Efficient Electrochemical Nitrogen Fixation over Isolated Pt Sites
Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg...
Saved in:
| Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 22; pp. e2000015 - n/a |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.06.2020
|
| Subjects: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h−1 mg−1Pt) and Faradaic efficiency (31.1%) in 0.1 m K2SO4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N2. Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction.
Isolated Pt atoms anchored on WO3 nanoplates exhibit highly active for ambient ammonia electrosynthesis, which is ascribed to facilitated chemisorption and activation of nitrogen and effective suppression for hydrogen evolution reaction (HER), immensely enhancing NH3 yield rate and Faradic efficiency. This groundbreaking research presents Pt‐based nanocatalysts for electroreduction of nitrogen and provides an idea for the HER depression. |
|---|---|
| AbstractList | Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h-1 mg-1 Pt ) and Faradaic efficiency (31.1%) in 0.1 m K2 SO4 at -0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt-3O structure can favorably chemisorb and activate the N2 . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going-on of nitrogen reduction reaction.Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h-1 mg-1 Pt ) and Faradaic efficiency (31.1%) in 0.1 m K2 SO4 at -0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt-3O structure can favorably chemisorb and activate the N2 . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going-on of nitrogen reduction reaction. Recently, ambient electrochemical N fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO nanoplates exhibit the optimum electrochemical NH yield rate (342.4 µg h mg ) and Faradaic efficiency (31.1%) in 0.1 m K SO at -0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N conversion to NH follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt-3O structure can favorably chemisorb and activate the N . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO nanoplates, which guarantees the efficient going-on of nitrogen reduction reaction. Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h−1 mg−1Pt) and Faradaic efficiency (31.1%) in 0.1 m K2SO4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N2. Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction. Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h−1 mg−1Pt) and Faradaic efficiency (31.1%) in 0.1 m K2SO4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N2. Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction. Isolated Pt atoms anchored on WO3 nanoplates exhibit highly active for ambient ammonia electrosynthesis, which is ascribed to facilitated chemisorption and activation of nitrogen and effective suppression for hydrogen evolution reaction (HER), immensely enhancing NH3 yield rate and Faradic efficiency. This groundbreaking research presents Pt‐based nanocatalysts for electroreduction of nitrogen and provides an idea for the HER depression. Recently, ambient electrochemical N 2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO 3 nanoplates exhibit the optimum electrochemical NH 3 yield rate (342.4 µg h −1 mg −1 Pt ) and Faradaic efficiency (31.1%) in 0.1 m K 2 SO 4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N 2 conversion to NH 3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N 2 . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO 3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction. |
| Author | Chen, Jialiang Liu, Yu‐ping Liu, Xiaolu Hao, Ran Shen, Zhurui Liu, Qian Li, Wei Sun, Wenming Lv, Xianwei |
| Author_xml | – sequence: 1 givenname: Ran surname: Hao fullname: Hao, Ran organization: Nankai University – sequence: 2 givenname: Wenming surname: Sun fullname: Sun, Wenming organization: China Agricultural University – sequence: 3 givenname: Qian surname: Liu fullname: Liu, Qian organization: Nankai University – sequence: 4 givenname: Xiaolu surname: Liu fullname: Liu, Xiaolu organization: Nankai University – sequence: 5 givenname: Jialiang surname: Chen fullname: Chen, Jialiang organization: Nankai University – sequence: 6 givenname: Xianwei surname: Lv fullname: Lv, Xianwei organization: Nankai University – sequence: 7 givenname: Wei surname: Li fullname: Li, Wei organization: Nankai University – sequence: 8 givenname: Yu‐ping surname: Liu fullname: Liu, Yu‐ping email: liuypnk@nankai.edu.cn organization: Nankai University – sequence: 9 givenname: Zhurui orcidid: 0000-0001-8803-9812 surname: Shen fullname: Shen, Zhurui email: shenzhurui@nankai.edu.cn organization: Nankai University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32338456$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtLAzEUhYMoWqtblzLgxs3UJDOZTpZaWhXqA9R1yGRuNCUzqUnq4987tT6gIGaRB5zvcHLPLtpsXQsIHRA8IBjTk9BYO6CY4m4RtoF6pCBZWpSUb_7cCd5BuyHMMM4IzYfbaCejWVbmrOihs7HWRhloYzK2oKJ36gkao6RNrk33eoQ2mZg3GY1rE_cCPrkMzsoIdXIbkzsTIeyhLS1tgP2vs48eJuP70UU6vTm_HJ1OU5UTzNKq0LlSta5wzUASiaUaYl0RSjlhmhEOVal5mddVDYxyvNx1JbvMxRBYl72Pjle-c--eFxCiaExQYK1swS2CoBlnlDHa_a2PjtakM7fwbZdO0BxzUmacLA0Pv1SLqoFazL1ppH8X39PpBPlKoLwLwYMWysTPUUQvjRUEi2UJYlmC-CmhwwZr2LfznwBfAa_Gwvs_anF3NZ3-sh9AXZjL |
| CitedBy_id | crossref_primary_10_1016_j_cej_2023_146159 crossref_primary_10_1016_j_cej_2023_142039 crossref_primary_10_1016_j_cej_2022_136797 crossref_primary_10_1016_j_colsurfa_2024_134583 crossref_primary_10_1002_adfm_202302332 crossref_primary_10_1002_chem_202103143 crossref_primary_10_1002_adma_202007650 crossref_primary_10_1016_j_apcatb_2022_121777 crossref_primary_10_1002_chem_202200779 crossref_primary_10_6023_A20090412 crossref_primary_10_1016_j_apcatb_2022_121319 crossref_primary_10_1016_j_apcatb_2023_123084 crossref_primary_10_1016_j_apcatb_2024_124194 crossref_primary_10_1039_D0EE03596C crossref_primary_10_1016_j_ccr_2023_215196 crossref_primary_10_1039_D2EE00953F crossref_primary_10_1155_2024_5685619 crossref_primary_10_1016_j_envres_2021_111259 crossref_primary_10_1016_j_ijhydene_2023_12_128 crossref_primary_10_1039_D1QM00546D crossref_primary_10_1002_aenm_202304106 crossref_primary_10_1002_ange_202213711 crossref_primary_10_1039_D1NR05209H crossref_primary_10_1016_j_jece_2024_114454 crossref_primary_10_1002_smll_202206776 crossref_primary_10_1016_j_jcis_2025_138179 crossref_primary_10_1016_j_jechem_2021_12_021 crossref_primary_10_1002_smtd_202100460 crossref_primary_10_1007_s41918_022_00164_4 crossref_primary_10_1016_j_ijhydene_2024_07_422 crossref_primary_10_1002_aenm_202501129 crossref_primary_10_1016_j_pmatsci_2022_101044 crossref_primary_10_1002_smll_202002885 crossref_primary_10_1016_j_rser_2022_112845 crossref_primary_10_1016_j_apsusc_2022_153655 crossref_primary_10_1002_anie_202213711 crossref_primary_10_1002_smll_202106939 crossref_primary_10_1007_s41918_023_00186_6 crossref_primary_10_1002_adfm_202106713 crossref_primary_10_3390_catal15060603 crossref_primary_10_1021_acsanm_5c01203 crossref_primary_10_1007_s10008_022_05228_5 crossref_primary_10_1016_j_cej_2021_129447 crossref_primary_10_3390_catal12091015 crossref_primary_10_1016_j_cej_2023_143776 crossref_primary_10_1016_j_checat_2021_09_017 crossref_primary_10_1016_j_seppur_2024_129692 crossref_primary_10_1016_j_jcat_2024_115489 crossref_primary_10_1039_D2EE00358A crossref_primary_10_1016_j_cej_2022_135853 crossref_primary_10_3390_en17020441 crossref_primary_10_1021_acsami_5c08200 crossref_primary_10_1016_j_jcis_2022_05_054 |
| Cites_doi | 10.1021/jacs.7b12101 10.1002/cssc.201801632 10.1039/C8CC09256G 10.1021/acscatal.8b00905 10.1021/acscatal.8b02585 10.1039/C9CC00602H 10.1039/C8CP06978F 10.1002/chem.201806377 10.1039/C7CP05484J 10.1038/s41467-018-08120-x 10.1002/adma.201803498 10.1038/nature06592 10.1021/acscatal.8b02311 10.1002/aenm.201800369 10.1016/j.mattod.2019.03.002 10.1021/ja110073u 10.1016/j.jcat.2005.10.015 10.1021/acscatal.7b02165 10.1038/ngeo325 10.1038/srep01145 10.1039/C9TA01624D 10.1039/C9CC04034J 10.1038/s41586-019-1260-x 10.1016/j.cattod.2016.06.014 10.1002/anie.201804319 10.1016/j.chempr.2018.10.007 10.1021/acscatal.6b03035 10.1039/C9CC00123A 10.1016/j.scib.2018.07.005 10.1016/j.jcis.2019.05.105 10.1002/aenm.201800124 |
| ContentType | Journal Article |
| Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202000015 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 32338456 10_1002_smll_202000015 SMLL202000015 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21872102; 21703219; 21878162; 21978137 – fundername: Natural Science Foundation of Tianjin funderid: 17JCYBJC17100 – fundername: Science and Technology Commissioner of Tianjin funderid: 18JCTPJC55900 – fundername: Fundamental Research Funds for the Central Universities – fundername: Natural Science Foundation of Tianjin grantid: 17JCYBJC17100 – fundername: National Natural Science Foundation of China grantid: 21872102 – fundername: Science and Technology Commissioner of Tianjin grantid: 18JCTPJC55900 – fundername: National Natural Science Foundation of China grantid: 21703219 – fundername: National Natural Science Foundation of China grantid: 21878162 – fundername: National Natural Science Foundation of China grantid: 21978137 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c4105-b6f4ccdfb0d5ea1a0ac70fb122915f519eb8f984dbde5290de52fba03167e5003 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528635200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 11:42:44 EDT 2025 Fri Jul 25 10:01:54 EDT 2025 Wed Feb 19 02:30:37 EST 2025 Sat Nov 29 03:27:46 EST 2025 Tue Nov 18 21:13:07 EST 2025 Wed Jan 22 16:34:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | isolated Pt sites density functional theory calculations electrocatalysis nitrogen reduction reaction electrochemical in situ Fourier transform infrared spectroscopy |
| Language | English |
| License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4105-b6f4ccdfb0d5ea1a0ac70fb122915f519eb8f984dbde5290de52fba03167e5003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8803-9812 |
| PMID | 32338456 |
| PQID | 2409183910 |
| PQPubID | 1046358 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2395255223 proquest_journals_2409183910 pubmed_primary_32338456 crossref_citationtrail_10_1002_smll_202000015 crossref_primary_10_1002_smll_202000015 wiley_primary_10_1002_smll_202000015_SMLL202000015 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 7 2017; 7 2018; 8 2013; 3 2018; 140 2019; 5 2019; 55 2019; 10 2019; 21 2019; 25 2019; 27 2019; 553 2018; 30 2018; 63 2017; 286 2008; 1 2006; 237 2018; 11 2019; 570 2008; 451 2018; 20 2011; 133 2018; 57 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
| References_xml | – volume: 21 start-page: 1546 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 27 start-page: 69 year: 2019 publication-title: Mater. Today – volume: 286 start-page: 2 year: 2017 publication-title: Catal. Today – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1145 year: 2013 publication-title: Sci. Rep. – volume: 55 start-page: 3371 year: 2019 publication-title: Chem. Commun. – volume: 8 start-page: 1186 year: 2018 publication-title: ACS Catal. – volume: 451 start-page: 293 year: 2008 publication-title: Nature – volume: 20 start-page: 4982 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 7517 year: 2018 publication-title: ACS Catal. – volume: 55 start-page: 9335 year: 2019 publication-title: Chem. Commun. – volume: 133 start-page: 4498 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 687 year: 2019 publication-title: Chem. Commun. – volume: 8 start-page: 8540 year: 2018 publication-title: ACS Catal. – volume: 553 start-page: 126 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 1 start-page: 636 year: 2008 publication-title: Nat. Geosci. – volume: 55 start-page: 2952 year: 2019 publication-title: Chem. Commun. – volume: 5 start-page: 204 year: 2019 publication-title: Chem – volume: 237 start-page: 17 year: 2006 publication-title: J. Catal. – volume: 570 start-page: 504 year: 2019 publication-title: Nature – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 63 start-page: 1246 year: 2018 publication-title: Sci. Bull. – volume: 8 start-page: 9312 year: 2018 publication-title: ACS Catal. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 140 start-page: 1496 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 341 year: 2019 publication-title: Nat. Commun. – volume: 57 start-page: 9351 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3416 year: 2018 publication-title: ChemSusChem – volume: 7 start-page: 706 year: 2017 publication-title: ACS Catal. – volume: 25 start-page: 5904 year: 2019 publication-title: Chem. Eur. J. – ident: e_1_2_4_27_1 doi: 10.1021/jacs.7b12101 – ident: e_1_2_4_6_1 doi: 10.1002/cssc.201801632 – ident: e_1_2_4_28_1 doi: 10.1039/C8CC09256G – ident: e_1_2_4_13_1 doi: 10.1021/acscatal.8b00905 – ident: e_1_2_4_7_1 doi: 10.1021/acscatal.8b02585 – ident: e_1_2_4_10_1 doi: 10.1039/C9CC00602H – ident: e_1_2_4_29_1 doi: 10.1039/C8CP06978F – ident: e_1_2_4_4_1 doi: 10.1002/chem.201806377 – ident: e_1_2_4_21_1 doi: 10.1039/C7CP05484J – ident: e_1_2_4_25_1 doi: 10.1038/s41467-018-08120-x – ident: e_1_2_4_15_1 doi: 10.1002/adma.201803498 – ident: e_1_2_4_1_1 doi: 10.1038/nature06592 – ident: e_1_2_4_9_1 doi: 10.1021/acscatal.8b02311 – ident: e_1_2_4_17_1 doi: 10.1002/aenm.201800369 – ident: e_1_2_4_30_1 doi: 10.1016/j.mattod.2019.03.002 – ident: e_1_2_4_23_1 doi: 10.1021/ja110073u – ident: e_1_2_4_24_1 doi: 10.1016/j.jcat.2005.10.015 – ident: e_1_2_4_11_1 doi: 10.1021/acscatal.7b02165 – ident: e_1_2_4_2_1 doi: 10.1038/ngeo325 – ident: e_1_2_4_18_1 doi: 10.1038/srep01145 – ident: e_1_2_4_31_1 doi: 10.1039/C9TA01624D – ident: e_1_2_4_20_1 doi: 10.1039/C9CC04034J – ident: e_1_2_4_26_1 doi: 10.1038/s41586-019-1260-x – ident: e_1_2_4_3_1 doi: 10.1016/j.cattod.2016.06.014 – ident: e_1_2_4_22_1 doi: 10.1002/anie.201804319 – ident: e_1_2_4_14_1 doi: 10.1016/j.chempr.2018.10.007 – ident: e_1_2_4_12_1 doi: 10.1021/acscatal.6b03035 – ident: e_1_2_4_8_1 doi: 10.1039/C9CC00123A – ident: e_1_2_4_16_1 doi: 10.1016/j.scib.2018.07.005 – ident: e_1_2_4_19_1 doi: 10.1016/j.jcis.2019.05.105 – ident: e_1_2_4_5_1 doi: 10.1002/aenm.201800124 |
| SSID | ssj0031247 |
| Score | 2.583426 |
| Snippet | Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this... Recently, ambient electrochemical N 2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this... Recently, ambient electrochemical N fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this... Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2000015 |
| SubjectTerms | Ammonia Chemical reduction density functional theory calculations electrocatalysis electrochemical in situ Fourier transform infrared spectroscopy Hydrogen evolution reactions Hydrogen storage isolated Pt sites Nanoparticles Nanotechnology nitrogen reduction reaction Nitrogenation Potassium sulfate Tungsten oxides |
| Title | Efficient Electrochemical Nitrogen Fixation over Isolated Pt Sites |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202000015 https://www.ncbi.nlm.nih.gov/pubmed/32338456 https://www.proquest.com/docview/2409183910 https://www.proquest.com/docview/2395255223 |
| Volume | 16 |
| WOSCitedRecordID | wos000528635200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD7ouA_ug5f1svVGBGGfgmna7CSPXmZQGAfxssxbSdIEBsZR7Lj48z1pO9VBRNCX0tC0DeeS8-X2HYADJ71UGHip94rT1BlDJXeWWm61jpnMZcmz_a_X7vflYKAu35zir_ghmgm34Bllfx0cXJvi8JU0tLgbhaUDXs5Pi3lY4Gi8ogULp1fd2960N04wfpUJVjBs0cC9NSVuZPxw9guzgekd2pwFr2X06S5_v90rsFQjT3JUmcoqzLnxL_j5ho9wDY47JaEExiHSqdLj2JpPgPSHWEJjI93hc6lMEvZ-knM0XUSrObmckGtEr8U63HY7NydntE6yQG3Y4UnNX59am3vDcuF0rJm2beZNzLmKhUd854z0Sqa5yZ3gioWrN5qFE_ROoIA3oDW-H7vfQGQ7iR1jVrA8TVOT6NRqmzscg3kltEojoFMJZ7ZmIA-JMEZZxZ3MsyCbrJFNBH-a-g8V98aHNXemCstqHywyxCoq4L-YRbDfPEbvCUsieuzun7BOogQOqhAjRbBZKbr5VcJx-I74MgJe6vOTNmTXF71eU9r6ykvbsBjuq51oO9CaPD65Xfhh_0-GxeMezLcHcq-27xcRH_lD |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3tS9wwGH9wd4PpB-denHVOIwz2KZim6S75qPOOk9VDpg6_lSRN4MDVYe-Gf75P2l7dIUMYfimkTdvwvOT5JXnyC8BnJ71UGHip94pT4YyhkjtLLbdax0wWsubZ_pkNJhN5daXO2mzCsBem4YfoJtyCZ9T9dXDwMCF98MAaWv26DmsHvJ6gTl9AX6AtoZH3j3-MLrNFd5xgAKtPWMG4RQP51oK5kfGD5S8sR6ZHcHMZvdbhZ_T6GRq-Aest9iSHjbG8gRVXvoW1vxgJ38HRsKaUwEhEhs0BObZlFCCTKZbQ3Mhoelerk4TsT3KCxot4tSBnM3KO-LV6D5ej4cW3MW2PWaA25HhS89ULawtvWJE6HWum7YB5E3Ou4tQjwnNGeiVFYQqXcsXC1RvNwh56l6KEN6FX3pRuC4gcJLFjzKasEEKYRAurbeFwFOZVqpWIgC5EnNuWgzwchXGdN-zJPA-yyTvZRPClq_-7Yd_4Z82dhcby1gurHNGKCggwZhHsd4_Rf8KiiC7dzRzrJCrFYRWipAg-NJrufpVwHMAjwoyA1wp9og35-WmWdaXt_3lpD16NL06zPDuZfP8Iq-F-k5e2A73Z7dx9gpf2z2xa3e62Zn4PKgz8Sw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2pIztYR9tt3lrOxUGfRKVZXmRHrc1pqFeCO1a-mb0CYEuLfkY-_N3sh1voYzB2ItBtmyLu5PuJ-n0O4D3Xgap0PHSEBSnwhtDJfeWWm61Tpl0subZvioH47G8vlaTNpownoVp-CG6BbfYM-rxOnZwf-fC8S_W0MW3m7h3wOsF6vwh9EXMJNOD_sl5cVmuh-MMHVidYQX9Fo3kW2vmRsaPN7-w6Znuwc1N9Fq7n-LZf2j4c3jaYk_ysTGWF_DAz7bhyW-MhDvwaVhTSqAnIsMmQY5tGQXIeIolNDdSTH_U6iQx-pOM0HgRrzoyWZILxK-LXbgshl8_n9I2zQK1McaTmg9BWOuCYS73OtVM2wELJuVcpXlAhOeNDEoKZ5zPuWLxGoxm8Qy9z1HCL6E3u53510DkIEs9YzZnTghhMi2sts7jLCyoXCuRAF2LuLItB3lMhXFTNezJvIqyqTrZJHDU1b9r2Df-WHNvrbGq7YWLCtGKiggwZQkcdo-x_8RNET3ztyusk6kcp1WIkhJ41Wi6-1XGcQKPCDMBXiv0L22oLr6UZVd68y8vvYNHk5OiKkfjs7fwON5uwtL2oLecr_w-bNnvy-liftBa-U-5L_vG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Electrochemical+Nitrogen+Fixation+over+Isolated+Pt+Sites&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hao%2C+Ran&rft.au=Sun%2C+Wenming&rft.au=Liu%2C+Qian&rft.au=Liu%2C+Xiaolu&rft.date=2020-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202000015&rft.externalDBID=10.1002%252Fsmll.202000015&rft.externalDocID=SMLL202000015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |