A New Age of SAR: How Can Commercial Smallsat Constellations Contribute to NASA's Surface Deformation and Change Mission?
In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the c...
Gespeichert in:
| Veröffentlicht in: | Earth and space science (Hoboken, N.J.) Jg. 12; H. 1 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
John Wiley & Sons, Inc
01.01.2025
American Geophysical Union (AGU) |
| Schlagworte: | |
| ISSN: | 2333-5084, 2333-5084 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼ ${\sim} $65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches.
Plain Language Summary
The Surface Deformation and Change (SDC) mission was identified as one of the five Earth observatories based on the findings of the 2017 Decadal Survey. Characterizing and understanding surface motion and change is critical for studying a variety of Earth processes from earthquakes, volcanoes, and landslides and associated hazard forecasts and disaster managements to glacier dynamics, groundwater, sea level rise, and landscape change. To achieve these aims, precise radar instruments with precise orbit control and knowledge that are capable of observing all land and ice covered surfaces of the Earth are required. Due to the recent rapid growth in the commercial SAR industry, we assessed the current state of the industry to better understand how NASA could potentially leverage commercial smallsat products to meet the needs of the SDC science mission. We have found that current commercial offerings make a small, but significant, contribution to SDC mission goals and have unique science capabilities. However, even by 2030, planned commercial constellations are expected to cover only ∼ ${\sim} $65% of the area needed to match NISAR coverage. Future innovations on smallsat constellation concepts and a demonstrated market need from NASA could potentially increase the role of commercial SAR for science and applications.
Key Points
The science goals of NASA's Surface Deformation and Change (SDC) mission require capabilities not currently offered by commercial smallsat SAR data
Commercial SAR smallsats do provide unique science contributions that augment SDC goals with high‐resolution and rapid repeat observations
NASA's need for global coverage at longer wavelengths is not met by current market demand but could be provided by future commercial data |
|---|---|
| AbstractList | In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼ ${\sim} $65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches.
Plain Language Summary
The Surface Deformation and Change (SDC) mission was identified as one of the five Earth observatories based on the findings of the 2017 Decadal Survey. Characterizing and understanding surface motion and change is critical for studying a variety of Earth processes from earthquakes, volcanoes, and landslides and associated hazard forecasts and disaster managements to glacier dynamics, groundwater, sea level rise, and landscape change. To achieve these aims, precise radar instruments with precise orbit control and knowledge that are capable of observing all land and ice covered surfaces of the Earth are required. Due to the recent rapid growth in the commercial SAR industry, we assessed the current state of the industry to better understand how NASA could potentially leverage commercial smallsat products to meet the needs of the SDC science mission. We have found that current commercial offerings make a small, but significant, contribution to SDC mission goals and have unique science capabilities. However, even by 2030, planned commercial constellations are expected to cover only ∼ ${\sim} $65% of the area needed to match NISAR coverage. Future innovations on smallsat constellation concepts and a demonstrated market need from NASA could potentially increase the role of commercial SAR for science and applications.
Key Points
The science goals of NASA's Surface Deformation and Change (SDC) mission require capabilities not currently offered by commercial smallsat SAR data
Commercial SAR smallsats do provide unique science contributions that augment SDC goals with high‐resolution and rapid repeat observations
NASA's need for global coverage at longer wavelengths is not met by current market demand but could be provided by future commercial data Abstract In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches. In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover ∼ ${\sim} $65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches. In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential mission concepts. As part of the SDC mission study, the Commercial Synthetic Aperture Radar (ComSAR) subgroup was tasked with evaluating the current landscape of the SAR and interferometric SAR (InSAR) industry to assess whether NASA could leverage commercial smallsat products to meet the needs of the SDC science mission. The assessment found that although the commercial SAR industry is growing rapidly, off‐the‐shelf products can currently only make a small—albeit distinct—contribution to SDC mission goals. This gap is due to different design goals between current commercial systems (which prioritize targeted high‐resolution, non‐interferometric observations at short wavelengths with a daily or faster revisit) and a future SDC architecture (which focuses on broad, moderate‐resolution, and interferometric observations at long wavelengths). Even by 2030, planned commercial constellations are expected to only cover 65% of the area needed to match NISAR coverage. Still, high‐resolution and rapid‐repeat capabilities can augment scientific findings from a future SDC mission, as demonstrated by recent contributions from commercial data to applied sciences, cryosphere, and volcanology. Future innovations on smallsat constellation concepts could further contribute to SDC science and applications. Although current constellation designs are not fully able to satisfy desired SDC science capabilities, initial positive feedback to a request for information indicates a potential future path for a customized SDC commercial architecture; more studies will be needed to determine the feasibility of these approaches. The Surface Deformation and Change (SDC) mission was identified as one of the five Earth observatories based on the findings of the 2017 Decadal Survey. Characterizing and understanding surface motion and change is critical for studying a variety of Earth processes from earthquakes, volcanoes, and landslides and associated hazard forecasts and disaster managements to glacier dynamics, groundwater, sea level rise, and landscape change. To achieve these aims, precise radar instruments with precise orbit control and knowledge that are capable of observing all land and ice covered surfaces of the Earth are required. Due to the recent rapid growth in the commercial SAR industry, we assessed the current state of the industry to better understand how NASA could potentially leverage commercial smallsat products to meet the needs of the SDC science mission. We have found that current commercial offerings make a small, but significant, contribution to SDC mission goals and have unique science capabilities. However, even by 2030, planned commercial constellations are expected to cover only 65% of the area needed to match NISAR coverage. Future innovations on smallsat constellation concepts and a demonstrated market need from NASA could potentially increase the role of commercial SAR for science and applications. The science goals of NASA's Surface Deformation and Change (SDC) mission require capabilities not currently offered by commercial smallsat SAR data Commercial SAR smallsats do provide unique science contributions that augment SDC goals with high‐resolution and rapid repeat observations NASA's need for global coverage at longer wavelengths is not met by current market demand but could be provided by future commercial data |
| Author | Huang, Stacey A. Scheuchl, Bernd Osmanoğlu, Batuhan Jo, MinJeong Khazendar, Ala Tymofyeyeva, Ekaterina Wusk, Betsy Sauber, Jeanne M. Albayrak, Arif Oveisgharan, Shadi |
| Author_xml | – sequence: 1 givenname: Stacey A. orcidid: 0000-0002-7906-8467 surname: Huang fullname: Huang, Stacey A. email: stacey.a.huang@nasa.gov organization: University of Maryland Baltimore County – sequence: 2 givenname: Batuhan orcidid: 0000-0002-5857-2883 surname: Osmanoğlu fullname: Osmanoğlu, Batuhan organization: NASA Goddard Space Flight Center – sequence: 3 givenname: Bernd orcidid: 0000-0001-5947-7709 surname: Scheuchl fullname: Scheuchl, Bernd organization: University of California – sequence: 4 givenname: Shadi surname: Oveisgharan fullname: Oveisgharan, Shadi organization: Jet Propulsion Laboratory – sequence: 5 givenname: Jeanne M. orcidid: 0000-0002-3620-0712 surname: Sauber fullname: Sauber, Jeanne M. organization: NASA Goddard Space Flight Center – sequence: 6 givenname: MinJeong surname: Jo fullname: Jo, MinJeong organization: NASA Goddard Space Flight Center – sequence: 7 givenname: Ala orcidid: 0000-0003-0412-8792 surname: Khazendar fullname: Khazendar, Ala organization: Jet Propulsion Laboratory – sequence: 8 givenname: Ekaterina orcidid: 0000-0001-5638-366X surname: Tymofyeyeva fullname: Tymofyeyeva, Ekaterina organization: Jet Propulsion Laboratory – sequence: 9 givenname: Betsy surname: Wusk fullname: Wusk, Betsy organization: NASA Langley Research Center – sequence: 10 givenname: Arif surname: Albayrak fullname: Albayrak, Arif organization: NASA Goddard Space Flight Center |
| BookMark | eNp9kV1rFDEUhgepYK298wcEvPDG1ZNkPr2RYVxtoVZw9Dokk5OaJTOpSZZl_73Z3QpF0KucvDznPV_Pi7PFL1gULym8pcC6dwxYue4BeMvZk-Kccc5XFbTl2aP4WXEZ4wYAKKvqzJ8X-57c4o70d0i8IWP_7T258jsyyIUMfp4xTFY6Ms7SuShT1paY0DmZbI4O3xSs2iYkyZPbfuxfRzJug5ETko9ofJiPJJGLJsNPueQyX2yMWfrwonhqpIt4-fBeFD8-rb8PV6ubr5-vh_5mNZUU6lVVazYBLbXiQBtWVXVVAuXMNNBy3bR8QuxMHtBwrRVlDdOGoupo0yDwqeIXxfXJV3u5EffBzjLshZdWHAUf7oQMyU4ORQ2tajTSWnaszKaqlYDKNEpV0oA6eL06ed0H_2uLMYmN34Ylty84zQvtKG26TLETNQUfY0AjJpuOe0hBWicoiMPFxOOL5aQ3fyX9afUf-EONnXW4_y8r1uPIaMdr_huW_qO3 |
| CitedBy_id | crossref_primary_10_1016_j_actaastro_2025_07_043 crossref_primary_10_1016_j_xinn_2025_100949 |
| Cites_doi | 10.1016/j.actaastro.2011.12.014 10.1016/s0034‐4257(96)00148‐4 10.2514/6.2014-4205 10.1109/LGRS.2019.2962574 10.1080/13658816.2018.1504949 10.1109/IGARSS.2004.1369069 10.1016/j.spacepol.2007.09.011 10.22541/essoar.173134230.03179851/v1 10.1109/IGARSS.2017.8126911 10.1109/AERO.2019.8741813 10.2514/6.2014-4117 10.1109/IGARSS47720.2021.9554486 10.1109/IGARSS52108.2023.10283030 10.1117/12.818484 10.1109/tgrs.2013.2272791 10.1029/97RG03139 10.1073/pnas.2220924120 10.1109/AERO.2008.4526278 10.3390/rs12162546 10.3390/rs70809587 10.5194/tc‐12‐867‐2018 10.1109/IGARSS52108.2023.10282735 10.1109/MAES.2019.2928612 10.1080/01431160801914952 10.3390/RS12091364 10.1002/navi.216 10.1016/j.rse.2003.07.007 10.1596/0-8213-5930-4 10.1016/j.actaastro.2023.09.041 10.3390/rs16193600 10.1073/pnas.2404766121 10.1109/IGARSS.2019.8899231 10.1109/36.175330 10.1109/IGARSS.2014.6946711 10.1109/jproc.2018.2793179 10.1016/j.actaastro.2021.07.009 10.1016/j.paerosci.2016.11.002 10.1016/j.tecto.2011.10.013 10.1093/gji/ggu276 10.1016/B978-0-323-91166-5.00002-1 10.1109/lgrs.2015.2409885 10.1016/j.actaastro.2020.01.034 10.1126/science.adn2838 10.1016/j.spacepol.2021.101422 10.1109/5.838084 10.1109/IGARSS47720.2021.9553966 10.1109/RADAR.2017.7944237 10.1109/mgrs.2013.2248301 10.1109/jstars.2014.2317287 10.1109/RADAR.2007.374311 10.1109/IGARSS.2014.6947215 10.1109/IGARSS53475.2024.10641030 10.1109/tgrs.2009.2037432 10.7927/H4S180F9 10.3390/rs13101959 10.1007/s00190‐012‐0571‐6 10.3390/rs15143622 10.1109/AERO50100.2021.9438290 10.1109/mgrs.2015.2437353 10.1016/j.actaastro.2010.04.017 10.1109/tgrs.2010.2051333 10.1109/lgrs.2023.3347030 10.1130/0091‐7613(1996)024<0495:aoalfo>2.3.co;2 10.3390/rs11192230 10.5194/isprs‐archives‐xlviii‐m‐1‐2023‐225‐2023 10.1109/tgrs.2017.2776140 10.1109/36.239913 |
| ContentType | Journal Article |
| Copyright | 2025. The Author(s). 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.1029/2024EA003832 |
| DatabaseName | Wiley Online Library : Open Access journals [open access] CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2333-5084 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_608b7de16a9249f3b8a0ebf7bb5af0b5 10_1029_2024EA003832 ESS21936 |
| Genre | researchArticle |
| GroupedDBID | 0R~ 1OC 24P 5VS AAFWJ AAMMB AAZKR ABDBF ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AEUYN AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EJD GODZA GROUPED_DOAJ HCIFZ IAO IEP IGS ITC KQ8 O9- OK1 PCBAR PHGZM PHGZT PIMPY WIN AAYXX AFFHD CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS M~E |
| ID | FETCH-LOGICAL-c4106-56d2c014db30172556540132f7083d783cee9f333f3ddb1272df1eb9177e03c53 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001401035600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2333-5084 |
| IngestDate | Tue Oct 14 19:06:25 EDT 2025 Wed Aug 13 03:28:35 EDT 2025 Tue Nov 18 22:36:14 EST 2025 Sat Nov 29 02:25:30 EST 2025 Wed Aug 20 07:26:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4106-56d2c014db30172556540132f7083d783cee9f333f3ddb1272df1eb9177e03c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5857-2883 0000-0001-5947-7709 0000-0003-0412-8792 0000-0002-3620-0712 0000-0001-5638-366X 0000-0002-7906-8467 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024EA003832 |
| PQID | 3160291179 |
| PQPubID | 4368366 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_608b7de16a9249f3b8a0ebf7bb5af0b5 proquest_journals_3160291179 crossref_citationtrail_10_1029_2024EA003832 crossref_primary_10_1029_2024EA003832 wiley_primary_10_1029_2024EA003832_ESS21936 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Earth and space science (Hoboken, N.J.) |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
| References | 2009; 7308 2013; 1 2019; 11 2017; 88 2000; 88 2020; 17 2024; 383 2020; 12 2004; 1 2024 2010; 67 2023; 21 2021; 50100 2000 1997; 59 2008; 29 2020; 170 1993; 31 2013; 52 2023; 213 1996; 24 2014; 7 2007; 23 2003; 88 2015; 12 2015; 3 2023; 120 2018; 106 2023; 15 2019; 33 2019; 34 2008 2007 2024; 121 2005 2021; 187 2014; 199 2018; 65 2024; 16 2015; 7 2012; 74 1992; 30 2021; 13 2010; 48 2021; 56 2023 2022 2021 2023; 48 2020 2017; 56 2019 2018 2017 2015 2012; 514–517 2014 2013 2018; 12 2012; 86 1998; 36 e_1_2_9_75_1 e_1_2_9_31_1 Kraus T. (e_1_2_9_37_1) 2024 e_1_2_9_52_1 e_1_2_9_73_1 e_1_2_9_79_1 Fornaro G. (e_1_2_9_21_1) 2024 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Euroconsult (e_1_2_9_18_1) 2020 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Friedl M. (e_1_2_9_22_1) 2015 e_1_2_9_28_1 e_1_2_9_47_1 Harrison T. (e_1_2_9_26_1) 2022 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 NISAR (e_1_2_9_50_1) 2018 e_1_2_9_76_1 National Academies of Sciences (e_1_2_9_49_1) 2018 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 Scheuchl B. (e_1_2_9_70_1) 2013 e_1_2_9_29_1 |
| References_xml | – volume: 65 start-page: 15 issue: 1 year: 2018 end-page: 24 article-title: Precise Orbit and Baseline Determination for the SAOCOM‐CS Bistatic Radar Mission publication-title: Navigation – start-page: 0410 year: 2017 end-page: 0414 – year: 2005 – volume: 12 start-page: 1 issue: 9 year: 2020 end-page: 18 article-title: Radar interferometry: 20 years of development in time series techniques and future perspectives publication-title: Remote Sensing – volume: 12 start-page: 1486 issue: 7 year: 2015 end-page: 1490 article-title: Role of the orbital tube in interferometric spaceborne SAR missions publication-title: IEEE Geoscience and Remote Sensing Letters – year: 2021 – volume: 52 start-page: 3421 issue: 6 year: 2013 end-page: 3427 article-title: Joint correction of ionosphere noise and orbital error in L‐band SAR interferometry of interseismic deformation in southern California publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 2024 – volume: 59 start-page: 141 issue: 2 year: 1997 end-page: 156 article-title: The use of imaging radars for ecological applications—A review publication-title: Remote sensing of environment – start-page: 231 year: 2022 end-page: 251 – start-page: 1513 year: 2023 end-page: 1516 – volume: 56 start-page: 2147 issue: 4 year: 2017 end-page: 2158 article-title: Performance of 3‐D surface deformation estimation for simultaneous squinted SAR acquisitions publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 15 issue: 14 year: 2023 article-title: Monitoring braided river‐bed dynamics at the sub‐event time scale using time series of Sentinel‐1 SAR imagery publication-title: Remote Sensing – volume: 120 issue: 20 year: 2023 article-title: Melt rates in the kilometer‐size grounding zone of Petermann Glacier, Greenland, before and during a retreat publication-title: Proceedings of the National Academy of Sciences – start-page: 1573 year: 2023 end-page: 1576 – year: 2018 – year: 2014 – volume: 170 start-page: 93 year: 2020 end-page: 105 article-title: Small satellites an overview and assessment publication-title: Acta Astronautica – volume: 187 start-page: 458 year: 2021 end-page: 474 article-title: Small satellite synthetic aperture radar (SAR) design: A trade space exploration model publication-title: Acta Astronautica – start-page: 8378 year: 2019 end-page: 8380 – start-page: 11326 year: 2024 end-page: 11329 – volume: 7 start-page: 9587 issue: 8 year: 2015 end-page: 9609 article-title: Sensitivity of multi‐source SAR backscatter to changes in forest aboveground biomass publication-title: Remote Sensing – volume: 31 start-page: 896 issue: 4 year: 1993 end-page: 906 article-title: Change detection techniques for ERS‐1 SAR data publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 48 start-page: 4309 issue: 12 year: 2010 end-page: 4321 article-title: Geodetically accurate InSAR data processor publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 1 start-page: 485 year: 2004 end-page: 488 – start-page: 4205 year: 2014 – volume: 24 start-page: 495 issue: 6 year: 1996 end-page: 498 article-title: Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR‐C radar correlation measurements publication-title: Geology – volume: 199 start-page: 549 issue: 1 year: 2014 end-page: 560 article-title: InSAR uncertainty due to orbital errors publication-title: Geophysical Journal International – start-page: 1745 year: 2021 end-page: 1748 – year: 2022 – volume: 30 start-page: 950 issue: 5 year: 1992 end-page: 959 article-title: Decorrelation in interferometric radar echoes publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 56 year: 2021 article-title: Satellite Earth observation and national data regulation publication-title: Space Policy – volume: 29 start-page: 4285 issue: 15 year: 2008 end-page: 4337 article-title: An overview of small satellites in remote sensing publication-title: International Journal of Remote Sensing – start-page: 129 year: 2017 end-page: 132 – start-page: 3415 year: 2014 end-page: 3417 – volume: 3 start-page: 8 issue: 2 year: 2015 end-page: 23 article-title: Tandem‐L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 67 start-page: 584 issue: 5–6 year: 2010 end-page: 595 article-title: Statistical reliability analysis of satellites by mass category: Does spacecraft size matter? publication-title: Acta Astronautica – start-page: 753 year: 2024 end-page: 756 – year: 2015 – volume: 86 start-page: 1147 issue: 12 year: 2012 end-page: 1164 article-title: Reliable estimation of orbit errors in spaceborne SAR interferometry: The network approach publication-title: Journal of Geodesy – volume: 23 start-page: 221 issue: 4 year: 2007 end-page: 233 article-title: Whose jurisdiction over the US commercial satellite industry? Factors affecting international security and competition publication-title: Space Policy – volume: 88 start-page: 59 year: 2017 end-page: 83 article-title: CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions publication-title: Progress in Aerospace Sciences – volume: 7 start-page: 2754 issue: 7 year: 2014 end-page: 2762 article-title: The COSMO‐SkyMed dual use Earth observation program: Development, qualification, and results of the commissioning of the overall constellation publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – start-page: 1 year: 2008 end-page: 10 – volume: 21 start-page: 1 year: 2023 end-page: 5 article-title: Interferometric assessment of SAOCOM‐1 TOPSAR data publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 213 start-page: 455 year: 2023 end-page: 463 article-title: Are smallsats taking over bigsats for land Earth observation? publication-title: Acta Astronautica – volume: 33 start-page: 454 issue: 3 year: 2019 end-page: 465 article-title: The equal Earth map projection publication-title: International Journal of Geographical Information Science – year: 2000 – start-page: 1493 year: 2021 end-page: 1496 – volume: 383 start-page: 1228 issue: 6688 year: 2024 end-page: 1235 article-title: Fracturing and tectonic stress drive ultrarapid magma flow into dikes publication-title: Science – volume: 17 start-page: 2085 issue: 12 year: 2020 end-page: 2089 article-title: ConGaLSAR: A Constellation of Geostationary and Low Earth Orbit Synthetic Aperture Radar publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 7308 start-page: 19 year: 2009 end-page: 26 – volume: 34 start-page: 50 issue: 10 year: 2019 end-page: 59 article-title: Smaller satellites, larger constellations: Trends and design issues for Earth observation systems publication-title: IEEE Aerospace and Electronic Systems Magazine – volume: 48 start-page: 615 issue: 2 year: 2010 end-page: 622 article-title: The TerraSAR‐X satellite publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 1457 year: 2014 end-page: 1460 – volume: 88 start-page: 3 issue: 1–2 year: 2003 end-page: 16 article-title: Government programs for research and operational uses of commercial remote sensing data publication-title: Remote Sensing of Environment – start-page: 740 year: 2007 end-page: 745 – volume: 11 issue: 19 year: 2019 article-title: Using long‐term SAR backscatter data to monitor post‐fire vegetation recovery in tundra environment publication-title: Remote Sensing – volume: 48 start-page: 225 year: 2023 end-page: 232 article-title: Benefit assessment of commercial synthetic aperture radar observations for NASA’s surface deformation and change mission study publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 121 issue: 22 year: 2024 article-title: Widespread seawater intrusions beneath the grounded ice of Thwaites Glacier, West Antarctica publication-title: Proceedings of the National Academy of Sciences – year: 2020 – volume: 74 start-page: 50 year: 2012 end-page: 68 article-title: A survey and assessment of the capabilities of Cubesats for Earth observation publication-title: Acta Astronautica – year: 2023 – volume: 12 issue: 16 year: 2020 article-title: Small‐satellite synthetic aperture radar for continuous global biospheric monitoring: A review publication-title: Remote Sensing – volume: 50100 start-page: 1 year: 2021 end-page: 19 – volume: 13 issue: 10 year: 2021 article-title: Potential of a SAR small‐satellite constellation for rapid monitoring of flood extent publication-title: Remote Sensing – volume: 1 start-page: 6 issue: 1 year: 2013 end-page: 43 article-title: A tutorial on synthetic aperture radar publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 36 start-page: 441 issue: 4 year: 1998 end-page: 500 article-title: Radar interferometry and its application to changes in the Earth’s surface publication-title: Reviews of Geophysics – volume: 88 start-page: 333 issue: 3 year: 2000 end-page: 382 article-title: Synthetic aperture radar interferometry publication-title: Proceedings of the IEEE – volume: 12 start-page: 867 issue: 3 year: 2018 end-page: 890 article-title: Using SAR satellite data time series for regional glacier mapping publication-title: The Cryosphere – year: 2017 – start-page: 1 year: 2019 end-page: 10 – volume: 16 issue: 19 year: 2024 article-title: Assessment of Hongtu‐1 Multi‐Static X‐Band SAR Constellation Interferometry publication-title: Remote Sensing – volume: 106 start-page: 404 issue: 3 year: 2018 end-page: 418 article-title: Radar technologies for Earth remote sensing from CubeSat platforms publication-title: Proceedings of the IEEE – volume: 514–517 start-page: 1 year: 2012 end-page: 13 article-title: Recent advances in SAR interferometry time series analysis for measuring crustal deformation publication-title: Tectonophysics – year: 2013 – ident: e_1_2_9_71_1 doi: 10.1016/j.actaastro.2011.12.014 – ident: e_1_2_9_32_1 doi: 10.1016/s0034‐4257(96)00148‐4 – ident: e_1_2_9_48_1 – ident: e_1_2_9_45_1 doi: 10.2514/6.2014-4205 – ident: e_1_2_9_82_1 doi: 10.1109/LGRS.2019.2962574 – ident: e_1_2_9_69_1 doi: 10.1080/13658816.2018.1504949 – ident: e_1_2_9_9_1 doi: 10.1109/IGARSS.2004.1369069 – ident: e_1_2_9_86_1 doi: 10.1016/j.spacepol.2007.09.011 – volume-title: 15th European Conference on Synthetic Aperture Radar, EUSAR 2024 year: 2024 ident: e_1_2_9_37_1 – ident: e_1_2_9_29_1 doi: 10.22541/essoar.173134230.03179851/v1 – ident: e_1_2_9_46_1 doi: 10.1109/IGARSS.2017.8126911 – ident: e_1_2_9_47_1 – ident: e_1_2_9_51_1 – ident: e_1_2_9_68_1 doi: 10.1109/AERO.2019.8741813 – ident: e_1_2_9_76_1 doi: 10.2514/6.2014-4117 – ident: e_1_2_9_31_1 doi: 10.1109/IGARSS47720.2021.9554486 – ident: e_1_2_9_74_1 – ident: e_1_2_9_19_1 doi: 10.1109/IGARSS52108.2023.10283030 – ident: e_1_2_9_75_1 doi: 10.1117/12.818484 – ident: e_1_2_9_38_1 doi: 10.1109/tgrs.2013.2272791 – ident: e_1_2_9_40_1 doi: 10.1029/97RG03139 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.2220924120 – ident: e_1_2_9_12_1 doi: 10.1109/AERO.2008.4526278 – ident: e_1_2_9_53_1 doi: 10.3390/rs12162546 – volume-title: NASA‐ISRO SAR (NISAR) Mission Science Users’ Handbook year: 2018 ident: e_1_2_9_50_1 – ident: e_1_2_9_30_1 doi: 10.3390/rs70809587 – ident: e_1_2_9_33_1 – ident: e_1_2_9_81_1 doi: 10.5194/tc‐12‐867‐2018 – ident: e_1_2_9_59_1 doi: 10.1109/IGARSS52108.2023.10282735 – ident: e_1_2_9_39_1 doi: 10.1109/MAES.2019.2928612 – ident: e_1_2_9_36_1 doi: 10.1080/01431160801914952 – ident: e_1_2_9_41_1 doi: 10.3390/RS12091364 – ident: e_1_2_9_42_1 doi: 10.1002/navi.216 – ident: e_1_2_9_5_1 doi: 10.1016/j.rse.2003.07.007 – ident: e_1_2_9_79_1 – ident: e_1_2_9_13_1 doi: 10.1596/0-8213-5930-4 – ident: e_1_2_9_11_1 doi: 10.1016/j.actaastro.2023.09.041 – ident: e_1_2_9_80_1 doi: 10.3390/rs16193600 – ident: e_1_2_9_60_1 doi: 10.1073/pnas.2404766121 – ident: e_1_2_9_64_1 doi: 10.1109/IGARSS.2019.8899231 – ident: e_1_2_9_85_1 doi: 10.1109/36.175330 – ident: e_1_2_9_23_1 doi: 10.1109/IGARSS.2014.6946711 – ident: e_1_2_9_54_1 doi: 10.1109/jproc.2018.2793179 – ident: e_1_2_9_24_1 doi: 10.1016/j.actaastro.2021.07.009 – ident: e_1_2_9_56_1 doi: 10.1016/j.paerosci.2016.11.002 – ident: e_1_2_9_27_1 doi: 10.1016/j.tecto.2011.10.013 – ident: e_1_2_9_20_1 doi: 10.1093/gji/ggu276 – ident: e_1_2_9_4_1 doi: 10.1016/B978-0-323-91166-5.00002-1 – ident: e_1_2_9_6_1 – ident: e_1_2_9_58_1 doi: 10.1109/lgrs.2015.2409885 – ident: e_1_2_9_35_1 doi: 10.1016/j.actaastro.2020.01.034 – ident: e_1_2_9_73_1 doi: 10.1126/science.adn2838 – ident: e_1_2_9_25_1 doi: 10.1016/j.spacepol.2021.101422 – ident: e_1_2_9_63_1 doi: 10.1109/5.838084 – ident: e_1_2_9_66_1 doi: 10.1109/IGARSS47720.2021.9553966 – volume-title: Commercial space remote sensing and its role in national security year: 2022 ident: e_1_2_9_26_1 – ident: e_1_2_9_65_1 doi: 10.1109/RADAR.2017.7944237 – ident: e_1_2_9_44_1 doi: 10.1109/mgrs.2013.2248301 – volume-title: Thriving on our changing planet year: 2018 ident: e_1_2_9_49_1 – ident: e_1_2_9_7_1 doi: 10.1109/jstars.2014.2317287 – ident: e_1_2_9_62_1 doi: 10.1109/RADAR.2007.374311 – ident: e_1_2_9_77_1 – ident: e_1_2_9_2_1 doi: 10.1109/IGARSS.2014.6947215 – ident: e_1_2_9_16_1 doi: 10.1109/IGARSS53475.2024.10641030 – ident: e_1_2_9_55_1 doi: 10.1109/tgrs.2009.2037432 – ident: e_1_2_9_8_1 doi: 10.7927/H4S180F9 – ident: e_1_2_9_34_1 doi: 10.3390/rs13101959 – ident: e_1_2_9_78_1 doi: 10.7927/H4S180F9 – ident: e_1_2_9_3_1 doi: 10.1007/s00190‐012‐0571‐6 – ident: e_1_2_9_67_1 doi: 10.3390/rs15143622 – ident: e_1_2_9_28_1 doi: 10.1109/AERO50100.2021.9438290 – ident: e_1_2_9_43_1 doi: 10.1109/mgrs.2015.2437353 – ident: e_1_2_9_14_1 doi: 10.1016/j.actaastro.2010.04.017 – start-page: 753 volume-title: EUSAR 2024; 15th European Conference on Synthetic Aperture Radar year: 2024 ident: e_1_2_9_21_1 – volume-title: SAR Science Requirements for Ice Sheets year: 2013 ident: e_1_2_9_70_1 – ident: e_1_2_9_83_1 doi: 10.1109/tgrs.2010.2051333 – ident: e_1_2_9_17_1 doi: 10.1109/lgrs.2023.3347030 – ident: e_1_2_9_84_1 doi: 10.1130/0091‐7613(1996)024<0495:aoalfo>2.3.co;2 – ident: e_1_2_9_72_1 – ident: e_1_2_9_15_1 – ident: e_1_2_9_87_1 doi: 10.3390/rs11192230 – volume-title: Satellite‐Based earth observation 2020 year: 2020 ident: e_1_2_9_18_1 – ident: e_1_2_9_52_1 doi: 10.5194/isprs‐archives‐xlviii‐m‐1‐2023‐225‐2023 – ident: e_1_2_9_57_1 doi: 10.1109/tgrs.2017.2776140 – ident: e_1_2_9_61_1 doi: 10.1109/36.239913 – volume-title: MCD12C1 MODIS/Terra+Aqua land cover type yearly L3 global 0.05deg CMG V006 year: 2015 ident: e_1_2_9_22_1 |
| SSID | ssj0001256024 |
| Score | 2.2922652 |
| Snippet | In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study potential... Abstract In response to the 2017 Decadal Survey, NASA conducted a five‐year study on the Surface Deformation and Change (SDC) designated observable to study... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | commercial SAR Cryosphere Earth observation Earthquakes Ecosystems Geometry Interferometry interferometry (InSAR) Landslides & mudslides Satellites Science smallsats (small satellites) surface deformation and change synthetic aperture radar (SAR) Time series Wavelengths |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhtNBLadOUbpuGOTT0UExkybasXoqb5uOSpXQTyM3oswQ23rK7Sci_z4zsLJtDm0uPNjIMo5HmPVkzj7FPXEZcf1FkVVm4rKi9zkwQLstzFXREQOK5T2ITajyuLy70zzWpL7oT1rcH7h23X_HaKh_yyhBTiNLWhgcblbWlidym7qWIetbIVH-6gplcFMNNdy40kfzisKEfYVI8ykGpVf8jfLmOUlOaOXrFXg74EJrertdsI3Rb7Plx0t-9e8PuGsBtCZrfAWYRJs2vr3Ayu4UD0wGVepB8En49uTLT6cIsgeQ4qUykP5ajx17gKsByBuNm0nxewOR6Ho0L8COsChnBdB76ugM4vaR7st23bXZ-dHh2cJIN6gmZK5DnZWXlhUMC5K0knlciciMuJaJC1OVVLTE9oj-ljNJ7mwslfMyDRfqmApeulG_ZZjfrwjsGgjvENUpp7YuCW2dNYZVFV9o8BMv1iH158GfrhtbipHAxbdMvbqHbde-P2N5q9J--pcZfxn2nqVmNoUbY6QWGRzuER_tUeIzYzsPEtsPqXLQyx-DQ1AwPLU-T_U9DWlwKuLHL6v3_sOgDeyFIQzgd4-ywzeX8Onxkz9zN8nIx301hfA-YpPGD priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgCxIXvisWWuQDiAOKcGwnjrlUabulF1ZVF6TeIn9WlZakbLag_ns8jne7PdBLj4mcyNJ4PO-NPfMQ-kCYD_7naVYW3GS8sjJTjposz4WTPgASS2wUmxDTaXV2Jk9Swq1P1ypXe2LcqG1nIEf-heUloRIamO1d_s5ANQpOV5OExkO0BZ3K-Aht7U-mJ6cbWZYQ0SlPN97DD4Ds80kNB2KM3opFsWX_LZy5iVZjuDl6dt-JPkdPE9DE9bAyXqAHrn2JHn-LQr7Xr9B1jcP-hutzhzuPZ_XpV3zc_cUHqsVQMwI6TOHr2S81n_dqiUHXE-pNhvwePA5KWQ4vOzytZ_WnHs-uFl4Zhw_duiISq9bioYABf7-AC7ft3mv082jy4-A4SzIMmeGBMGZFaakJTMpqBoSxCBAQSBn1IsA3KyoW4qz0jDHPrNU5FdT63OnAA4UjzBRsG43arnVvEKbEBIAkhJSWc6KNVlwLHWyhc-c0kWP0eWWQxqQe5SCVMW_iWTmVzab5xujjevTl0JvjP-P2wbbrMdBRO77oFudNctCmJJUW1uWlAkbqma4UcdoLrQvliS7GaGdl7ia5ed_c2DrMPK6WOyfSBJ8KEYKVb-_-2Tv0hILMcMz07KDRcnHldtEj82d50S_epzX-DxnJ_7A priority: 102 providerName: ProQuest |
| Title | A New Age of SAR: How Can Commercial Smallsat Constellations Contribute to NASA's Surface Deformation and Change Mission? |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024EA003832 https://www.proquest.com/docview/3160291179 https://doaj.org/article/608b7de16a9249f3b8a0ebf7bb5af0b5 |
| Volume | 12 |
| WOSCitedRecordID | wos001401035600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: PCBAR dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQCxIXylMsLSsfQBxQhGMnccIFpe2W9tAo6oIop8jPqtKSoM0W1H_PjJOutgcqIY6OHMuyZzwPe76PkDdMeNA_z6MsTUyU5LaIlOMmimPpCg8OiWU2kE3IqsrPz4t6TLhhLcyAD7FOuKFmhPMaFVzpfgQbQIxMiNqTWYk3WwKO4O04FjlSN_Ck3sixgD0PvLZcCBGBL5KMb99hiA-bA9yySgG8_5bHuem3BsNztPO_U35MHo0uJy0HGXlC7rn2KXnwOVD6Xj8j1yWFk46WF452ns7Ls4_0uPtND1RLsXoEGZng7_kPtVj0akWR4RMrT4ZMHzYHzixHVx2tynn5rqfzq6VXxtFDt66NpKq1dChloKeX-PS2_fScfD2afTk4jkZChsgkEDpGaWa5gZjKaoGhYwrOIIZn3Etw5KzMBVjcwsNSe2Gtjrnk1sdOQ0QoHRMmFS_IVtu17iWhnBlwlaQsCpskTButEi01rIyOndOsmJD3NxvSmBGtHEkzFk24NedFs7mYE_J23fvngNLxl377uLfrPoitHT50y4tmVNUmY7mW1sWZwtjUC50r5rSXWqfKM51OyN6NZDSjwveNiEHSCsTXg5kHGbhzIg1oF9gKkb36p9675CFH_uGQAtojW6vllXtN7ptfq8t-OQ3CPyXb-7OqPpuG7AK06pPT-ju0vp1UfwAXvwLy |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKC4ILb8RCAR8oHFCEYydxgoRQum3Zqu2q6hapt-BnVWlJymZLtX-K38hMkl22B3rrgWMiJ7Ls8cw345n5CHnLhIfz53mQxJEJotRmgXLcBGEoXeYBkFhmG7IJORymJyfZ4Qr5Pa-FwbTKuU5sFLWtDMbIP4owYTzDBmZdBuWem12Cf1Z_3t2CzdzgfGf7uD8IOgqBwETg7ARxYrkBL8Bqgc5ODPAFHQruJUAPK1MBNiLzQggvrNUhl9z60GnwYaRjwiAlBH93_jNAliq8ze0oO26RtTTJYjhXa4f9zfxoKaoDCIJHXYY9TBiDC9F2jhdwgl-xfQ1FwBVcu4yOG_O28-B_W5iH5H4HpGneSv4jsuLKx-TO14aoePaEzHIK-pvmp45Wno7yo090UF3Sviop1sQgzxR8PfqhxuNaTSnylmI9TRu_xMeWCczRaUWH-Sh_X9PRxcQr4-iWW1R8UlVa2hZo0IMzTCguvzwl325kKZ6R1bIq3XNCOTMAAKXMMhtFTButIi017L0OndMs65EPcwEoTNeDHalAxkWTC8CzYllcemRjMfq87T3yj3GbKEuLMdgxvHlRTU6LTgEVCUu1tC5MFHrcXuhUMae91DpWnum4R9bn4lV0aqwu_soWzLyRzmsnUoDOAAsokhfX_-wNuTs4Ptgv9neHey_JPY6Uyk1Ua52sTicX7hW5bX5Nz-rJ6-58UfL9poX5D6FOWQ8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VLSAuvBEpBfZAxQFZXe_aXhsJVaZpaFQaRQSk9mS8r6pSapc4pcpf49cx40dID_TWA0dba2ttfzv7zXhmPkLeMuFg_TnuRWGgvSA2iZdbrj3flzZxQEgMM7XYhByN4uPjZLxGfne1MJhW2dnE2lCbUmOMfEf4EeMJNjDbcW1axLg_2L346aGCFP5p7eQ0Gogc2sUVuG_Vx2EfvvU254P9b3sHXqsw4OkAfCEvjAzX4CQYJdAXCoHdoL_BnQRmYmQsYAtJnBDCCWOUzyU3zrcKXBxpmdCoGAHmfwMoeQBrbGM8PBqfrER4gE3woM22h8ljoCHYT_FnnODX9sFaLuAax11lyvVWN3j4P7-kR-RBS7Bp2qyIx2TNFk_I3c-1gPHiKVmkFOw6TU8tLR2dpF8_0IPyiu7lBcVaGdSfgqsn5_l0WuVzinqmWGfTxDXxsFEIs3Re0lE6Sd9VdHI5c7m2tG-XlaA0LwxtCjfo0RkmGhe7z8j3W3nu52S9KAv7glDONBBDKZPEBAFTWuWBkgpwoHxrFUt65H0Hhky3vdlRImSa1TkCPMlWodMj28vRF01Pkn-M-4S4Wo7BTuL1iXJ2mrWGKYtYrKSxfpSjJ-6EinNmlZNKhbljKuyRrQ5qWWvequwvzmDmNVJvnEgGtgR2RhFt3nyzN-QewDX7MhwdviT3OSot18GuLbI-n13aV-SO_jU_q2av26VGyY_bBu4f0CZiFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Age+of+SAR%3A+How+Can+Commercial+Smallsat+Constellations+Contribute+to+NASA%27s+Surface+Deformation+and+Change+Mission%3F&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Huang%2C+Stacey+A.&rft.au=Osmano%C4%9Flu%2C+Batuhan&rft.au=Scheuchl%2C+Bernd&rft.au=Oveisgharan%2C+Shadi&rft.date=2025-01-01&rft.issn=2333-5084&rft.eissn=2333-5084&rft.volume=12&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024EA003832&rft.externalDBID=10.1029%252F2024EA003832&rft.externalDocID=ESS21936 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon |