Efficient Electrochemical Nitrogen Fixation over Isolated Pt Sites

Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Small (Weinheim an der Bergstrasse, Germany) Ročník 16; číslo 22; s. e2000015 - n/a
Hlavní autoři: Hao, Ran, Sun, Wenming, Liu, Qian, Liu, Xiaolu, Chen, Jialiang, Lv, Xianwei, Li, Wei, Liu, Yu‐ping, Shen, Zhurui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.06.2020
Témata:
ISSN:1613-6810, 1613-6829, 1613-6829
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h−1 mg−1Pt) and Faradaic efficiency (31.1%) in 0.1 m K2SO4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N2. Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction. Isolated Pt atoms anchored on WO3 nanoplates exhibit highly active for ambient ammonia electrosynthesis, which is ascribed to facilitated chemisorption and activation of nitrogen and effective suppression for hydrogen evolution reaction (HER), immensely enhancing NH3 yield rate and Faradic efficiency. This groundbreaking research presents Pt‐based nanocatalysts for electroreduction of nitrogen and provides an idea for the HER depression.
AbstractList Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h-1 mg-1 Pt ) and Faradaic efficiency (31.1%) in 0.1 m K2 SO4 at -0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt-3O structure can favorably chemisorb and activate the N2 . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going-on of nitrogen reduction reaction.Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h-1 mg-1 Pt ) and Faradaic efficiency (31.1%) in 0.1 m K2 SO4 at -0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt-3O structure can favorably chemisorb and activate the N2 . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going-on of nitrogen reduction reaction.
Recently, ambient electrochemical N fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO nanoplates exhibit the optimum electrochemical NH yield rate (342.4 µg h mg ) and Faradaic efficiency (31.1%) in 0.1 m K SO at -0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N conversion to NH follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt-3O structure can favorably chemisorb and activate the N . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO nanoplates, which guarantees the efficient going-on of nitrogen reduction reaction.
Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h−1 mg−1Pt) and Faradaic efficiency (31.1%) in 0.1 m K2SO4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N2. Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction.
Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO3 nanoplates exhibit the optimum electrochemical NH3 yield rate (342.4 µg h−1 mg−1Pt) and Faradaic efficiency (31.1%) in 0.1 m K2SO4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N2 conversion to NH3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N2. Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction. Isolated Pt atoms anchored on WO3 nanoplates exhibit highly active for ambient ammonia electrosynthesis, which is ascribed to facilitated chemisorption and activation of nitrogen and effective suppression for hydrogen evolution reaction (HER), immensely enhancing NH3 yield rate and Faradic efficiency. This groundbreaking research presents Pt‐based nanocatalysts for electroreduction of nitrogen and provides an idea for the HER depression.
Recently, ambient electrochemical N 2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this field. Herein, it is found that the isolated Pt sites anchored on WO 3 nanoplates exhibit the optimum electrochemical NH 3 yield rate (342.4 µg h −1 mg −1 Pt ) and Faradaic efficiency (31.1%) in 0.1 m K 2 SO 4 at −0.2 V versus RHE, which are about 11 and 15 times higher than their nanoparticle counterparts, respectively. The mechanistic analysis indicates that N 2 conversion to NH 3 follows an alternating hydrogenation pathway, and positively charged isolated Pt sites with special Pt−3O structure can favorably chemisorb and activate the N 2 . Furthermore, the hydrogen evolution reaction can be greatly suppressed on isolated Pt sites decorated WO 3 nanoplates, which guarantees the efficient going‐on of nitrogen reduction reaction.
Author Chen, Jialiang
Liu, Yu‐ping
Liu, Xiaolu
Hao, Ran
Shen, Zhurui
Liu, Qian
Li, Wei
Sun, Wenming
Lv, Xianwei
Author_xml – sequence: 1
  givenname: Ran
  surname: Hao
  fullname: Hao, Ran
  organization: Nankai University
– sequence: 2
  givenname: Wenming
  surname: Sun
  fullname: Sun, Wenming
  organization: China Agricultural University
– sequence: 3
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  organization: Nankai University
– sequence: 4
  givenname: Xiaolu
  surname: Liu
  fullname: Liu, Xiaolu
  organization: Nankai University
– sequence: 5
  givenname: Jialiang
  surname: Chen
  fullname: Chen, Jialiang
  organization: Nankai University
– sequence: 6
  givenname: Xianwei
  surname: Lv
  fullname: Lv, Xianwei
  organization: Nankai University
– sequence: 7
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Nankai University
– sequence: 8
  givenname: Yu‐ping
  surname: Liu
  fullname: Liu, Yu‐ping
  email: liuypnk@nankai.edu.cn
  organization: Nankai University
– sequence: 9
  givenname: Zhurui
  orcidid: 0000-0001-8803-9812
  surname: Shen
  fullname: Shen, Zhurui
  email: shenzhurui@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32338456$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMoWqtblzLgxs3UJDOZTpZaWhXqA9R1yGRuNCUzqUnq4987tT6gIGaRB5zvcHLPLtpsXQsIHRA8IBjTk9BYO6CY4m4RtoF6pCBZWpSUb_7cCd5BuyHMMM4IzYfbaCejWVbmrOihs7HWRhloYzK2oKJ36gkao6RNrk33eoQ2mZg3GY1rE_cCPrkMzsoIdXIbkzsTIeyhLS1tgP2vs48eJuP70UU6vTm_HJ1OU5UTzNKq0LlSta5wzUASiaUaYl0RSjlhmhEOVal5mddVDYxyvNx1JbvMxRBYl72Pjle-c--eFxCiaExQYK1swS2CoBlnlDHa_a2PjtakM7fwbZdO0BxzUmacLA0Pv1SLqoFazL1ppH8X39PpBPlKoLwLwYMWysTPUUQvjRUEi2UJYlmC-CmhwwZr2LfznwBfAa_Gwvs_anF3NZ3-sh9AXZjL
CitedBy_id crossref_primary_10_1016_j_cej_2023_146159
crossref_primary_10_1016_j_cej_2023_142039
crossref_primary_10_1016_j_cej_2022_136797
crossref_primary_10_1016_j_colsurfa_2024_134583
crossref_primary_10_1002_adfm_202302332
crossref_primary_10_1002_chem_202103143
crossref_primary_10_1002_adma_202007650
crossref_primary_10_1016_j_apcatb_2022_121777
crossref_primary_10_1002_chem_202200779
crossref_primary_10_6023_A20090412
crossref_primary_10_1016_j_apcatb_2022_121319
crossref_primary_10_1016_j_apcatb_2023_123084
crossref_primary_10_1016_j_apcatb_2024_124194
crossref_primary_10_1039_D0EE03596C
crossref_primary_10_1016_j_ccr_2023_215196
crossref_primary_10_1039_D2EE00953F
crossref_primary_10_1155_2024_5685619
crossref_primary_10_1016_j_envres_2021_111259
crossref_primary_10_1016_j_ijhydene_2023_12_128
crossref_primary_10_1039_D1QM00546D
crossref_primary_10_1002_aenm_202304106
crossref_primary_10_1002_ange_202213711
crossref_primary_10_1039_D1NR05209H
crossref_primary_10_1016_j_jece_2024_114454
crossref_primary_10_1002_smll_202206776
crossref_primary_10_1016_j_jcis_2025_138179
crossref_primary_10_1016_j_jechem_2021_12_021
crossref_primary_10_1002_smtd_202100460
crossref_primary_10_1007_s41918_022_00164_4
crossref_primary_10_1016_j_ijhydene_2024_07_422
crossref_primary_10_1002_aenm_202501129
crossref_primary_10_1016_j_pmatsci_2022_101044
crossref_primary_10_1002_smll_202002885
crossref_primary_10_1016_j_rser_2022_112845
crossref_primary_10_1016_j_apsusc_2022_153655
crossref_primary_10_1002_anie_202213711
crossref_primary_10_1002_smll_202106939
crossref_primary_10_1007_s41918_023_00186_6
crossref_primary_10_1002_adfm_202106713
crossref_primary_10_3390_catal15060603
crossref_primary_10_1021_acsanm_5c01203
crossref_primary_10_1007_s10008_022_05228_5
crossref_primary_10_1016_j_cej_2021_129447
crossref_primary_10_3390_catal12091015
crossref_primary_10_1016_j_cej_2023_143776
crossref_primary_10_1016_j_checat_2021_09_017
crossref_primary_10_1016_j_seppur_2024_129692
crossref_primary_10_1016_j_jcat_2024_115489
crossref_primary_10_1039_D2EE00358A
crossref_primary_10_1016_j_cej_2022_135853
crossref_primary_10_3390_en17020441
crossref_primary_10_1021_acsami_5c08200
crossref_primary_10_1016_j_jcis_2022_05_054
Cites_doi 10.1021/jacs.7b12101
10.1002/cssc.201801632
10.1039/C8CC09256G
10.1021/acscatal.8b00905
10.1021/acscatal.8b02585
10.1039/C9CC00602H
10.1039/C8CP06978F
10.1002/chem.201806377
10.1039/C7CP05484J
10.1038/s41467-018-08120-x
10.1002/adma.201803498
10.1038/nature06592
10.1021/acscatal.8b02311
10.1002/aenm.201800369
10.1016/j.mattod.2019.03.002
10.1021/ja110073u
10.1016/j.jcat.2005.10.015
10.1021/acscatal.7b02165
10.1038/ngeo325
10.1038/srep01145
10.1039/C9TA01624D
10.1039/C9CC04034J
10.1038/s41586-019-1260-x
10.1016/j.cattod.2016.06.014
10.1002/anie.201804319
10.1016/j.chempr.2018.10.007
10.1021/acscatal.6b03035
10.1039/C9CC00123A
10.1016/j.scib.2018.07.005
10.1016/j.jcis.2019.05.105
10.1002/aenm.201800124
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202000015
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 32338456
10_1002_smll_202000015
SMLL202000015
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21872102; 21703219; 21878162; 21978137
– fundername: Natural Science Foundation of Tianjin
  funderid: 17JCYBJC17100
– fundername: Science and Technology Commissioner of Tianjin
  funderid: 18JCTPJC55900
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Natural Science Foundation of Tianjin
  grantid: 17JCYBJC17100
– fundername: National Natural Science Foundation of China
  grantid: 21872102
– fundername: Science and Technology Commissioner of Tianjin
  grantid: 18JCTPJC55900
– fundername: National Natural Science Foundation of China
  grantid: 21703219
– fundername: National Natural Science Foundation of China
  grantid: 21878162
– fundername: National Natural Science Foundation of China
  grantid: 21978137
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4105-b6f4ccdfb0d5ea1a0ac70fb122915f519eb8f984dbde5290de52fba03167e5003
IEDL.DBID DRFUL
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528635200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 11:42:44 EDT 2025
Fri Jul 25 10:01:54 EDT 2025
Wed Feb 19 02:30:37 EST 2025
Sat Nov 29 03:27:46 EST 2025
Tue Nov 18 21:13:07 EST 2025
Wed Jan 22 16:34:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords isolated Pt sites
density functional theory calculations
electrocatalysis
nitrogen reduction reaction
electrochemical in situ Fourier transform infrared spectroscopy
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-b6f4ccdfb0d5ea1a0ac70fb122915f519eb8f984dbde5290de52fba03167e5003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8803-9812
PMID 32338456
PQID 2409183910
PQPubID 1046358
PageCount 7
ParticipantIDs proquest_miscellaneous_2395255223
proquest_journals_2409183910
pubmed_primary_32338456
crossref_citationtrail_10_1002_smll_202000015
crossref_primary_10_1002_smll_202000015
wiley_primary_10_1002_smll_202000015_SMLL202000015
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 7
2018; 8
2013; 3
2018; 140
2019; 5
2019; 55
2019; 10
2019; 21
2019; 25
2019; 27
2019; 553
2018; 30
2018; 63
2017; 286
2008; 1
2006; 237
2018; 11
2019; 570
2008; 451
2018; 20
2011; 133
2018; 57
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 21
  start-page: 1546
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 27
  start-page: 69
  year: 2019
  publication-title: Mater. Today
– volume: 286
  start-page: 2
  year: 2017
  publication-title: Catal. Today
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1145
  year: 2013
  publication-title: Sci. Rep.
– volume: 55
  start-page: 3371
  year: 2019
  publication-title: Chem. Commun.
– volume: 8
  start-page: 1186
  year: 2018
  publication-title: ACS Catal.
– volume: 451
  start-page: 293
  year: 2008
  publication-title: Nature
– volume: 20
  start-page: 4982
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 7517
  year: 2018
  publication-title: ACS Catal.
– volume: 55
  start-page: 9335
  year: 2019
  publication-title: Chem. Commun.
– volume: 133
  start-page: 4498
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 687
  year: 2019
  publication-title: Chem. Commun.
– volume: 8
  start-page: 8540
  year: 2018
  publication-title: ACS Catal.
– volume: 553
  start-page: 126
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 1
  start-page: 636
  year: 2008
  publication-title: Nat. Geosci.
– volume: 55
  start-page: 2952
  year: 2019
  publication-title: Chem. Commun.
– volume: 5
  start-page: 204
  year: 2019
  publication-title: Chem
– volume: 237
  start-page: 17
  year: 2006
  publication-title: J. Catal.
– volume: 570
  start-page: 504
  year: 2019
  publication-title: Nature
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 63
  start-page: 1246
  year: 2018
  publication-title: Sci. Bull.
– volume: 8
  start-page: 9312
  year: 2018
  publication-title: ACS Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 140
  start-page: 1496
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 341
  year: 2019
  publication-title: Nat. Commun.
– volume: 57
  start-page: 9351
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3416
  year: 2018
  publication-title: ChemSusChem
– volume: 7
  start-page: 706
  year: 2017
  publication-title: ACS Catal.
– volume: 25
  start-page: 5904
  year: 2019
  publication-title: Chem. Eur. J.
– ident: e_1_2_4_27_1
  doi: 10.1021/jacs.7b12101
– ident: e_1_2_4_6_1
  doi: 10.1002/cssc.201801632
– ident: e_1_2_4_28_1
  doi: 10.1039/C8CC09256G
– ident: e_1_2_4_13_1
  doi: 10.1021/acscatal.8b00905
– ident: e_1_2_4_7_1
  doi: 10.1021/acscatal.8b02585
– ident: e_1_2_4_10_1
  doi: 10.1039/C9CC00602H
– ident: e_1_2_4_29_1
  doi: 10.1039/C8CP06978F
– ident: e_1_2_4_4_1
  doi: 10.1002/chem.201806377
– ident: e_1_2_4_21_1
  doi: 10.1039/C7CP05484J
– ident: e_1_2_4_25_1
  doi: 10.1038/s41467-018-08120-x
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201803498
– ident: e_1_2_4_1_1
  doi: 10.1038/nature06592
– ident: e_1_2_4_9_1
  doi: 10.1021/acscatal.8b02311
– ident: e_1_2_4_17_1
  doi: 10.1002/aenm.201800369
– ident: e_1_2_4_30_1
  doi: 10.1016/j.mattod.2019.03.002
– ident: e_1_2_4_23_1
  doi: 10.1021/ja110073u
– ident: e_1_2_4_24_1
  doi: 10.1016/j.jcat.2005.10.015
– ident: e_1_2_4_11_1
  doi: 10.1021/acscatal.7b02165
– ident: e_1_2_4_2_1
  doi: 10.1038/ngeo325
– ident: e_1_2_4_18_1
  doi: 10.1038/srep01145
– ident: e_1_2_4_31_1
  doi: 10.1039/C9TA01624D
– ident: e_1_2_4_20_1
  doi: 10.1039/C9CC04034J
– ident: e_1_2_4_26_1
  doi: 10.1038/s41586-019-1260-x
– ident: e_1_2_4_3_1
  doi: 10.1016/j.cattod.2016.06.014
– ident: e_1_2_4_22_1
  doi: 10.1002/anie.201804319
– ident: e_1_2_4_14_1
  doi: 10.1016/j.chempr.2018.10.007
– ident: e_1_2_4_12_1
  doi: 10.1021/acscatal.6b03035
– ident: e_1_2_4_8_1
  doi: 10.1039/C9CC00123A
– ident: e_1_2_4_16_1
  doi: 10.1016/j.scib.2018.07.005
– ident: e_1_2_4_19_1
  doi: 10.1016/j.jcis.2019.05.105
– ident: e_1_2_4_5_1
  doi: 10.1002/aenm.201800124
SSID ssj0031247
Score 2.583426
Snippet Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this...
Recently, ambient electrochemical N 2 fixation has gained great attention. However, the commercial Pt‐based electrocatalyst hardly shows its potential in this...
Recently, ambient electrochemical N fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this...
Recently, ambient electrochemical N2 fixation has gained great attention. However, the commercial Pt-based electrocatalyst hardly shows its potential in this...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000015
SubjectTerms Ammonia
Chemical reduction
density functional theory calculations
electrocatalysis
electrochemical in situ Fourier transform infrared spectroscopy
Hydrogen evolution reactions
Hydrogen storage
isolated Pt sites
Nanoparticles
Nanotechnology
nitrogen reduction reaction
Nitrogenation
Potassium sulfate
Tungsten oxides
Title Efficient Electrochemical Nitrogen Fixation over Isolated Pt Sites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202000015
https://www.ncbi.nlm.nih.gov/pubmed/32338456
https://www.proquest.com/docview/2409183910
https://www.proquest.com/docview/2395255223
Volume 16
WOSCitedRecordID wos000528635200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o5oM-eL_Uy4gg-BRs03ZtHr1sKMwxvMDeSpImMJhT7Cb-fE960yEi6EtJadqGc8n5cvsOwIlUlhaMG8qxf6SBF7WpkMxQxqTwpUxVW4k82UTU78fDIR98OcVf8EPUE27WM_L-2jq4kNnZJ2lo9jS2Swcsn58OF6HJ0HjDBjSv7rqPvao39jF-5QlWMGxRy71VETe67Gz-C_OB6RvanAevefTprv2_3euwWiJPcl6YygYs6MkmrHzhI9yCi05OKIFxiHSK9Diq5BMg_RHeobGR7ug9Vyaxez_JDZouotWUDKbkHtFrtg2P3c7D5TUtkyxQZXd4Utk2gVKpkW4aauEJV6jINdJjjHuhQXynZWx4HKQy1SHjrr0aKVx7gl6HKOAdaEyeJ3oPSKr8gEeeSSUWTKi4NK7UXjs22uehiRyglYQTVTKQ20QY46TgTmaJlU1Sy8aB07r-S8G98WPNw0phSemDWYJYhVv857kOHNeP0XvskoiY6OcZ1sGG4aAKMZIDu4Wi61_5DIfviC8dYLk-f2lDcn_b69V3-3956QCWbbnYiXYIjenrTB_BknqbjrLXFixGw7hV2vcHdbz5xw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD54A_XB-6U6NYLgU7BN23V59LLisBtDHeytNGkCA91kneLP96TtqkNEEF9KL2kbziXny-07AGdCGlowrinH9pF6TlCniWCaMiYSV4hU1mWSJ5sIOp1Gv8-75WpCsxem4IeoBtyMZ-TttXFwMyB98ckamj0_mbkDlg9Q-_Ow6KEtoZEv3tyHvWjaHLsYwPIMKxi3qCHfmjI32uxi9guzkekb3JxFr3n4Cdf_oeIbsFZiT3JZGMsmzKnhFqx-YSTchqtmTimBkYg0iwQ5smQUIJ0BXqG5kXDwnquTmNWfpIXGi3g1Jd0JeUD8mu1AL2w-Xt_SMs0ClWaNJxV17UmZamGnvkqcxE5kYGvhMMYdXyPCU6KhecNLRap8xm1z1CKxzR565aOEd2FhOBqqfSCpdD0eODoVeKJ9yYW2hXLqDa1c7uvAAjoVcSxLDnKTCuMpLtiTWWxkE1eyseC8Kv9SsG_8WLI21VhcemEWI1rhBgE6tgWn1WP0HzMpkgzV6BXLYMWwW4UoyYK9QtPVr1yGHXhEmBawXKG_1CF-aEdRdXXwl5dOYPn2sR3FUatzdwgr5n6xLq0GC5PxqzqCJfk2GWTj49LMPwCRd_zP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH5oK6IH9yWuIwieBpNJ0nSOLg0Wayku4C1kNihoW7qIP983SRotIoJ4CVkmyfCWed9s3wM4FdLSgnFDObaPNPCiGk0FM5QxkfpCKFmTaZZsImq368_PvFOsJrR7YXJ-iHLAzXpG1l5bB9cDZc4_WUNHry927oBlA9ThPFQDm0mmAtXr-_ipNW2OfQxgWYYVjFvUkm9NmRtddj77hdnI9A1uzqLXLPzEq_9Q8TVYKbAnuciNZR3mdG8Dlr8wEm7CZSOjlMBIRBp5ghxZMAqQdhev0NxI3H3P1Ens6k_SRONFvKpIZ0weEL-OtuApbjxe3dAizQKVdo0nFTUTSKmMcFWoUy91Uxm5RniMcS80iPC0qBteD5RQOmTctUcjUtfuodchSngbKr1-T-8CUdIPeOQZJfDEhJIL4wrt1epG-zw0kQN0KuJEFhzkNhXGS5KzJ7PEyiYpZePAWVl-kLNv_FjyYKqxpPDCUYJohVsE6LkOnJSP0X_spEja0_0JlsGKYbcKUZIDO7mmy1_5DDvwiDAdYJlCf6lD8nDXapVXe3956RgWO9dx0mq2b_dhyd7Ol6UdQGU8nOhDWJBv4-5oeFRY-QcgJfxK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Electrochemical+Nitrogen+Fixation+over+Isolated+Pt+Sites&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hao%2C+Ran&rft.au=Sun%2C+Wenming&rft.au=Liu%2C+Qian&rft.au=Liu%2C+Xiaolu&rft.date=2020-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=22&rft_id=info:doi/10.1002%2Fsmll.202000015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon