When Can Nonrandomized Studies Support Valid Inference Regarding Effectiveness or Safety of New Medical Treatments?

The randomized controlled trial (RCT) is the gold standard for evaluating the causal effects of medications. Limitations of RCTs have led to increasing interest in using real‐world evidence (RWE) to augment RCT evidence and inform decision making on medications. Although RWE can be either randomized...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Clinical pharmacology and therapeutics Ročník 111; číslo 1; s. 108 - 115
Hlavní autori: Franklin, Jessica M., Platt, Richard, Dreyer, Nancy A., London, Alex John, Simon, Gregory E., Watanabe, Jonathan H., Horberg, Michael, Hernandez, Adrian, Califf, Robert M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.01.2022
Predmet:
ISSN:0009-9236, 1532-6535, 1532-6535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The randomized controlled trial (RCT) is the gold standard for evaluating the causal effects of medications. Limitations of RCTs have led to increasing interest in using real‐world evidence (RWE) to augment RCT evidence and inform decision making on medications. Although RWE can be either randomized or nonrandomized, nonrandomized RWE can capitalize on the recent proliferation of large healthcare databases and can often answer questions that cannot be answered in randomized studies due to resource constraints. However, the results of nonrandomized studies are much more likely to be impacted by confounding bias, and the existence of unmeasured confounders can never be completely ruled out. Furthermore, nonrandomized studies require more complex design considerations which can sometimes result in design‐related biases. We discuss questions that can help investigators or evidence consumers evaluate the potential impact of confounding or other biases on their findings: Does the design emulate a hypothetical randomized trial design? Is the comparator or control condition appropriate? Does the primary analysis adjust for measured confounders? Do sensitivity analyses quantify the potential impact of residual confounding? Are methods open to inspection and (if possible) replication? Designing a high‐quality nonrandomized study of medications remains challenging and requires broad expertise across a range of disciplines, including relevant clinical areas, epidemiology, and biostatistics. The questions posed in this paper provide a guiding framework for assessing the credibility of nonrandomized RWE and could be applied across many clinical questions.
AbstractList The randomized controlled trial (RCT) is the gold standard for evaluating the causal effects of medications. Limitations of RCTs have led to increasing interest in using real-world evidence (RWE) to augment RCT evidence and inform decision making on medications. Although RWE can be either randomized or nonrandomized, nonrandomized RWE can capitalize on the recent proliferation of large healthcare databases and can often answer questions that cannot be answered in randomized studies due to resource constraints. However, the results of nonrandomized studies are much more likely to be impacted by confounding bias, and the existence of unmeasured confounders can never be completely ruled out. Furthermore, nonrandomized studies require more complex design considerations which can sometimes result in design-related biases. We discuss questions that can help investigators or evidence consumers evaluate the potential impact of confounding or other biases on their findings: Does the design emulate a hypothetical randomized trial design? Is the comparator or control condition appropriate? Does the primary analysis adjust for measured confounders? Do sensitivity analyses quantify the potential impact of residual confounding? Are methods open to inspection and (if possible) replication? Designing a high-quality nonrandomized study of medications remains challenging and requires broad expertise across a range of disciplines, including relevant clinical areas, epidemiology, and biostatistics. The questions posed in this paper provide a guiding framework for assessing the credibility of nonrandomized RWE and could be applied across many clinical questions.The randomized controlled trial (RCT) is the gold standard for evaluating the causal effects of medications. Limitations of RCTs have led to increasing interest in using real-world evidence (RWE) to augment RCT evidence and inform decision making on medications. Although RWE can be either randomized or nonrandomized, nonrandomized RWE can capitalize on the recent proliferation of large healthcare databases and can often answer questions that cannot be answered in randomized studies due to resource constraints. However, the results of nonrandomized studies are much more likely to be impacted by confounding bias, and the existence of unmeasured confounders can never be completely ruled out. Furthermore, nonrandomized studies require more complex design considerations which can sometimes result in design-related biases. We discuss questions that can help investigators or evidence consumers evaluate the potential impact of confounding or other biases on their findings: Does the design emulate a hypothetical randomized trial design? Is the comparator or control condition appropriate? Does the primary analysis adjust for measured confounders? Do sensitivity analyses quantify the potential impact of residual confounding? Are methods open to inspection and (if possible) replication? Designing a high-quality nonrandomized study of medications remains challenging and requires broad expertise across a range of disciplines, including relevant clinical areas, epidemiology, and biostatistics. The questions posed in this paper provide a guiding framework for assessing the credibility of nonrandomized RWE and could be applied across many clinical questions.
The randomized controlled trial (RCT) is the gold standard for evaluating the causal effects of medications. Limitations of RCTs have led to increasing interest in using real‐world evidence (RWE) to augment RCT evidence and inform decision making on medications. Although RWE can be either randomized or nonrandomized, nonrandomized RWE can capitalize on the recent proliferation of large healthcare databases and can often answer questions that cannot be answered in randomized studies due to resource constraints. However, the results of nonrandomized studies are much more likely to be impacted by confounding bias, and the existence of unmeasured confounders can never be completely ruled out. Furthermore, nonrandomized studies require more complex design considerations which can sometimes result in design‐related biases. We discuss questions that can help investigators or evidence consumers evaluate the potential impact of confounding or other biases on their findings: Does the design emulate a hypothetical randomized trial design? Is the comparator or control condition appropriate? Does the primary analysis adjust for measured confounders? Do sensitivity analyses quantify the potential impact of residual confounding? Are methods open to inspection and (if possible) replication? Designing a high‐quality nonrandomized study of medications remains challenging and requires broad expertise across a range of disciplines, including relevant clinical areas, epidemiology, and biostatistics. The questions posed in this paper provide a guiding framework for assessing the credibility of nonrandomized RWE and could be applied across many clinical questions.
Author Califf, Robert M.
Franklin, Jessica M.
Hernandez, Adrian
Platt, Richard
London, Alex John
Watanabe, Jonathan H.
Horberg, Michael
Dreyer, Nancy A.
Simon, Gregory E.
Author_xml – sequence: 1
  givenname: Jessica M.
  surname: Franklin
  fullname: Franklin, Jessica M.
  email: Jessica.franklin@optum.com
  organization: Brigham and Women's Hospital and Harvard Medical School
– sequence: 2
  givenname: Richard
  surname: Platt
  fullname: Platt, Richard
  organization: Harvard Medical School
– sequence: 3
  givenname: Nancy A.
  surname: Dreyer
  fullname: Dreyer, Nancy A.
  organization: IQVIA Real World Solutions
– sequence: 4
  givenname: Alex John
  surname: London
  fullname: London, Alex John
  organization: Carnegie Mellon University
– sequence: 5
  givenname: Gregory E.
  surname: Simon
  fullname: Simon, Gregory E.
  organization: Kaiser Permanente Washington Health Research Institute
– sequence: 6
  givenname: Jonathan H.
  surname: Watanabe
  fullname: Watanabe, Jonathan H.
  organization: University of California Irvine
– sequence: 7
  givenname: Michael
  surname: Horberg
  fullname: Horberg, Michael
  organization: Kaiser Permanente Mid‐Atlantic Permanente Research Institute and Mid‐Atlantic Permanente Medical Group
– sequence: 8
  givenname: Adrian
  surname: Hernandez
  fullname: Hernandez, Adrian
  organization: Duke Clinical Research Institute
– sequence: 9
  givenname: Robert M.
  surname: Califf
  fullname: Califf, Robert M.
  organization: Verily Life Sciences and Google Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33826756$$D View this record in MEDLINE/PubMed
BookMark eNo9kUtLxDAUhYMoOj7AXyBZuqneJpOkXYkMvsAXzqjLkjS3GmnTmrTK-Ovt4GN1uJyPs7jfNln3rUdC9lM4SgHYcdn1R4wJsUYmqeAskYKLdTIBgDzJGZdbZDvGt_Gc5lm2SbY4z5hUQk5IfH5FT2fa09vWB-1t27gvtHTeD9ZhpPOh69rQ0yddO0uvfIUBfYn0AV90sM6_0LOqwrJ3H-gxRtoGOtcV9kvaVvQWP-kNWlfqmi4C6r5B38eTXbJR6Tri3m_ukMfzs8XsMrm-u7ianV4n5TQFkaDOuLQMlclypTmazCpWKtAKslQZkGBBQyZMlRqwdjqVJWfGWDZ2AoThO-TwZ7cL7fuAsS8aF0usa-2xHWLBRApMylypET34RQfToC264BodlsXfo0Yg-QE-XY3L_z6FYiWgGAUUKwHF7H6xSv4N6j16Bg
CitedBy_id crossref_primary_10_1002_cpt_2465
crossref_primary_10_1016_j_therap_2024_10_062
crossref_primary_10_1016_j_ijrobp_2021_07_1700
crossref_primary_10_1016_j_therap_2024_10_052
crossref_primary_10_1186_s12874_024_02330_2
crossref_primary_10_1016_j_jval_2024_08_002
crossref_primary_10_3390_life13030712
crossref_primary_10_1097_PPO_0000000000000589
crossref_primary_10_1080_15265161_2021_2013977
crossref_primary_10_3389_fphar_2022_966081
crossref_primary_10_1183_23120541_00248_2022
crossref_primary_10_1126_scitranslmed_abn6911
crossref_primary_10_1002_cpt_70027
crossref_primary_10_1002_cpt_2452
crossref_primary_10_1136_bmjopen_2021_058244
crossref_primary_10_1016_j_bja_2023_06_054
crossref_primary_10_3390_ijerph22060894
crossref_primary_10_1016_j_jclinepi_2022_08_015
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/cpt.2255
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1532-6535
EndPage 115
ExternalDocumentID 33826756
CPT2255
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL141505
GroupedDBID ---
--K
-Q-
.55
.GJ
0R~
1B1
1CY
1OB
1OC
24P
29B
33P
354
36B
39C
3O-
4.4
52O
53G
5GY
5RE
6J9
70F
8F7
AAESR
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AAQOH
AAQQT
AAWTL
AAYCA
AAYOK
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ACBNA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADBTR
ADKYN
ADNMO
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
C45
CAG
COF
CS3
DCZOG
DPXWK
DU5
EBS
EE.
EJD
EMOBN
F5P
GODZA
GWYGA
HGLYW
IH2
IHE
J5H
L7B
LATKE
LEEKS
LITHE
LOXES
LSO
LUTES
LYRES
M41
MEWTI
N4W
N9A
NQ-
O9-
OPC
OVD
P2P
P2W
PALCI
RIG
RIWAO
RJQFR
RNTTT
ROL
RPZ
SAMSI
SEW
SJN
SUPJJ
TEORI
TWZ
UHS
VH1
WBKPD
WH7
WOHZO
WXSBR
WYJ
X7M
Y6R
YCJ
YFH
YOC
YXB
ZGI
ZXP
ZZTAW
AGHNM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
ID FETCH-LOGICAL-c4105-ea836d2e7b897a3eb8d72c70a70817b060d0a085bf1b0dd446c32bbd27b0505b3
IEDL.DBID 24P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648483100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0009-9236
1532-6535
IngestDate Thu Oct 02 05:24:18 EDT 2025
Thu Apr 03 06:58:41 EDT 2025
Wed Jan 22 16:26:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-ea836d2e7b897a3eb8d72c70a70817b060d0a085bf1b0dd446c32bbd27b0505b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.2255
PMID 33826756
PQID 2510266977
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2510266977
pubmed_primary_33826756
wiley_primary_10_1002_cpt_2255_CPT2255
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical pharmacology and therapeutics
PublicationTitleAlternate Clin Pharmacol Ther
PublicationYear 2022
References 2015; 182
2010; 19
2020; 324
2014; 25
1996; 143
2003; 158
2014; 23
2016; 79
2016; 183
2014; 179
2017; 73
2010; 21
2018; 8
2007; 370
2017; 36
2018; 1
2002; 84
2006; 163
2019; 28
2011; 20
2018; 74
2014; 161
2007; 3
2001; 12
2017; 167
2011; 364
2010; 6
2007; 26
1996; 7
2015; 12
2018; 29
2009; 20
2017; 26
2010
2008; 19
2019; 34
2006; 17
2006; 59
2006; 15
2009
2008
2019; 105
2019; 106
1983; 70
1996; 91
2011; 4
2008; 167
2011; 174
2018; 20
2016; 99
2016; 4
2014; 348
2015; 313
1984; 79
2019
2016; 375
2016
2001; 2
2000; 342
2013
2017; 102
2014; 33
2005; 58
References_xml – year: 2009
– volume: 79
  start-page: 70
  year: 2016
  end-page: 75
  article-title: Specifying a target trial prevents immortal time bias and other self‐inflicted injuries in observational analyses
  publication-title: J. Clin. Epidemiol.
– volume: 4
  start-page: 1234
  year: 2016
  article-title: Comparative effectiveness research using observational data: active comparators to emulate target trials with inactive comparators
  publication-title: EGEMs
– volume: 19
  start-page: 766–779
  year: 2008
  article-title: Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease
  publication-title: Epidemiology
– volume: 163
  start-page: 1149
  year: 2006
  end-page: 1156
  article-title: Variable selection for propensity score models
  publication-title: Am. J. Epidemiol.
– volume: 179
  start-page: 633
  year: 2014
  end-page: 640
  article-title: The control outcome calibration approach for causal inference with unobserved confounding
  publication-title: Am. J. Epidemiol.
– volume: 8
  year: 2018
  article-title: EU‐funded initiatives for real world evidence: descriptive analysis of their characteristics and relevance for regulatory decision‐making
  publication-title: BMJ Open.
– volume: 6
  year: 2010
  article-title: Collaborative double robust targeted maximum likelihood estimation
  publication-title: Int. J. Biostat.
– volume: 370
  start-page: 1453
  year: 2007
  end-page: 1457
  article-title: Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies
  publication-title: Lancet
– volume: 26
  start-page: 20
  year: 2007
  end-page: 36
  article-title: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
  publication-title: Stat. Med.
– volume: 58
  start-page: 323
  year: 2005
  end-page: 337
  article-title: A review of uses of health care utilization databases for epidemiologic research on therapeutics
  publication-title: J. Clin. Epidemiol.
– volume: 348
  start-page: g2866
  year: 2014
  article-title: Influence of healthy candidate bias in assessing clinical effectiveness for implantable cardioverter‐defibrillators: cohort study of older patients with heart failure
  publication-title: BMJ
– volume: 26
  start-page: 734
  year: 2007
  end-page: 753
  article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
  publication-title: Stat. Med.
– volume: 34
  start-page: 43
  year: 2019
  end-page: 68
  article-title: Automated versus do‐it‐yourself methods for causal inference: lessons learned from a data analysis competition
  publication-title: Stat. Sci.
– volume: 167
  start-page: 668–670
  year: 2017
  article-title: Data sharing and embedded research
  publication-title: Ann. Intern. Med.
– volume: 36
  start-page: 1946
  year: 2017
  end-page: 1963
  article-title: Comparing the performance of propensity score methods in healthcare database studies with rare outcomes
  publication-title: Stat. Med.
– volume: 99
  start-page: 325
  year: 2016
  end-page: 332
  article-title: Transparency and reproducibility of observational cohort studies using large healthcare databases
  publication-title: Clin. Pharmacol. Ther.
– volume: 167
  start-page: 492
  year: 2008
  end-page: 499
  article-title: Immortal time bias in pharmacoepidemiology
  publication-title: Am. J. Epidemiol.
– volume: 29
  start-page: 96
  year: 2018
  end-page: 106
  article-title: Using super learner prediction modeling to improve high‐dimensional propensity score estimation
  publication-title: Epidemiology
– volume: 105
  start-page: 1513
  year: 2019
  end-page: 1521
  article-title: Evaluation of socioeconomic status indicators for confounding adjustment in observational studies of medication use
  publication-title: Clin. Pharmacol. Ther.
– volume: 3
  start-page: 14
  year: 2007
  article-title: Preference‐based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results
  publication-title: Int. J. Biostat.
– volume: 26
  start-page: 1018
  year: 2017
  end-page: 1032
  article-title: Reporting to improve reproducibility and facilitate validity assessment for healthcare database studies V1.0
  publication-title: Pharmacoepidemiol. Drug Saf.
– year: 2008
– volume: 1
  year: 2018
  article-title: Association of osteoporosis medication use after hip fracture with prevention of subsequent nonvertebral fractures: an instrumental variable analysis
  publication-title: JAMA Netw. Open
– volume: 91
  start-page: 444
  year: 1996
  end-page: 455
  article-title: Identification of causal effects using instrumental variables
  publication-title: J. Am. Stat. Assoc.
– volume: 158
  start-page: 915
  year: 2003
  end-page: 920
  article-title: Evaluating medication effects outside of clinical trials: new‐user designs
  publication-title: Am. J. Epidemiol.
– volume: 183
  start-page: 758
  year: 2016
  end-page: 764
  article-title: Using big data to emulate a target trial when a randomized trial is not available
  publication-title: Am. J. Epidemiol.
– volume: 17
  start-page: 360
  year: 2006
  end-page: 372
  article-title: Instruments for causal inference: an epidemiologist’s dream?
  publication-title: Epidemiology
– volume: 161
  start-page: 131–138
  year: 2014
  article-title: Potential bias of instrumental variable analyses for observational comparative effectiveness research
  publication-title: Ann. Intern. Med.
– year: 2019
– volume: 33
  start-page: 1685
  year: 2014
  end-page: 1699
  article-title: Metrics for covariate balance in cohort studies of causal effects
  publication-title: Stat. Med.
– volume: 375
  start-page: 2293
  year: 2016
  end-page: 2297
  article-title: Real‐world evidence—what is it and what can it tell us
  publication-title: N. Engl. J. Med.
– volume: 174
  start-page: 1213
  year: 2011
  end-page: 1222
  article-title: Effects of adjusting for instrumental variables on bias and precision of effect estimates
  publication-title: Am. J. Epidemiol.
– volume: 7
  start-page: 335–336
  year: 1996
  article-title: Confounding by indication
  publication-title: Epidemiology
– volume: 102
  start-page: 924
  year: 2017
  end-page: 933
  article-title: When and how can real world data analyses substitute for randomized controlled trials?
  publication-title: Clin. Pharmacol. Ther.
– volume: 15
  start-page: 291
  year: 2006
  end-page: 303
  article-title: Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics
  publication-title: Pharmacoepidemiol. Drug Saf.
– volume: 19
  start-page: 537
  year: 2010
  end-page: 554
  article-title: Instrumental variable methods in comparative safety and effectiveness research
  publication-title: Pharmacoepidemiol. Drug Saf.
– volume: 20
  start-page: 974
  year: 2018
  end-page: 984
  article-title: Claims‐based studies of oral glucose‐lowering medications can achieve balance in critical clinical variables only observed in electronic health records
  publication-title: Diabetes Obes. Metab.
– volume: 12
  year: 2015
  article-title: The REporting of studies Conducted using Observational Routinely‐collected health Data (RECORD) statement
  publication-title: PLoS Med.
– volume: 20
  start-page: 512
  year: 2009
  end-page: 522
  article-title: High‐dimensional propensity score adjustment in studies of treatment effects using health care claims data
  publication-title: Epidemiology
– volume: 313
  start-page: 793
  year: 2015
  end-page: 794
  article-title: Sharing clinical trial data: maximizing benefits, minimizing risk
  publication-title: JAMA
– volume: 4
  start-page: 8–11
  year: 2011
  article-title: An overview of randomization techniques: an unbiased assessment of outcome in clinical research
  publication-title: J. Hum. Reprod. Sci.
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 26
  start-page: 1033
  year: 2017
  end-page: 1039
  article-title: Good practices for real‐world data studies of treatment and/or comparative effectiveness: recommendations from the joint ISPOR‐ISPE Special Task Force on real‐world evidence in health care decision making
  publication-title: Pharmacoepidemiol. Drug Saf.
– volume: 17
  start-page: 268
  year: 2006
  end-page: 275
  article-title: Evaluating short‐term drug effects using a physician‐specific prescribing preference as an instrumental variable
  publication-title: Epidemiology
– year: 2016
– volume: 12
  start-page: 682
  year: 2001
  end-page: 689
  article-title: Paradoxical relations of drug treatment with mortality in older persons
  publication-title: Epidemiology
– year: 2010
– volume: 106
  start-page: 103
  year: 2019
  end-page: 115
  article-title: A structured preapproval and postapproval comparative study design framework to generate valid and transparent real‐world evidence for regulatory decisions
  publication-title: Clin. Pharmacol. Ther
– volume: 73
  start-page: 1111
  year: 2017
  end-page: 1122
  article-title: Outcome‐adaptive lasso: variable selection for causal inference
  publication-title: Biometrics
– volume: 364
  start-page: 498
  year: 2011
  end-page: 499
  article-title: Developing the Sentinel System—a national resource for evidence development
  publication-title: N. Engl. J. Med.
– volume: 25
  start-page: 126
  year: 2014
  end-page: 133
  article-title: Prospective cohort studies of newly marketed medications: using covariate data to inform the design of large‐scale studies
  publication-title: Epidemiology
– volume: 59
  start-page: 819
  year: 2006
  end-page: 828
  article-title: Selective prescribing led to overestimation of the benefits of lipid‐lowering drugs
  publication-title: J. Clin. Epidemiol.
– volume: 21
  start-page: 383–388
  year: 2010
  article-title: Negative controls: a tool for detecting confounding and bias in observational studies
  publication-title: Epidemiology
– volume: 26
  start-page: 459
  year: 2017
  end-page: 468
  article-title: Prevalent new‐user cohort designs for comparative drug effect studies by time‐conditional propensity scores: Prevalent New‐user Designs
  publication-title: Pharmacoepidemiol. Drug Saf.
– volume: 74
  start-page: 8
  year: 2018
  end-page: 17
  article-title: Covariate selection with group lasso and doubly robust estimation of causal effects
  publication-title: Biometrics
– volume: 182
  start-page: 840
  year: 2015
  end-page: 845
  article-title: Counterpoint: the treatment decision design
  publication-title: Am. J. Epidemiol.
– volume: 79
  start-page: 516
  year: 1984
  end-page: 524
  article-title: Reducing bias in observational studies using subclassification on the propensity score
  publication-title: J. Am. Stat. Assoc.
– volume: 20
  start-page: 849
  year: 2011
  end-page: 857
  article-title: Confounding adjustment via a semi‐automated high‐dimensional propensity score algorithm: an application to electronic medical records
  publication-title: Pharmacoepidemiol. Drug Saf.
– volume: 105
  start-page: 867
  year: 2019
  end-page: 877
  article-title: Evaluating the use of nonrandomized real‐world data analyses for regulatory decision making
  publication-title: Clin. Pharmacol. Therap.
– volume: 23
  start-page: 830
  year: 2014
  end-page: 838
  article-title: Instrumental variable applications using nursing home prescribing preferences in comparative effectiveness research
  publication-title: Pharmacoepidemiol. Drug Saf.
– volume: 2
  start-page: 259
  year: 2001
  end-page: 278
  article-title: Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization
  publication-title: Health Serv. Outcomes Res. Methodol.
– volume: 324
  start-page: 625–626
  year: 2020
  article-title: Weighing the benefits and risks of proliferating observational treatment assessments: observational cacophony, randomized harmony
  publication-title: JAMA
– volume: 28
  start-page: 532
  year: 2019
  end-page: 554
  article-title: Scalable collaborative targeted learning for high‐dimensional data
  publication-title: Stat. Methods Med. Res.
– volume: 143
  start-page: 971
  year: 1996
  end-page: 978
  article-title: Prior to use of estrogen replacement therapy, are users healthier than nonusers?
  publication-title: Am. J. Epidemiol.
– volume: 28
  start-page: 1044
  year: 2019
  end-page: 1063
  article-title: Collaborative‐controlled LASSO for constructing propensity score‐based estimators in high‐dimensional data
  publication-title: Stat. Methods Med. Res.
– volume: 84
  start-page: 151
  year: 2002
  end-page: 161
  article-title: Propensity score‐matching methods for nonexperimental causal studies
  publication-title: Rev. Econ. Stat.
– volume: 342
  start-page: 1887
  year: 2000
  end-page: 1892
  article-title: Randomized, controlled trials, observational studies, and the hierarchy of research designs
  publication-title: N. Engl. J. Med.
– year: 2013
SSID ssj0004988
Score 2.4824662
SecondaryResourceType review_article
Snippet The randomized controlled trial (RCT) is the gold standard for evaluating the causal effects of medications. Limitations of RCTs have led to increasing...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 108
SubjectTerms Bias
Confounding Factors, Epidemiologic
Data Analysis
Evidence-Based Medicine
Humans
Non-Randomized Controlled Trials as Topic - methods
Therapeutics - adverse effects
Title When Can Nonrandomized Studies Support Valid Inference Regarding Effectiveness or Safety of New Medical Treatments?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.2255
https://www.ncbi.nlm.nih.gov/pubmed/33826756
https://www.proquest.com/docview/2510266977
Volume 111
WOSCitedRecordID wos000648483100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60evDi-1FfjCA9NbrZpNn0JFIsClqC1tJbyD5SejApTSvUX-9sHi2CB8HL5rBZCMzs5Jvd-b4h5FrINpdoWyu2PW1hwIstwaQwTQSolFS5Or9oHzzzXs8fDttBWVVpuDCFPsTywM3sjDxemw0eiex2JRoqJ7MbdMbWOtmwbcc3bRuYG6w4kW3fr7qoIYjxKuFZym6rlb-Byp8YNf_JdHf-83m7ZLuElnBf-MIeWdPJPmkEhTb1ogn9FdUqa0IDgpVq9eKAZBiWE-hECfRMx4FEpR_jL62gLDQE0_4ToToMELgreKp4gvCqR8bJkhEUQshl9IR0Cm9RrGcLSGPAUArllRD0q9L27O6QvHcf-p1Hq-zIYElTDmrpyHc8xTQXfptHjha-4kxyGnFEFlxQjyoaIYgTsS2oUphqSocJoRjOIdQSzhGpJWmiTwjErlRceYYHq11u-LLUVS3JheLUQ8xaJ1eVcUL0eHONESU6nWchIjJMHD0ErnVyXFgtnBTSHCEm3AxTIFzdyI2znCjUmVmIZgmNWcJO0DfP07--eEa2mGE-5Kcv56Q2m871BdmUn7NxNr3MfQ9HPvRx7AUv3z413zM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfTi-_0aQfZkNWZr08WDyKIorkvRKt5K86h4sF22q7D-eid9uAgeBE89pIHATCbfTPJ9A3AgVVsosq2TnHjGoYCXOJIraZsIMKWYdk1x0f7UFb2e__zcDibgrObClPoQ3wU3uzOKeG03uC1IH49VQ1V_eETeeDoJUy4dMtbJuRuMSZFt36_bqBGK8WrlWcaP65m_ocqfILU4Za7m_7W-BZirwCVelN6wCBMmXYJmUKpTjw4xHJOt8kNsYjDWrR4tQ06BOcVOnGLP9hxIdfb2-mk0Vk8N0TYAJbCOTwTdNd7UTEG8Ny_WzdIXLKWQq_iJ2QAf4sQMR5glSMEUq0shDOvH7fn5CjxeXYada6fqyeAo-yDUMbHf8jQ3QvptEbeM9LXgSrBYELYQknlMs5hgnExOJNOakk3V4lJqTmMEtmRrFRpplpp1wMRVWmjPMmGNKyxjlrn6VAmpBfMItW7Afm2diHzeXmTEqcne84gwGaWOHkHXDVgrzRb1S3GOiFJuTkkQzW4W1vkeKPWZeURmiaxZok4Q2u_mX3_cg5nr8K4bdW96t1swyy0PoqjFbENjOHg3OzCtPoav-WC3cMQvDY7hKg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IV58v18jSE_GbrdpNsWDSLUoSglaxVvIPiIeTEpThfrrnc3DIngQPOWwWQjM7OSbnfm-ATiWqi0U2daJG55xKODFjuRK2iECTCmmXZMX2p_uRK_nPz-3gyk4q7gwhT7E94WbPRl5vLYH3Ax0XJ-ohqrB6JS8sTUNs25LNKxLczeYkCLbvl-NUSMU41XKs4zXq52_ocqfIDX_y3SX_vV9y7BYgku8KLxhBaZMsgq1oFCnHp9gf0K2yk6whsFEt3q8BhkF5gQ7UYI9O3Mg0enb66fRWLYaoh0ASmAdnwi6a7ypmIJ4b16smyUvWEghl_ET0yE-RLEZjTGNkYIplkUh7FfN7dn5Ojx2r_qda6ecyeAo2xDqmMhvepobIf22iJpG-lpwJVgkCFsIyTymWUQwTsYNybSmZFM1uZSa0xqBLdncgJkkTcwWYOwqLbRnmbDGFZYxy1zdUkJqwTxCrdtwVFknJJ-3hYwoMel7FhImo9TRI-i6DZuF2cJBIc4RUsrNKQmi3bXcOt8LhT4zD8ksoTVL2An69rnz1xcPYT647IZ3N73bXVjglgaRX8Xswcxo-G72YU59jF6z4UHuh1_dIOCu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+Can+Nonrandomized+Studies+Support+Valid+Inference+Regarding+Effectiveness+or+Safety+of+New+Medical+Treatments%3F&rft.jtitle=Clinical+pharmacology+and+therapeutics&rft.au=Franklin%2C+Jessica+M.&rft.au=Platt%2C+Richard&rft.au=Dreyer%2C+Nancy+A.&rft.au=London%2C+Alex+John&rft.date=2022-01-01&rft.issn=0009-9236&rft.eissn=1532-6535&rft.volume=111&rft.issue=1&rft.spage=108&rft.epage=115&rft_id=info:doi/10.1002%2Fcpt.2255&rft.externalDBID=10.1002%252Fcpt.2255&rft.externalDocID=CPT2255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9236&client=summon