A Hybrid Atmospheric Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured by Its Physics‐Based Component

It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can serve as a basis for capturing atmospheric processes not captured by the AGCM. This power of the approach is illustrated by three examples from a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical research letters Ročník 50; číslo 8
Hlavní autoři: Arcomano, Troy, Szunyogh, Istvan, Wikner, Alexander, Hunt, Brian R., Ott, Edward
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 28.04.2023
Wiley
Témata:
ISSN:0094-8276, 1944-8007
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can serve as a basis for capturing atmospheric processes not captured by the AGCM. This power of the approach is illustrated by three examples from a decades‐long climate simulation experiment. The first example demonstrates that the hybrid model can produce sudden stratospheric warming, a dynamical process of nature not resolved by the low resolution AGCM component of the hybrid model. The second and third example show that introducing 6‐hr cumulative precipitation and sea surface temperature (SST) as ML‐based prognostic variables improves the precipitation climatology and leads to a realistic ENSO signal in the SST and atmospheric surface pressure. Plain Language Summary This paper introduces and tests schemes for efficiently enabling significant expansion of the utility and scope of a recently introduced hybrid modeling technique that combines machine learning with an atmospheric global circulation model (AGCM). Simulation experiments are carried out with an implementation of the approach on a low resolution simplified AGCM. An examination of the simulated atmospheric circulation suggests that the hybrid model can capture dynamical process not captured by the AGCM. Moreover, the addition of precipitation and sea surface temperature (SST) as machine learning predicted physical quantities to the model improves the precipitation climatology and leads to a realistic El Niño‐La Niña signal in the SST and atmospheric surface pressure. Key Points A hybrid system combining an atmospheric global circulation model (AGCM) with a machine‐learning component can capture processes not captured by the AGCM Machine learning provides a flexible framework to introduce additional prognostic variables into the hybrid model The prototype hybrid model tested in the paper is stable and has a realistic climate in decades‐long simulation experiments
AbstractList Abstract It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can serve as a basis for capturing atmospheric processes not captured by the AGCM. This power of the approach is illustrated by three examples from a decades‐long climate simulation experiment. The first example demonstrates that the hybrid model can produce sudden stratospheric warming, a dynamical process of nature not resolved by the low resolution AGCM component of the hybrid model. The second and third example show that introducing 6‐hr cumulative precipitation and sea surface temperature (SST) as ML‐based prognostic variables improves the precipitation climatology and leads to a realistic ENSO signal in the SST and atmospheric surface pressure.
It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can serve as a basis for capturing atmospheric processes not captured by the AGCM. This power of the approach is illustrated by three examples from a decades‐long climate simulation experiment. The first example demonstrates that the hybrid model can produce sudden stratospheric warming, a dynamical process of nature not resolved by the low resolution AGCM component of the hybrid model. The second and third example show that introducing 6‐hr cumulative precipitation and sea surface temperature (SST) as ML‐based prognostic variables improves the precipitation climatology and leads to a realistic ENSO signal in the SST and atmospheric surface pressure. This paper introduces and tests schemes for efficiently enabling significant expansion of the utility and scope of a recently introduced hybrid modeling technique that combines machine learning with an atmospheric global circulation model (AGCM). Simulation experiments are carried out with an implementation of the approach on a low resolution simplified AGCM. An examination of the simulated atmospheric circulation suggests that the hybrid model can capture dynamical process not captured by the AGCM. Moreover, the addition of precipitation and sea surface temperature (SST) as machine learning predicted physical quantities to the model improves the precipitation climatology and leads to a realistic El Niño‐La Niña signal in the SST and atmospheric surface pressure. A hybrid system combining an atmospheric global circulation model (AGCM) with a machine‐learning component can capture processes not captured by the AGCM Machine learning provides a flexible framework to introduce additional prognostic variables into the hybrid model The prototype hybrid model tested in the paper is stable and has a realistic climate in decades‐long simulation experiments
It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can serve as a basis for capturing atmospheric processes not captured by the AGCM. This power of the approach is illustrated by three examples from a decades‐long climate simulation experiment. The first example demonstrates that the hybrid model can produce sudden stratospheric warming, a dynamical process of nature not resolved by the low resolution AGCM component of the hybrid model. The second and third example show that introducing 6‐hr cumulative precipitation and sea surface temperature (SST) as ML‐based prognostic variables improves the precipitation climatology and leads to a realistic ENSO signal in the SST and atmospheric surface pressure. Plain Language Summary This paper introduces and tests schemes for efficiently enabling significant expansion of the utility and scope of a recently introduced hybrid modeling technique that combines machine learning with an atmospheric global circulation model (AGCM). Simulation experiments are carried out with an implementation of the approach on a low resolution simplified AGCM. An examination of the simulated atmospheric circulation suggests that the hybrid model can capture dynamical process not captured by the AGCM. Moreover, the addition of precipitation and sea surface temperature (SST) as machine learning predicted physical quantities to the model improves the precipitation climatology and leads to a realistic El Niño‐La Niña signal in the SST and atmospheric surface pressure. Key Points A hybrid system combining an atmospheric global circulation model (AGCM) with a machine‐learning component can capture processes not captured by the AGCM Machine learning provides a flexible framework to introduce additional prognostic variables into the hybrid model The prototype hybrid model tested in the paper is stable and has a realistic climate in decades‐long simulation experiments
It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can serve as a basis for capturing atmospheric processes not captured by the AGCM. This power of the approach is illustrated by three examples from a decades‐long climate simulation experiment. The first example demonstrates that the hybrid model can produce sudden stratospheric warming, a dynamical process of nature not resolved by the low resolution AGCM component of the hybrid model. The second and third example show that introducing 6‐hr cumulative precipitation and sea surface temperature (SST) as ML‐based prognostic variables improves the precipitation climatology and leads to a realistic ENSO signal in the SST and atmospheric surface pressure.
Author Ott, Edward
Arcomano, Troy
Szunyogh, Istvan
Hunt, Brian R.
Wikner, Alexander
Author_xml – sequence: 1
  givenname: Troy
  orcidid: 0000-0002-9359-6020
  surname: Arcomano
  fullname: Arcomano, Troy
  email: tarcomano@anl.gov
  organization: Now at Argonne National Laboratory
– sequence: 2
  givenname: Istvan
  orcidid: 0000-0002-3749-3027
  surname: Szunyogh
  fullname: Szunyogh, Istvan
  organization: Texas A&M University
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0001-7575-3953
  surname: Wikner
  fullname: Wikner, Alexander
  organization: University of Maryland
– sequence: 4
  givenname: Brian R.
  surname: Hunt
  fullname: Hunt, Brian R.
  organization: University of Maryland
– sequence: 5
  givenname: Edward
  surname: Ott
  fullname: Ott, Edward
  organization: University of Maryland
BookMark eNp9kcGOFCEQholZE2dXbz4AiVdHgYZu-jiO6-wkvboxeiY0Xeww6YEWmJi-efPqM_okss5uYkz0QKry11c_BXWOznzwgNBzSl5RwtrXjDC26Upa8_YRWtCW86UkpDlDC0LakrOmfoLOU9oTQipS0QX6vsJXcx_dgFf5ENK0g-gMvg4DjHjrTYhTiDo7f4uvtdk5D7gDHf2dsNa-nCkfI-C3s9cHZ_SIb2IwkBIk_D7kh_qA-xlvc8I3uzk5k35--_FGpyKvw2Eqb_D5KXps9Zjg2X28QJ_fXX5aXy27D5vtetUtDadELK2wQEAaRqgcais17UFWlnFqWssrwVlbg7FGDFVtbV9ZwwtppbWmb7Soqgu0PfkOQe_VFN1Bx1kF7dRvIcRbpWN2ZgRFgfKa1FLIvuWtYJIDl41kjA-k0YYVrxcnrymGL0dIWe3DMfoyvmKS1IJxwUih2IkyMaQUwSrjcvnS4HPUblSUqLvlqT-XV5pe_tX0MOo_8Ps7vroR5v-yavOxq0UjRfUL766rjw
CitedBy_id crossref_primary_10_1038_s41586_024_07744_y
crossref_primary_10_1029_2024MS004480
crossref_primary_10_1146_annurev_conmatphys_043024_114758
crossref_primary_10_1016_j_cie_2024_110662
crossref_primary_10_1063_5_0283285
crossref_primary_10_1029_2023GL107938
crossref_primary_10_1029_2025AV001706
crossref_primary_10_1038_s41467_024_45187_1
crossref_primary_10_1016_j_neunet_2024_107079
crossref_primary_10_1029_2023MS004122
crossref_primary_10_1029_2023GL104174
crossref_primary_10_1029_2023GL105131
crossref_primary_10_1029_2025GL114794
crossref_primary_10_1038_s43247_024_01885_8
Cites_doi 10.1007/s00382-005-0085-5
10.1016/j.cosrev.2009.03.005
10.1029/2018gl078510
10.1002/qj.3803
10.1029/2022MS003219
10.5194/npg-29-255-2022
10.1103/physrevlett.120.024102
10.1029/2021GL092555
10.1073/pnas.1810286115
10.1063/5.0005541
10.1029/2021MS002712
10.1063/1.5028373
10.1029/2020gl087776
10.1029/2018gl078202
10.1063/5.0042598
10.1029/2018MS001603
10.1016/j.atmosres.2019.06.023
10.1029/2020ms002405
10.1029/2019ms001711
10.1029/2020MS002084
10.1175/jcli3996.1
10.1063/5.0131787
10.1007/s00382-002-0268-2
10.1007/978-3-642-35289-8_36
10.1175/2011JCLI4175.1
10.1029/2018MS001495
10.1002/qj.4116
ContentType Journal Article
Copyright 2023 The Authors.
2023. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors.
– notice: 2023. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2022GL102649
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1e14606858b9495284e4878224d07ac2
10_1029_2022GL102649
GRL65785
Genre article
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  funderid: HR00112290035
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c4105-f5fe0e8c2018d6f8a1be83f241c9f4354296ecfc5d36ffb3fc4018f8ffcb7a533
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000999816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Tue Oct 14 19:08:08 EDT 2025
Sat Nov 01 14:56:51 EDT 2025
Tue Nov 18 21:44:59 EST 2025
Sat Nov 29 07:50:55 EST 2025
Wed Jan 22 16:23:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-f5fe0e8c2018d6f8a1be83f241c9f4354296ecfc5d36ffb3fc4018f8ffcb7a533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3749-3027
0000-0001-7575-3953
0000-0002-9359-6020
OpenAccessLink https://doaj.org/article/1e14606858b9495284e4878224d07ac2
PQID 2806524520
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1e14606858b9495284e4878224d07ac2
proquest_journals_2806524520
crossref_citationtrail_10_1029_2022GL102649
crossref_primary_10_1029_2022GL102649
wiley_primary_10_1029_2022GL102649_GRL65785
PublicationCentury 2000
PublicationDate 28 April 2023
PublicationDateYYYYMMDD 2023-04-28
PublicationDate_xml – month: 04
  year: 2023
  text: 28 April 2023
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 120
2018; 28
2021; 48
2023; 33
2012
2019; 11
2021; 147
2019; 229
2020; 12
2020; 146
2018; 45
2022; 29
1977
2021; 13
2021; 31
1987; 40
2001
2022
2020; 30
2018; 115
2006; 26
2022; 14
2020; 47
2011; 24
2007; 20
2009; 3
2018; 10
2003; 20
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Jaeger H. (e_1_2_7_15_1) 2001
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
Andrews D. G. (e_1_2_7_2_1) 1987
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 11
  start-page: 2089
  issue: 7
  year: 2019
  end-page: 2129
  article-title: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 24
  start-page: 5721
  issue: 22
  year: 2011
  end-page: 5739
  article-title: Global energy and water budgets in MERRA
  publication-title: Journal of Climate
– volume: 115
  start-page: 9684
  issue: 39
  year: 2018
  end-page: 9689
  article-title: Deep learning to represent subgrid processes in climate models
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  issue: 11
  year: 2020
  article-title: Data‐driven super‐parameterization using deep learning: Experimentation with multiscale Lorenz 96 systems and transfer learning
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 33
  issue: 2
  year: 2023
  article-title: Using machine learning to anticipate tipping points and extrapolate to post‐tipping dynamics of non‐stationary dynamical systems
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– volume: 40
  year: 1987
– volume: 120
  issue: 2
  year: 2018
  article-title: Model‐free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
  publication-title: Physical Review Letters
– volume: 13
  issue: 2
  year: 2021
  article-title: Data‐driven medium‐range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 11
  start-page: 2728
  issue: 8
  year: 2019
  end-page: 2744
  article-title: Spatially extended tests of a neural network parametrization trained by coarse‐graining
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 20
  start-page: 175
  issue: 2
  year: 2003
  end-page: 191
  article-title: Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi‐decadal experiments
  publication-title: Climate Dynamics
– year: 1977
– volume: 14
  issue: 3
  year: 2022
  article-title: A hybrid approach to atmospheric modeling that combines machine learning with a physics‐based numerical model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 28
  issue: 4
  year: 2018
  article-title: Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge‐based model
  publication-title: Chaos
– volume: 45
  start-page: 6289
  issue: 12
  year: 2018
  end-page: 6298
  article-title: Prognostic validation of a neural network unified physics parameterization
  publication-title: Geophysical Research Letters
– start-page: 659
  year: 2012
  end-page: 686
– volume: 47
  issue: 9
  year: 2020
  article-title: A machine learning‐based global atmospheric forecast model
  publication-title: Geophysical Research Letters
– volume: 29
  start-page: 255
  issue: 3
  year: 2022
  end-page: 264
  article-title: Predicting sea surface temperatures with coupled reservoir computers
  publication-title: Nonlinear Processes in Geophysics
– volume: 3
  start-page: 127
  issue: 3
  year: 2009
  end-page: 149
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Computer Science Review
– volume: 20
  start-page: 449
  issue: 3
  year: 2007
  end-page: 469
  article-title: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks
  publication-title: Journal of Climate
– start-page: 148
  year: 2001
– volume: 31
  issue: 3
  year: 2021
  article-title: Using machine learning to predict statistical properties of non‐stationary dynamical processes: System climate, regime transitions, and the effect of stochasticity
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– volume: 45
  start-page: 5742
  issue: 11
  year: 2018
  end-page: 5751
  article-title: Could machine learning break the convection parameterization deadlock?
  publication-title: Geophysical Research Letters
– volume: 10
  start-page: 3049
  issue: 12
  year: 2018
  end-page: 3075
  article-title: Preindustrial control simulations with HadGEM3‐GC3.1 for CMIP6
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 229
  start-page: 255
  year: 2019
  end-page: 268
  article-title: The double ITCZ syndrome in GCMs: A coupled feedback problem among convection, clouds, atmospheric and ocean circulations
  publication-title: Atmospheric Research
– volume: 147
  start-page: 3067
  issue: 739
  year: 2021
  end-page: 3084
  article-title: Using machine learning to correct model error in data assimilation and forecast applications
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2022
– volume: 30
  issue: 5
  year: 2020
  article-title: Combining machine learning with knowledge‐based modeling for scalable forecasting and subgrid‐scale closure of large, complex, spatiotemporal systems
  publication-title: Chaos
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 48
  issue: 15
  year: 2021
  article-title: Correcting weather and climate models by machine learning nudged historical simulations
  publication-title: Geophysical Research Letters
– volume: 14
  issue: 9
  year: 2022
  article-title: Correcting a 200 km resolution climate model in multiple climates by machine learning from 25 km resolution simulations
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 26
  start-page: 79
  issue: 1
  year: 2006
  end-page: 91
  article-title: Decadal interactions between the western tropical Pacific and the north Atlantic oscillation
  publication-title: Climate Dynamics
– ident: e_1_2_7_16_1
  doi: 10.1007/s00382-005-0085-5
– ident: e_1_2_7_18_1
  doi: 10.1016/j.cosrev.2009.03.005
– ident: e_1_2_7_6_1
  doi: 10.1029/2018gl078510
– ident: e_1_2_7_14_1
  doi: 10.1002/qj.3803
– volume-title: Middle atmosphere dynamics
  year: 1987
  ident: e_1_2_7_2_1
– ident: e_1_2_7_10_1
  doi: 10.1029/2022MS003219
– ident: e_1_2_7_29_1
  doi: 10.5194/npg-29-255-2022
– ident: e_1_2_7_23_1
  doi: 10.1103/physrevlett.120.024102
– ident: e_1_2_7_30_1
  doi: 10.1029/2021GL092555
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.1810286115
– ident: e_1_2_7_28_1
– ident: e_1_2_7_31_1
  doi: 10.1063/5.0005541
– ident: e_1_2_7_4_1
  doi: 10.1029/2021MS002712
– ident: e_1_2_7_25_1
  doi: 10.1063/1.5028373
– ident: e_1_2_7_3_1
  doi: 10.1029/2020gl087776
– ident: e_1_2_7_12_1
  doi: 10.1029/2018gl078202
– start-page: 148
  volume-title: The “echo state” approach to analyzing and training recurrent neural networks‐with an erratum note
  year: 2001
  ident: e_1_2_7_15_1
– ident: e_1_2_7_21_1
  doi: 10.1063/5.0042598
– ident: e_1_2_7_13_1
  doi: 10.1029/2018MS001603
– ident: e_1_2_7_32_1
  doi: 10.1016/j.atmosres.2019.06.023
– ident: e_1_2_7_24_1
– ident: e_1_2_7_27_1
  doi: 10.1029/2020ms002405
– ident: e_1_2_7_7_1
  doi: 10.1029/2019ms001711
– ident: e_1_2_7_9_1
  doi: 10.1029/2020MS002084
– ident: e_1_2_7_8_1
  doi: 10.1175/jcli3996.1
– ident: e_1_2_7_22_1
  doi: 10.1063/5.0131787
– ident: e_1_2_7_20_1
  doi: 10.1007/s00382-002-0268-2
– ident: e_1_2_7_17_1
  doi: 10.1007/978-3-642-35289-8_36
– ident: e_1_2_7_5_1
  doi: 10.1175/2011JCLI4175.1
– ident: e_1_2_7_19_1
  doi: 10.1029/2018MS001495
– ident: e_1_2_7_11_1
  doi: 10.1002/qj.4116
SSID ssj0003031
Score 2.5601165
Snippet It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM) can...
Abstract It is shown that a recently developed hybrid modeling approach that combines machine learning (ML) with an atmospheric global circulation model (AGCM)...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atmospheric circulation
Atmospheric models
Atmospheric processes
Climate
Climate models
Climatology
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
La Nina
Learning algorithms
Machine learning
Modelling
numerical weather prediction
Physics
Precipitation
Pressure
Resolution
Sea surface
Sea surface temperature
Simulation
Southern Oscillation
Stratospheric warming
Surface pressure
Surface temperature
SummonAdditionalLinks – databaseName: Wiley Online Library Full Collection 2020
  dbid: DRFUL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBaNk0AvafOibtKiQ3IKS_bllfZoJ_UDXBNMAr4teoZAYgfvJuBbb732N-aXZEYrG-fQQOlhYVcrrcRKmodm5htCTlKbGJ0wFhgl4yBVmQ24tWmgmDKMaxNJ7WZ6yEYjPpnkV_7ADWNhanyI1YEb7gxHr3GDC1l6sAHEyAStPe4N4SFL8w2yiXFVoHxtXo67N8MVLQYCXefMy9OAxyzzru_whfP19m-YksPufyNwroutju90P_3viD-THS9x0na9RHbJBzPdI9s9l9F3AXfOB1SV--R3m_YXGMBF29XDrES8gTtFMVnaPR0g3KWDPAZWR386D0xDPTjrLb0QU7ge0RpBL-sc99ClD0IwJR3NquV7TeWCDqqS-n5ffv3pACfVFCnTbAo88IDcdH9cX_QDn6chUOgkGtiWNaHhCmQJrjPLRSQNTyzIBiq3II4By8uMsqqlk8xamVgFSh23sCaUZALkzUPSmEIHXwhliUi0jTJrcpFKIQSX0FBGIgxNi-eiSc6WE1UoD2KOuTTuC2dMj_Ni_Sc3yemq9mMN3vGXeh2c81UdhNx2BbP5beF3cBEZYCohwvXLHLRKYOsGlD10wtUhEypukuPliik8HSgLZ7dG43YII3dr492BFL3xMEP4oa__VPuIfITyBI1cMT8mjWr-ZL6RLfVc3ZXz735PvAKH0gyJ
  priority: 102
  providerName: Wiley-Blackwell
Title A Hybrid Atmospheric Model Incorporating Machine Learning Can Capture Dynamical Processes Not Captured by Its Physics‐Based Component
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL102649
https://www.proquest.com/docview/2806524520
https://doaj.org/article/1e14606858b9495284e4878224d07ac2
Volume 50
WOSCitedRecordID wos000999816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231214
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaggMSl4ilSSuQDnNCKfWVtH5O0SSOlyypQUXFZ-YkqlaTqbpFy663X_kZ-CTNepwoH4MJhrfXaK1ue8cxYM_6GkLe5y6zJGIusVmmU68JF3Lk80kxbxo1NlPGUnrOy5KenotpK9YUxYR08cLdwHxILezlGlHQlwJgHaWrBxsbYRxMzqb30jZnYHKaCDAbB3OXKE3nEU1aEkPc4FXjaT6dzeC0QP3NLGXnM_t8MzW1z1eubyROyGwxFOuwm-JTcs8tn5NHUJ-Jdw5sP3dTNc3IzpEdrvHdFh-33VYMwAWeaYo6zczpDlEqPVAwaih77wElLA6bqNzqWS3gu0IlAD7rU9DBkuDtgG1qu2k27oWpNZ21Dw7g_r29HoAANRYGyWoLqekFOJoefx0dRSK8QaYztjNzA2dhyDSYAN4XjMlGWZw5UuhYOrCjQVIXVTg9MVjinMqfhLMYdkFIrJsFMfEl2ljDAK0JZJjPjksJZIXMlpeQKflSJjGM74EL2yPvNOtc6YI9jCozz2vvAU1FvU6VH3t31vugwN_7Qb4Qku-uDSNn-A_BPHfin_hf_9Mj-huB12L5N7d3N6JOOYeaeCf46kXq6mBeIGrT3P2b0mjzGnPboskr5PtlpL6_sG_JQ_2jPmss-uZ_mVZ88GB2W1aLvuR5qB4vJyRxqx-lHX1ZYsk9QVoOv0F6NR0Ps_WVW_gILDwfP
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BAcGFN2qggA9wQiv2lbX3mBaaRGyjChWpN8vPqlJJquwWKTduXPmN_BJmvE6UHkBCHFbax1i21vZ8Y8_4G4A3pS-cLThPnNF5UprKJ8L7MjHcOC6sy7QNPd3w2UycntbHMc8pnYXp-SE2G240M4K-pglOG9KRbYBIMnHZno8bfKjK-ibcKhGYKKYvL483qhj1c58yry4TkfMqRr5j-ffbpa9hUqDuv2ZvblutAXYOH_x3gx_C_WhxslE_RB7BDTd_DHfGIaPvCu9CDKhpn8CPEZus6AAXG3VfFy3xDZwbRsnSLtiU6C4D5TFCHTsKEZiORXLWM3ag5nhdkjeCfehz3GOV8RCCa9ls0a2_W6ZXbNq1LNb76_vPfURSy0gzLeaIgU_hy-HHk4NJEvM0JIaCRBM_9C51wqAtIWzlhcq0E4VH28DUHs0xhLzKGW-Gtqi814U3uKgTHseE0VyhvfkMduZYwS4wXqjC-qzyrlalVkoJjQV1ptLUDUWtBvBu3VPSRBJzyqVxIYMzPa_l9k8ewNuN9GVP3vEHuX3q9I0MUW6HF4vlmYwzWGYOQSUlun5d46oSYd3hYo-CcG3KlckHsLceMjLqgVYGvzU5t1NseRgcf22IHH9uKqIfev5P0q_h7uTkqJHNdPbpBdxDmYIcXrnYg51ueeVewm3zrTtvl6_C9PgNpIcO3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagPMSFZxGBAj7ACa3YV9beY9qSNCJEEQKpN8uvqSqVJMpuK-XGjSu_kV_CjNeJ0gNIiMNKu9mxbMXz3Bl_w9ibEgrvCiESb02elLaCRAKUiRXWC-l8ZlzY6YmYTuXpaT2LfU7pLEyHD7H94EaSEfQ1CbhfOohoAwSSiWF7PprgQ1XWN9mtsi-CZOblbKuKUT93LfPqMpG5qGLlO45_vzv6mk0K0P3X_M1drzWYneGD_17wQ3Y_epx80LHII3bDzx-zO6PQ0XeNd6EG1DZP2I8BP1nTAS4-aL8tGsIbOLecmqVd8DHBXQbIYzR1_FOowPQ8grOe8SM9x2tJ2Qh-3PW4xynjIQTf8Omi3bx33Kz5uG14nPfX95-HaEkdJ820mKMN3Gdfhx--HJ0ksU9DYqlINIE--NRLi76EdBVInRkvC0DfwNaA7hiavMpbsH1XVACmAItBnQTkCWuERn_zKdub4wTPGBeFLhxkFfhal0ZrLQ0ONJlOU9-Xte6xd5udUjaCmFMvjQsVkul5rXb_5B57u6VeduAdf6A7pE3f0hDkdvhhsTpTUYJV5tGopATXb2qMKtGsewz2qAjXpULbvMcONiyjoh5oVMhbU3I7xZUH5vjrQtTo86Qi-KHn_0T9mt2dHQ_VZDz9-ILdQ5KC8l25PGB77erSv2S37VV73qxeBen4DRg4Dlk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Atmospheric+Model+Incorporating+Machine+Learning+Can+Capture+Dynamical+Processes+Not+Captured+by+Its+Physics%E2%80%90Based+Component&rft.jtitle=Geophysical+research+letters&rft.au=Arcomano%2C+Troy&rft.au=Szunyogh%2C+Istvan&rft.au=Wikner%2C+Alexander&rft.au=Hunt%2C+Brian+R&rft.date=2023-04-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=8&rft_id=info:doi/10.1029%2F2022GL102649&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon