw6TU8tLR2dpF8_0IPyiu7lBcVaGdSfgqsn5_l0WuVzinqmWGfTxDXxsFEIs3Re0lE6Sd9VdHI5c7m2tG-XlaA0LwxtCjfo0RkmGhe7z8j3W3nu52S9KAv7glDONBBDKZPEBAFTWuWBkgpwoHxrFUt65H0Hhky3vdlRImSa1TkCPMlWodMj28vRF01Pkn-M-4S4Wo7BTuL1iXJ2mrWGKYtYrKSxfpSjJ-6EinNmlZNKhbljKuyRrQ5qWWvequwvzmDmNVJvnEgGtgR2RhFt3nyzN-QewDX7MhwdviT3OSot18GuLbI-n13aV-SO_jU_q2av26VGyY_bBu4f0CZiFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Age+of+SAR%3A+How+Can+Commercial+Smallsat+Constellations+Contribute+to+NASA%27s+Surface+Deformation+and+Change+Mission%3F&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Huang%2C+Stacey+A.&rft.au=Osmano%C4%9Flu%2C+Batuhan&rft.au=Scheuchl%2C+Bernd&rft.au=Oveisgharan%2C+Shadi&rft.date=2025-01-01&rft.issn=2333-5084&rft.eissn=2333-5084&rft.volume=12&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024EA003832&rft.externalDBID=10.1029%252F2024EA003832&rft.externalDocID=ESS21936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon