Spectral Mesh Processing

Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 29; číslo 6; s. 1865 - 1894
Hlavní autori: Zhang, H., Van Kaick, O., Dyer, R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.09.2010
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial Laplacian aids our understanding of the low‐pass filtering approach to mesh smoothing. Over the past 15 years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear algebra, and high‐performance computing. This paper aims to provide a comprehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Necessary theoretical background is provided. Existing works covered are classified according to different criteria: the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical success, there still remain many open questions pertaining to the spectral approach. These are discussed as we conclude the survey and provide our perspective on possible future research.
AbstractList Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial Laplacian aids our understanding of the low‐pass filtering approach to mesh smoothing. Over the past 15 years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear algebra, and high‐performance computing. This paper aims to provide a comprehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Necessary theoretical background is provided. Existing works covered are classified according to different criteria: the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical success, there still remain many open questions pertaining to the spectral approach. These are discussed as we conclude the survey and provide our perspective on possible future research.
Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial Laplacian aids our understanding of the low-pass filtering approach to mesh smoothing. Over the past 15 years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear algebra, and high-performance computing. This paper aims to provide a comprehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Necessary theoretical background is provided. Existing works covered are classified according to different criteria: the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical success, there still remain many open questions pertaining to the spectral approach. These are discussed as we conclude the survey and provide our perspective on possible future research. [PUBLICATION ABSTRACT]
AbstractSpectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial Laplacian aids our understanding of the low-pass filtering approach to mesh smoothing. Over the past 15 years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear algebra, and high-performance computing. This paper aims to provide a comprehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Necessary theoretical background is provided. Existing works covered are classified according to different criteria: the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical success, there still remain many open questions pertaining to the spectral approach. These are discussed as we conclude the survey and provide our perspective on possible future research.
Author Dyer, R.
Zhang, H.
Van Kaick, O.
Author_xml – sequence: 1
  givenname: H.
  surname: Zhang
  fullname: Zhang, H.
  organization: Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, Canadahaoz@cs.sfu.ca
– sequence: 2
  givenname: O.
  surname: Van Kaick
  fullname: Van Kaick, O.
  organization: Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, Canadahaoz@cs.sfu.ca
– sequence: 3
  givenname: R.
  surname: Dyer
  fullname: Dyer, R.
  organization: Graphics, Usability and Visualization (GrUVi) Lab, School of Computing Science, Simon Fraser University, Canadahaoz@cs.sfu.ca
BookMark eNqNkEFPwjAYhhujiYDePRIvnjbbdV_bHTQxRMAElaDG45eldLo5NmxHhH9vJ4YDJ3pp8_V93rRPlxxXdWUI6TMaMr-ui5DFQgZKQBJG1E8pEwDh-oh0dhfHpOOnMpAU4JR0nSsopbEU0CEXL0ujG5uW_UfjPvtTW2vjXF59nJGTLC2dOf_fe-RteP86GAeT59HD4G4S6JhRCLikTKUJ0yozZj6HSGWKxzQSjM-5SoErEJnUScSN5IppwyTVCZeJZAnn3PAeudr2Lm39vTKuwUXutCnLtDL1yqHijEEkIfHJy71kUa9s5R-HEigI4JL50O02pG3tnDUZ6rxJm7yu_CfzEhnFVhsW2NrB1g622vBPG659gdorWNp8kdrNIejNFv3JS7M5mMPBaNiePB9s-dw1Zr3jU_uFQnIJ-P40QjGG2TBKZjjlv9N4kbo
CitedBy_id crossref_primary_10_1007_s00530_013_0318_0
crossref_primary_10_1016_j_cag_2014_09_018
crossref_primary_10_1109_TVCG_2018_2802926
crossref_primary_10_1111_cgf_12709
crossref_primary_10_1145_3152156
crossref_primary_10_1111_cgf_13244
crossref_primary_10_1109_TVCG_2023_3341610
crossref_primary_10_1111_cgf_12942
crossref_primary_10_1016_j_gmod_2014_04_009
crossref_primary_10_1109_TVCG_2020_3045490
crossref_primary_10_1007_s00371_023_02935_6
crossref_primary_10_1080_10095020_2025_2541883
crossref_primary_10_1049_iet_cvi_2011_0105
crossref_primary_10_1109_TMM_2016_2605927
crossref_primary_10_1080_17513472_2021_1922239
crossref_primary_10_1109_TBME_2013_2272721
crossref_primary_10_1111_cgf_13496
crossref_primary_10_1109_TPAMI_2022_3146796
crossref_primary_10_3390_rs13112145
crossref_primary_10_1145_2530691
crossref_primary_10_1111_cgf_13536
crossref_primary_10_1007_s00371_012_0737_5
crossref_primary_10_1152_ajpgi_00045_2024
crossref_primary_10_4218_etrij_17_0116_0509
crossref_primary_10_1145_3414685_3417849
crossref_primary_10_1109_JBHI_2017_2759804
crossref_primary_10_1109_TPAMI_2012_276
crossref_primary_10_1109_TIP_2018_2845697
crossref_primary_10_1007_s11042_017_5394_2
crossref_primary_10_1111_j_1467_8659_2010_01763_x
crossref_primary_10_1016_j_image_2017_07_005
crossref_primary_10_1016_j_jsg_2021_104302
crossref_primary_10_1109_TIFS_2012_2204251
crossref_primary_10_1111_cgf_14793
crossref_primary_10_1145_2668020
crossref_primary_10_1016_j_cagd_2016_02_011
crossref_primary_10_1016_j_cag_2013_05_013
crossref_primary_10_1016_j_cag_2013_05_015
crossref_primary_10_1371_journal_pone_0121741
crossref_primary_10_1016_j_cag_2016_05_018
crossref_primary_10_1016_j_cag_2017_05_018
crossref_primary_10_1007_s11004_012_9414_5
crossref_primary_10_1145_3177750
crossref_primary_10_1109_JMMCT_2022_3199612
crossref_primary_10_1109_TCSVT_2015_2513698
crossref_primary_10_1016_j_amc_2023_128031
crossref_primary_10_1007_s00371_012_0705_0
crossref_primary_10_1016_j_cad_2017_02_003
crossref_primary_10_1109_JPROC_2018_2799702
crossref_primary_10_1145_2070781_2024160
crossref_primary_10_4028_www_scientific_net_AMM_556_562_4651
crossref_primary_10_1016_j_cagd_2018_03_004
crossref_primary_10_3390_electronics13040720
crossref_primary_10_1109_TIP_2015_2469153
crossref_primary_10_1016_j_isprsjprs_2016_12_001
crossref_primary_10_1109_TVCG_2024_3368083
crossref_primary_10_1145_2019627_2019638
crossref_primary_10_1145_2816795_2818068
crossref_primary_10_1109_TAP_2022_3164932
crossref_primary_10_1111_j_1467_8659_2011_01884_x
crossref_primary_10_1016_j_cag_2012_03_027
crossref_primary_10_1109_TBME_2017_2716189
crossref_primary_10_3390_jimaging6060055
crossref_primary_10_1016_j_comgeo_2023_102063
crossref_primary_10_1016_j_cag_2015_04_003
crossref_primary_10_1111_j_1467_8659_2010_01839_x
crossref_primary_10_1016_j_media_2015_02_003
crossref_primary_10_1007_s11263_009_0278_1
crossref_primary_10_3390_jmse13081388
crossref_primary_10_1007_s00371_024_03513_0
crossref_primary_10_1016_j_compind_2011_09_003
crossref_primary_10_1007_s00371_014_0971_0
crossref_primary_10_1080_17513472_2023_2275489
crossref_primary_10_1016_j_compbiomed_2025_109652
crossref_primary_10_1109_TII_2020_3000491
crossref_primary_10_1007_s10514_015_9442_3
crossref_primary_10_1109_TPAMI_2022_3164653
crossref_primary_10_1111_cgf_13146
crossref_primary_10_1016_j_cad_2019_05_018
crossref_primary_10_1111_cgf_12485
crossref_primary_10_1145_2699648
crossref_primary_10_1016_j_cviu_2014_12_008
crossref_primary_10_1016_j_cad_2014_03_008
crossref_primary_10_1016_j_cagd_2012_01_001
crossref_primary_10_1016_j_cag_2018_03_004
crossref_primary_10_1145_3072959_3073626
crossref_primary_10_1016_j_gmod_2012_03_009
crossref_primary_10_1029_2010WR009982
crossref_primary_10_1007_s11263_013_0681_5
crossref_primary_10_1051_matecconf_202133602030
crossref_primary_10_1121_10_0009851
crossref_primary_10_1016_j_procir_2024_10_013
crossref_primary_10_1145_2766955
crossref_primary_10_1109_TVCG_2018_2816926
crossref_primary_10_1109_TVCG_2018_2882212
crossref_primary_10_1145_3625098
crossref_primary_10_3390_s21082644
Cites_doi 10.1109/TPAMI.2003.1233902
10.1109/SFCS.2000.892125
10.1007/BF02288367
10.1007/978-3-662-05105-4_2
10.1109/TPAMI.2005.142
10.1109/SMI.2003.1199609
10.1007/BFb0055696
10.1162/089976603321780317
10.1145/1057432.1057439
10.21136/CMJ.1973.101168
10.1145/882262.882276
10.1080/10586458.1993.10504266
10.1111/j.1467-8659.2009.01380.x
10.1145/1185657.1185665
10.1287/mnsc.17.3.219
10.1109/SMI.2003.1199613
10.1112/plms/s3-13.1.743
10.1145/1037957.1037961
10.1145/571647.571648
10.1111/j.1467-8659.2005.00854.x
10.1109/34.6778
10.1109/TIT.2005.850052
10.1016/S0010-0277(96)00791-3
10.1109/2945.998671
10.1145/169627.169790
10.1162/089976698300017467
10.1016/j.cagd.2004.07.007
10.1109/ICCV.1999.790354
10.1137/1.9780898719512
10.1111/1467-8659.t01-1-00597
10.1137/1.9780898719574
10.1016/j.cagd.2007.07.006
10.1007/978-1-4612-0619-4
10.1109/VISUAL.2005.1532800
10.1016/S0166-218X(98)00083-3
10.1145/1015330.1015417
10.1016/0095-8956(90)90093-F
10.1109/SMI.2006.21
10.1145/1057432.1057434
10.1070/RM2001v056n06ABEH000453
10.1111/j.1467-8659.2008.01289.x
10.1142/S0218654307000968
10.1007/s10711-006-9109-5
10.1007/978-1-4612-0653-8
10.5244/C.19.69
10.1109/ICCV.2005.20
10.1111/j.1467-8659.2008.01122.x
10.1109/34.868688
10.1137/S0895479897329825
10.1111/j.1467-8659.2008.01274.x
10.1016/S0167-8396(03)00002-5
10.1126/science.290.5500.2319
10.1007/3-540-45071-8_50
10.1145/568522.568523
10.1021/ci9900938
10.1090/S0002-9939-1995-1257106-5
10.1109/ICCV.2007.4408833
10.1109/SFCS.1996.548468
10.1109/TPAMI.2004.1262185
10.1111/j.1467-8659.2008.01273.x
10.1016/S0024-3795(01)00313-5
10.1016/j.cad.2007.02.009
10.1007/978-94-015-8937-6_6
10.1017/CBO9780511623783
10.1007/11784203_15
10.1016/0262-8856(92)90043-3
10.1016/j.laa.2004.04.024
10.1007/11503415_33
10.1111/j.1467-8659.2007.01061.x
10.1111/j.1467-8659.2009.01379.x
10.1145/344779.344924
10.5802/aif.1703
10.1109/TC.1972.5008949
10.1109/TPAMI.2004.1265866
10.1162/0899766041732396
10.1126/science.290.5500.2323
10.1111/1467-8659.00669
10.1016/j.cad.2005.10.011
ContentType Journal Article
Copyright 2010 The Authors Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.
2010 The Eurographics Association and Blackwell Publishing
Copyright_xml – notice: 2010 The Authors Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.
– notice: 2010 The Eurographics Association and Blackwell Publishing
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2010.01655.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 1894
ExternalDocumentID 2138355141
10_1111_j_1467_8659_2010_01655_x
CGF1655
ark_67375_WNG_6H5RF29R_P
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4105-37018a91c8feedd528f83402613d38a53856f7c923e7381ce170c9379719333e3
IEDL.DBID DRFUL
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281853800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 12:33:07 EST 2025
Fri Jul 25 23:45:07 EDT 2025
Sat Nov 29 08:16:39 EST 2025
Tue Nov 18 21:00:05 EST 2025
Sun Sep 21 06:20:14 EDT 2025
Tue Nov 11 03:31:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-37018a91c8feedd528f83402613d38a53856f7c923e7381ce170c9379719333e3
Notes ArticleID:CGF1655
ark:/67375/WNG-6H5RF29R-P
istex:D22FF7F6794814FBACA41E51761C6CA5F151432F
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 750565371
PQPubID 30877
PageCount 30
ParticipantIDs proquest_miscellaneous_831152759
proquest_journals_750565371
crossref_citationtrail_10_1111_j_1467_8659_2010_01655_x
crossref_primary_10_1111_j_1467_8659_2010_01655_x
wiley_primary_10_1111_j_1467_8659_2010_01655_x_CGF1655
istex_primary_ark_67375_WNG_6H5RF29R_P
PublicationCentury 2000
PublicationDate September 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Tutte W. T.: How to draw a graph. Proc. London Math. Society, 13 (1963), 743-768.
Belkin M., Niyogi P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Computation, 15, 6 (2003), 1373-1396.
Shapiro L. S., Brady J. M.: Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10, 5 (1992), 283-288.
Jakobson D., Nadirashvili N., Toth J.: Geometric properties of eigenfunctions. Russian Mathematical Surveys, 56, 6 (2001), 1085-1105.
Zigelman G., Kimmel R., Kiryati N.: Texture mapping using surface flattening via multidimensional scaling. IEEE Trans. Vis. & Comp. Graphics, 8, 2 (2002), 198-207.
De Silva V., Tenenbaum B.: Sparse Multidimensional Scaling using Landmark Points. Tech. rep., Stanford University , June 2004.
Liu R., Zhang H., Shamir A., Cohen-Or D.: A part-aware surface metric for shape analysis. Computer Graphics Forum (Eurographics), 28, 2 (2009), 397-406.
Cox T. F., Cox M. A. A.: Multidimensional Scaling. Chapman & Hall, Boca Raton , FL , USA , 1994.
Caelli T., Kosinov S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. Pat. Ana. & Mach. Int., 26, 4 (2004), 515-519.
Díaz J., Petit J., Serna M.: A survey of graph layout problems. ACM Computing Survey, 34, 3 (2002), 313-356.
Fiedler M.: Algebraic connectivity of graphs. Czech. Math. J., 23 (1973), 298-305.
Liu R., Zhang H.: Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Eurographics), 26 (2007), 385-394.
Von Luxburg U.: A Tutorial on Spectral Clustering. Tech. Rep. TR-149, Max Plank Institute for Biological Cybernetics , August 2006.
De Verdière Y. C.: Sur un nouvel invariant des graphes et un critére de planarité. Journal of Combinatorial Theory, Series B, 50 (1990), 11-21.
Umeyama S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pat. Ana. & Mach. Int., 10, 5 (1988), 695-703.
Hildebrandt K., Polthier K., Wardetzky M.: On the Convergence of Metric and Geometric Properties of Polyhedral Surfaces. Geometriae Dedicata, 123, 1 (2006), 89-112.
Fary I.: On straight line representations of planar graphs. Acta Sci. Math., 11 (1948), 229-233.
Davies E. B., Gladwell G. M. L., Leydold J., Stadler P. F.: Discrete nodal domain theorems. Lin. Alg. Appl., 336 (2001), 51-60.
Jain A. K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs , NJ , USA , 1989.
Zahn C. T., Roskies R. Z.: Fourier descriptors for plane closed curves. IEEE Trans. on Computers, 21, 3 (1972), 269-281.
Vallet B., Lévy B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum (Eurographics), 27, 2 (2008), 251-260.
Mullen P., Tong Y., Alliez P., Desbrun M.: Spectral conformal parameterization. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1487-1494.
Mohar B., Poljak S.: Eigenvalues in Combinatorial Optimization, vol. 50 of IMA Volumes in Mathematics and Its Applications. Springer-Verlag, New York , NY , USA , 1993, pp. 107-151.
De Goes F., Goldenstein S., Velho L.: A hierarchical segmentation of articulated bodies. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1349-1356.
Osada R., Funkhouser T., Chazelle B., Dobkin D.: Shape distributions. ACM Trans. on Graphics, 21, 4 (2002), 807-832.
Fujiwara K.: Eigenvalues of Laplacians on a closed Riemannian manifold and its nets. Proceedings of the AMS, 123, 8 (1995), 2585-2594.
Kim B. M., Rossignac J.: Geofilter: Geometric selection of mesh filter parameters. Computer Graphics Forum (Eurographics), 24, 3 (2005), 295-302.
Schölkopf B., Smola A. J.: Learning with Kernels. MIT Press, Cambridge , MA , USA , 2002.
Strang G., Fix G. J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs , NJ , USA , 1973.
Schölkopf B., Smola A. J., Müller K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computations, 10 (1998), 1299-1319.
Hall K. M.: An r-dimensional quadratic placement algorithm. Manage. Sci., 17, 8 (1970), 219-229.
Floater M. S.: Mean value coordinates. Comput. Aided Geom. Des., 20, 1 (2003), 19-27.
Verma D., Meila M.: A comparison of spectral clustering algorithms. Tech. Rep. UW-CSE-03-05-01, University of Washington , 2003.
Jain V., Zhang H.: A spectral approach to shape-based retrieval of articulated 3D models. Computer Aided Design, 39 (2007), 398-407.
Chung F. R. K.: Spectral Graph Theory. AMS, Providence , RI , USA , 1997.
Fowlkes C., Belongie S., Chung F., Malik J.: Spectral grouping using the Nyström method. IEEE Trans. Pat. Ana. & Mach. Int., 26, 2 (2004), 214-225.
Eckart C., Young G.: The approximation of one matrix by another of lower rank. Psychometrika, 1 (1936), 211-218.
Alpert C. J., Kahng A. B., Yao S. Z.: Spectral partitioning with multiple eigenvectors. Discrete Applied Mathematics, 90 (1999), 3-26.
Trefethen L. N., Bau D.: Numerical Linear Algebra. SIAM, Philadelphia , PA , USA , 1997.
Bollobás B.: Modern Graph Theory. Springer, New York , NY , USA , 1998.
Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Trans. Pat. Ana. & Mach. Int., 22, 8 (2000), 888-905.
Ovsjanikov M., Sun J., Guibas L.: Global intrinsic symmetries of shapes. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1341-1348.
Guattery S., Miller G. L.: Graph embeddings and Laplacian eigenvalues. SIAM J. Matrix Anal. Appl., 21, 3 (2000), 703-723.
Bengio Y., Delalleau O., Le Roux N., Paiement J.-F., Vincent P., Ouimet M.: Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16, 10 (2004), 2197-2219.
Gotsman C., Gu X., Sheffer A.: Fundamentals of spherical parameterization for 3d meshes. ACM Trans. on Graphics, 22, 3 (2003), 358-363.
Meyer C. D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia , PA , USA , 2000.
Liu R., Zhang H., Van Kaick O.: An Investigation into Spectral Sequencing using Graph Distance. Tech. Rep. TR 2006-08, School of Computing Science, SFU , May 2006.
Elad A., Kimmel R.: On bending invariant signatures for surfaces. IEEE Trans. Pat. Ana. & Mach. Int., 25, 10 (2003), 1285-1295.
Jain V., Zhang H., Van Kaick O.: Non-rigid spectral correspondence of triangle meshes. Int. J. on Shape Modeling, 13, 1 (2007), 101-124.
Rosenberg S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.
Bhatia R.: Matrix Analysis. Springer-Verlag, New York , NY , USA , 1997.
Scholköpf B., Smola E., Robert Müller K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10 (1998), 1299-1319.
Ohbuchi R., Mukaiyama A., Takahashi S.: A frequency-domain approach to watermarking 3D shapes. Computer Graphics Forum, 21, 3 (2002), 373-382.
Biyikoğlu T., Hordijk W., Leydold J., Pisanski T., Stadler P. F.: Graph Laplacians, nodal domains, and hyperplane arrangements. Linear Algebra and Its Applications, 390 (2004), 155-174.
Reuter M., Wolter F.-E., Peinecke N.: Laplacian-Beltrami spectra as 'shape-DNA' for shapes and solids. Computer Aided Geometric Design, 38 (2006), 342-366.
Wardetzky M., Bergou M., Harmon D., Zorin D., Grinspun E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des., 24, 8-9 (2007), 499-518.
Shawe-Taylor J., Williams C. K. I., Cristianini N., Kandola J.: On the eigenspectrum of the gram matrix and the generalization error of kernel-PCA. IEEE Trans. on Information Theory, 51, 7 (2005), 2510-2522.
Ben-Chen M., Gotsman C.: On the optimality of spectral compression of mesh data. ACM Trans. on Graphics, 24, 1 (2005), 60-80.
Huang Q., Wicke M., Adams B., Guibas L. J.: Shape decomposition using modal analysis. Computer Graphics Forum (Eurographics), 28, 2 (2009), 407-416.
Chavel I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando , FL , USA , 1984.
Pisanski T., Shawe-Taylor J.: Characterizing graph drawing with eigenvectors. Journal of Chemical Information and Computer Sciences, 40, 3 (2000), 567-571.
Roweis S., Saul L.: Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 5500 (2000), 2323-2326.
Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2, 1 (1993), 15-36.
Lovász L., Schrijver A.: On the null space of a Colin de Verdière matrix. Annales de l'institut Fourier, 49, 3 (1999), 1017-1026.
Shokoufhandeh A., Macrini D., Dickinson S., Siddiqi K., Zucker S.: Indexing hierarchical structures using graph spectra. IEEE Trans. Pat. Ana. & Mach. Int., 27, 7 (2005), 1125-1140.
Dyer R., Zhang H., Möller T.: An Investigation of the Spectral Robustness of Mesh Laplacians. Tech. rep., Simon Fraser University , June 2007.
Saerens M., Fouss F., Yen L., Dupont P.: The Principal Components Analysis of a Graph, and its Relationship to Spectral Clustering, vol. 3201 of Lecture Notes in Artificial Intelligence. Springer, Berlin/Heidelberg , Germany , 2004, pp. 371-383.
Chen D.-Y., Tian X.-P., Shen Y.-T., Ouhyoung M.: On visual similarity based 3D model retrieval. Computer Graphics Forum, 22, 3 (2003), 223-232.
Katz S., Leifman G., Tal A.: Mesh segmentation using feature point and core extraction. The Visual Computer (Special Issue of Pacific Graphics), 21, 8-10 (2005), 649-658.
Tenenbaum J. B., Langford J. C.: A global geometric framework for nonlinear dimensionality reduction. Science, 290, 5500 (2000), 2319-2323.
Hoffman D. D., Singh M.: Salience of visual parts. Cognition, 63 (1997), 29-78.
Xu G.: Discrete Laplace-Beltrami operators and their convergence. Comput. Aided Geom. Des., 21, 8 (2004), 767-784.
2007; 39
2004; 21
2002; 14
2006; 38
2004; 26
1999; 49
June 2007
2003; 15
June 2004
2005; 21
1973
1948; 11
1992; 10
2005; 27
1993; 2
1936; 1
2005; 24
2000; 290
2001
2000
October 2005; 2
2008; 27
1984
1995; 123
2001; 56
1998; 10
1999; 90
2006; 123
2007; 24
1989
2007; 26
2001; 336
1990; 50
1997; 63
2002; 34
2000; 21
2000; 22
2002; 8
1998
1988; 10
1997
2007
1996
2006
1995
1994
2005
1972; 21
1993
2004
2003
2005; 3559
2002
1970; 17
2007; 13
1999
2009; 28
1963; 13
2004; 390
2004; 16
1973; 23
2004; 17
August 2006
2002; 21
June 2001
2005; 51
2003; 25
2000; 40
May 2006
2005; 17
2003; 20
2003; 22
Von Luxburg U. (e_1_2_13_111_2) 2006
e_1_2_13_120_2
e_1_2_13_20_2
e_1_2_13_66_2
e_1_2_13_101_2
e_1_2_13_124_2
Verma D. (e_1_2_13_114_2) 2003
e_1_2_13_85_2
e_1_2_13_8_2
e_1_2_13_62_2
e_1_2_13_81_2
Ng A. Y. (e_1_2_13_78_2) 2002
e_1_2_13_92_2
e_1_2_13_96_2
e_1_2_13_117_2
e_1_2_13_59_2
e_1_2_13_36_2
e_1_2_13_112_2
e_1_2_13_32_2
e_1_2_13_74_2
e_1_2_13_51_2
e_1_2_13_70_2
e_1_2_13_4_2
e_1_2_13_128_2
e_1_2_13_88_2
e_1_2_13_109_2
e_1_2_13_48_2
Pauly M. (e_1_2_13_84_2) 2001
e_1_2_13_25_2
e_1_2_13_67_2
e_1_2_13_44_2
e_1_2_13_100_2
e_1_2_13_86_2
e_1_2_13_21_2
e_1_2_13_123_2
e_1_2_13_40_2
Strang G. (e_1_2_13_93_2) 1973
e_1_2_13_82_2
e_1_2_13_5_2
Jain A. K. (e_1_2_13_47_2) 1989
e_1_2_13_9_2
Dong S. (e_1_2_13_17_2) 2006
e_1_2_13_91_2
e_1_2_13_95_2
Schölkopf B. (e_1_2_13_99_2) 2002
e_1_2_13_116_2
e_1_2_13_18_2
e_1_2_13_37_2
e_1_2_13_56_2
e_1_2_13_79_2
e_1_2_13_10_2
e_1_2_13_33_2
e_1_2_13_52_2
e_1_2_13_71_2
Katz S. (e_1_2_13_55_2) 2005; 21
e_1_2_13_104_2
e_1_2_13_127_2
Hirani A. N. (e_1_2_13_39_2) 2003
e_1_2_13_108_2
e_1_2_13_49_2
e_1_2_13_45_2
e_1_2_13_87_2
e_1_2_13_41_2
e_1_2_13_64_2
e_1_2_13_103_2
e_1_2_13_122_2
e_1_2_13_83_2
e_1_2_13_6_2
e_1_2_13_60_2
e_1_2_13_90_2
Chung F. R. K. (e_1_2_13_14_2) 1997
De Silva V. (e_1_2_13_24_2) 2004
e_1_2_13_115_2
e_1_2_13_38_2
Hilaga M. (e_1_2_13_43_2) 2001
e_1_2_13_119_2
e_1_2_13_19_2
e_1_2_13_34_2
e_1_2_13_110_2
e_1_2_13_15_2
e_1_2_13_57_2
e_1_2_13_30_2
e_1_2_13_11_2
e_1_2_13_53_2
e_1_2_13_72_2
Manor L. (e_1_2_13_76_2) 2004
e_1_2_13_2_2
e_1_2_13_107_2
e_1_2_13_126_2
e_1_2_13_27_2
Fary I. (e_1_2_13_29_2) 1948; 11
Taubin G. (e_1_2_13_105_2) 1995
e_1_2_13_23_2
e_1_2_13_69_2
e_1_2_13_121_2
Dyer R. (e_1_2_13_26_2) 2007
e_1_2_13_46_2
e_1_2_13_65_2
e_1_2_13_125_2
e_1_2_13_42_2
e_1_2_13_102_2
Desbrun M. (e_1_2_13_22_2) 1999
e_1_2_13_61_2
e_1_2_13_7_2
e_1_2_13_80_2
Chavel I. (e_1_2_13_13_2) 1984
Cox T. F. (e_1_2_13_12_2) 1994
Liu R. (e_1_2_13_68_2) 2006
e_1_2_13_97_2
e_1_2_13_118_2
e_1_2_13_16_2
Mohar B. (e_1_2_13_75_2) 1993
e_1_2_13_35_2
e_1_2_13_58_2
Saerens M. (e_1_2_13_94_2) 2004
e_1_2_13_31_2
e_1_2_13_54_2
Lovász (e_1_2_13_63_2) 1993
e_1_2_13_77_2
e_1_2_13_113_2
e_1_2_13_50_2
e_1_2_13_73_2
Sorkine O. (e_1_2_13_98_2) 2005
e_1_2_13_3_2
e_1_2_13_28_2
e_1_2_13_89_2
Taubin G. (e_1_2_13_106_2) 2000
References_xml – reference: Ben-Chen M., Gotsman C.: On the optimality of spectral compression of mesh data. ACM Trans. on Graphics, 24, 1 (2005), 60-80.
– reference: Von Luxburg U.: A Tutorial on Spectral Clustering. Tech. Rep. TR-149, Max Plank Institute for Biological Cybernetics , August 2006.
– reference: Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2, 1 (1993), 15-36.
– reference: Shapiro L. S., Brady J. M.: Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10, 5 (1992), 283-288.
– reference: Davies E. B., Gladwell G. M. L., Leydold J., Stadler P. F.: Discrete nodal domain theorems. Lin. Alg. Appl., 336 (2001), 51-60.
– reference: Liu R., Zhang H.: Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Eurographics), 26 (2007), 385-394.
– reference: Chavel I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando , FL , USA , 1984.
– reference: Vallet B., Lévy B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum (Eurographics), 27, 2 (2008), 251-260.
– reference: Díaz J., Petit J., Serna M.: A survey of graph layout problems. ACM Computing Survey, 34, 3 (2002), 313-356.
– reference: Fowlkes C., Belongie S., Chung F., Malik J.: Spectral grouping using the Nyström method. IEEE Trans. Pat. Ana. & Mach. Int., 26, 2 (2004), 214-225.
– reference: Bollobás B.: Modern Graph Theory. Springer, New York , NY , USA , 1998.
– reference: Caelli T., Kosinov S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. Pat. Ana. & Mach. Int., 26, 4 (2004), 515-519.
– reference: Pisanski T., Shawe-Taylor J.: Characterizing graph drawing with eigenvectors. Journal of Chemical Information and Computer Sciences, 40, 3 (2000), 567-571.
– reference: Tutte W. T.: How to draw a graph. Proc. London Math. Society, 13 (1963), 743-768.
– reference: De Silva V., Tenenbaum B.: Sparse Multidimensional Scaling using Landmark Points. Tech. rep., Stanford University , June 2004.
– reference: Gotsman C., Gu X., Sheffer A.: Fundamentals of spherical parameterization for 3d meshes. ACM Trans. on Graphics, 22, 3 (2003), 358-363.
– reference: Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Trans. Pat. Ana. & Mach. Int., 22, 8 (2000), 888-905.
– reference: Xu G.: Discrete Laplace-Beltrami operators and their convergence. Comput. Aided Geom. Des., 21, 8 (2004), 767-784.
– reference: Bengio Y., Delalleau O., Le Roux N., Paiement J.-F., Vincent P., Ouimet M.: Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16, 10 (2004), 2197-2219.
– reference: Eckart C., Young G.: The approximation of one matrix by another of lower rank. Psychometrika, 1 (1936), 211-218.
– reference: Fary I.: On straight line representations of planar graphs. Acta Sci. Math., 11 (1948), 229-233.
– reference: Fujiwara K.: Eigenvalues of Laplacians on a closed Riemannian manifold and its nets. Proceedings of the AMS, 123, 8 (1995), 2585-2594.
– reference: Jain A. K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs , NJ , USA , 1989.
– reference: Hildebrandt K., Polthier K., Wardetzky M.: On the Convergence of Metric and Geometric Properties of Polyhedral Surfaces. Geometriae Dedicata, 123, 1 (2006), 89-112.
– reference: Strang G., Fix G. J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs , NJ , USA , 1973.
– reference: Cox T. F., Cox M. A. A.: Multidimensional Scaling. Chapman & Hall, Boca Raton , FL , USA , 1994.
– reference: Hall K. M.: An r-dimensional quadratic placement algorithm. Manage. Sci., 17, 8 (1970), 219-229.
– reference: Ovsjanikov M., Sun J., Guibas L.: Global intrinsic symmetries of shapes. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1341-1348.
– reference: Liu R., Zhang H., Van Kaick O.: An Investigation into Spectral Sequencing using Graph Distance. Tech. Rep. TR 2006-08, School of Computing Science, SFU , May 2006.
– reference: Mullen P., Tong Y., Alliez P., Desbrun M.: Spectral conformal parameterization. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1487-1494.
– reference: Alpert C. J., Kahng A. B., Yao S. Z.: Spectral partitioning with multiple eigenvectors. Discrete Applied Mathematics, 90 (1999), 3-26.
– reference: De Verdière Y. C.: Sur un nouvel invariant des graphes et un critére de planarité. Journal of Combinatorial Theory, Series B, 50 (1990), 11-21.
– reference: Tenenbaum J. B., Langford J. C.: A global geometric framework for nonlinear dimensionality reduction. Science, 290, 5500 (2000), 2319-2323.
– reference: Elad A., Kimmel R.: On bending invariant signatures for surfaces. IEEE Trans. Pat. Ana. & Mach. Int., 25, 10 (2003), 1285-1295.
– reference: Hoffman D. D., Singh M.: Salience of visual parts. Cognition, 63 (1997), 29-78.
– reference: Shokoufhandeh A., Macrini D., Dickinson S., Siddiqi K., Zucker S.: Indexing hierarchical structures using graph spectra. IEEE Trans. Pat. Ana. & Mach. Int., 27, 7 (2005), 1125-1140.
– reference: Floater M. S.: Mean value coordinates. Comput. Aided Geom. Des., 20, 1 (2003), 19-27.
– reference: Zahn C. T., Roskies R. Z.: Fourier descriptors for plane closed curves. IEEE Trans. on Computers, 21, 3 (1972), 269-281.
– reference: Bhatia R.: Matrix Analysis. Springer-Verlag, New York , NY , USA , 1997.
– reference: Chen D.-Y., Tian X.-P., Shen Y.-T., Ouhyoung M.: On visual similarity based 3D model retrieval. Computer Graphics Forum, 22, 3 (2003), 223-232.
– reference: De Goes F., Goldenstein S., Velho L.: A hierarchical segmentation of articulated bodies. Computer Graphics Forum (Symposium on Geometry Processing), 27, 5 (2008), 1349-1356.
– reference: Wardetzky M., Bergou M., Harmon D., Zorin D., Grinspun E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des., 24, 8-9 (2007), 499-518.
– reference: Jain V., Zhang H., Van Kaick O.: Non-rigid spectral correspondence of triangle meshes. Int. J. on Shape Modeling, 13, 1 (2007), 101-124.
– reference: Verma D., Meila M.: A comparison of spectral clustering algorithms. Tech. Rep. UW-CSE-03-05-01, University of Washington , 2003.
– reference: Lovász L., Schrijver A.: On the null space of a Colin de Verdière matrix. Annales de l'institut Fourier, 49, 3 (1999), 1017-1026.
– reference: Chung F. R. K.: Spectral Graph Theory. AMS, Providence , RI , USA , 1997.
– reference: Fiedler M.: Algebraic connectivity of graphs. Czech. Math. J., 23 (1973), 298-305.
– reference: Ohbuchi R., Mukaiyama A., Takahashi S.: A frequency-domain approach to watermarking 3D shapes. Computer Graphics Forum, 21, 3 (2002), 373-382.
– reference: Liu R., Zhang H., Shamir A., Cohen-Or D.: A part-aware surface metric for shape analysis. Computer Graphics Forum (Eurographics), 28, 2 (2009), 397-406.
– reference: Mohar B., Poljak S.: Eigenvalues in Combinatorial Optimization, vol. 50 of IMA Volumes in Mathematics and Its Applications. Springer-Verlag, New York , NY , USA , 1993, pp. 107-151.
– reference: Kim B. M., Rossignac J.: Geofilter: Geometric selection of mesh filter parameters. Computer Graphics Forum (Eurographics), 24, 3 (2005), 295-302.
– reference: Schölkopf B., Smola A. J., Müller K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computations, 10 (1998), 1299-1319.
– reference: Jain V., Zhang H.: A spectral approach to shape-based retrieval of articulated 3D models. Computer Aided Design, 39 (2007), 398-407.
– reference: Biyikoğlu T., Hordijk W., Leydold J., Pisanski T., Stadler P. F.: Graph Laplacians, nodal domains, and hyperplane arrangements. Linear Algebra and Its Applications, 390 (2004), 155-174.
– reference: Guattery S., Miller G. L.: Graph embeddings and Laplacian eigenvalues. SIAM J. Matrix Anal. Appl., 21, 3 (2000), 703-723.
– reference: Umeyama S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pat. Ana. & Mach. Int., 10, 5 (1988), 695-703.
– reference: Osada R., Funkhouser T., Chazelle B., Dobkin D.: Shape distributions. ACM Trans. on Graphics, 21, 4 (2002), 807-832.
– reference: Reuter M., Wolter F.-E., Peinecke N.: Laplacian-Beltrami spectra as 'shape-DNA' for shapes and solids. Computer Aided Geometric Design, 38 (2006), 342-366.
– reference: Dyer R., Zhang H., Möller T.: An Investigation of the Spectral Robustness of Mesh Laplacians. Tech. rep., Simon Fraser University , June 2007.
– reference: Jakobson D., Nadirashvili N., Toth J.: Geometric properties of eigenfunctions. Russian Mathematical Surveys, 56, 6 (2001), 1085-1105.
– reference: Zigelman G., Kimmel R., Kiryati N.: Texture mapping using surface flattening via multidimensional scaling. IEEE Trans. Vis. & Comp. Graphics, 8, 2 (2002), 198-207.
– reference: Meyer C. D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia , PA , USA , 2000.
– reference: Huang Q., Wicke M., Adams B., Guibas L. J.: Shape decomposition using modal analysis. Computer Graphics Forum (Eurographics), 28, 2 (2009), 407-416.
– reference: Saerens M., Fouss F., Yen L., Dupont P.: The Principal Components Analysis of a Graph, and its Relationship to Spectral Clustering, vol. 3201 of Lecture Notes in Artificial Intelligence. Springer, Berlin/Heidelberg , Germany , 2004, pp. 371-383.
– reference: Schölkopf B., Smola A. J.: Learning with Kernels. MIT Press, Cambridge , MA , USA , 2002.
– reference: Katz S., Leifman G., Tal A.: Mesh segmentation using feature point and core extraction. The Visual Computer (Special Issue of Pacific Graphics), 21, 8-10 (2005), 649-658.
– reference: Scholköpf B., Smola E., Robert Müller K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10 (1998), 1299-1319.
– reference: Roweis S., Saul L.: Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 5500 (2000), 2323-2326.
– reference: Belkin M., Niyogi P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Computation, 15, 6 (2003), 1373-1396.
– reference: Shawe-Taylor J., Williams C. K. I., Cristianini N., Kandola J.: On the eigenspectrum of the gram matrix and the generalization error of kernel-PCA. IEEE Trans. on Information Theory, 51, 7 (2005), 2510-2522.
– reference: Trefethen L. N., Bau D.: Numerical Linear Algebra. SIAM, Philadelphia , PA , USA , 1997.
– reference: Rosenberg S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.
– volume: 20
  start-page: 19
  issue: 1
  year: 2003
  end-page: 27
  article-title: Mean value coordinates
  publication-title: Comput. Aided Geom. Des.
– year: 2005
– volume: 21
  start-page: 649
  issue: 8–10
  year: 2005
  end-page: 658
  article-title: Mesh segmentation using feature point and core extraction
  publication-title: The Visual Computer (Special Issue of Pacific Graphics)
– year: August 2006
– volume: 27
  start-page: 1125
  issue: 7
  year: 2005
  end-page: 1140
  article-title: Indexing hierarchical structures using graph spectra
  publication-title: IEEE Trans. Pat. Ana. & Mach. Int.
– volume: 123
  start-page: 89
  issue: 1
  year: 2006
  end-page: 112
  article-title: On the Convergence of Metric and Geometric Properties of Polyhedral Surfaces
  publication-title: Geometriae Dedicata
– year: 1989
– volume: 26
  start-page: 515
  issue: 4
  year: 2004
  end-page: 519
  article-title: An eigenspace projection clustering method for inexact graph matching
  publication-title: IEEE Trans. Pat. Ana. & Mach. Int.
– volume: 26
  start-page: 214
  issue: 2
  year: 2004
  end-page: 225
  article-title: Spectral grouping using the Nyström method
  publication-title: IEEE Trans. Pat. Ana. & Mach. Int.
– volume: 2
  start-page: 353
  year: 1993
  end-page: 397
– start-page: 351
  year: 1995
  end-page: 358
– volume: 56
  start-page: 1085
  issue: 6
  year: 2001
  end-page: 1105
  article-title: Geometric properties of eigenfunctions
  publication-title: Russian Mathematical Surveys
– volume: 22
  start-page: 223
  issue: 3
  year: 2003
  end-page: 232
  article-title: On visual similarity based 3D model retrieval
  publication-title: Computer Graphics Forum
– volume: 24
  start-page: 295
  issue: 3
  year: 2005
  end-page: 302
  article-title: Geofilter: Geometric selection of mesh filter parameters
  publication-title: Computer Graphics Forum (Eurographics)
– start-page: 172
  year: 2006
  end-page: 184
– year: 1998
– start-page: 203
  year: 2001
  end-page: 212
– start-page: 575
  year: 2004
  end-page: 592
– start-page: 47
  year: 2004
  end-page: 54
– volume: 10
  start-page: 283
  issue: 5
  year: 1992
  end-page: 288
  article-title: Feature‐based correspondence: an eigenvector approach
  publication-title: Image and Vision Computing
– volume: 27
  start-page: 251
  issue: 2
  year: 2008
  end-page: 260
  article-title: Spectral geometry processing with manifold harmonics
  publication-title: Computer Graphics Forum (Eurographics)
– start-page: 156
  year: 2003
  end-page: 165
– start-page: 96
  year: 1996
  end-page: 105
– volume: 40
  start-page: 567
  issue: 3
  year: 2000
  end-page: 571
  article-title: Characterizing graph drawing with eigenvectors
  publication-title: Journal of Chemical Information and Computer Sciences
– start-page: 502
  year: 2003
  end-page: 506
– start-page: 225
  year: 2007
  end-page: 233
– start-page: 493
  year: 1993
  end-page: 502
– volume: 2
  start-page: 15
  issue: 1
  year: 1993
  end-page: 36
  article-title: Computing discrete minimal surfaces and their conjugates
  publication-title: Experimental Mathematics
– volume: 1
  start-page: 211
  year: 1936
  end-page: 218
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
– start-page: 39
  year: 2006
  end-page: 54
– volume: 23
  start-page: 298
  year: 1973
  end-page: 305
  article-title: Algebraic connectivity of graphs
  publication-title: Czech. Math. J.
– volume: 28
  issue: 2
  year: 2009
  article-title: Shape decomposition using modal analysis
  publication-title: Computer Graphics Forum (Eurographics)
– volume: 17
  start-page: 1601
  year: 2004
  end-page: 1608
– volume: 27
  start-page: 1487
  issue: 5
  year: 2008
  end-page: 1494
  article-title: Spectral conformal parameterization
  publication-title: Computer Graphics Forum (Symposium on Geometry Processing)
– start-page: 373
  year: 2004
  end-page: 379
– volume: 14
  start-page: 849
  year: 2002
  end-page: 856
– volume: 49
  start-page: 1017
  issue: 3
  year: 1999
  end-page: 1026
  article-title: On the null space of a Colin de Verdière matrix
  publication-title: Annales de l'institut Fourier
– volume: 51
  start-page: 2510
  issue: 7
  year: 2005
  end-page: 2522
  article-title: On the eigenspectrum of the gram matrix and the generalization error of kernel‐PCA
  publication-title: IEEE Trans. on Information Theory
– year: 2007
– start-page: 379
  year: 2001
  end-page: 386
– year: 1973
– start-page: 33
  year: 2007
  end-page: 37
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  end-page: 1396
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Neural Computation
– year: June 2004
– start-page: 655
  year: 1998
  end-page: 670
– start-page: 35
  year: 2002
  end-page: 57
– start-page: 11
  year: 2004
  end-page: 21
– start-page: 1057
  year: 2006
  end-page: 1066
– year: 1984
– start-page: 496
  year: 2003
  end-page: 508
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computations
– volume: 21
  start-page: 703
  issue: 3
  year: 2000
  end-page: 723
  article-title: Graph embeddings and Laplacian eigenvalues
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 16
  start-page: 2197
  issue: 10
  year: 2004
  end-page: 2219
  article-title: Learning eigenfunctions links spectral embedding and kernel PCA
  publication-title: Neural Computation
– start-page: 130
  year: 2003
  end-page: 142
– year: 2002
– volume: 90
  start-page: 3
  year: 1999
  end-page: 26
  article-title: Spectral partitioning with multiple eigenvectors
  publication-title: Discrete Applied Mathematics
– volume: 25
  start-page: 1285
  issue: 10
  year: 2003
  end-page: 1295
  article-title: On bending invariant signatures for surfaces
  publication-title: IEEE Trans. Pat. Ana. & Mach. Int.
– volume: 21
  start-page: 807
  issue: 4
  year: 2002
  end-page: 832
  article-title: Shape distributions
  publication-title: ACM Trans. on Graphics
– start-page: 279
  year: 2000
  end-page: 286
– volume: 63
  start-page: 29
  year: 1997
  end-page: 78
  article-title: Salience of visual parts
  publication-title: Cognition
– volume: 50
  start-page: 11
  year: 1990
  end-page: 21
  article-title: Sur un nouvel invariant des graphes et un critére de planarité
  publication-title: Journal of Combinatorial Theory, Series B
– start-page: 137
  year: 2002
  end-page: 144
– volume: 123
  start-page: 2585
  issue: 8
  year: 1995
  end-page: 2594
  article-title: Eigenvalues of Laplacians on a closed Riemannian manifold and its nets
  publication-title: Proceedings of the AMS
– volume: 24
  start-page: 499
  issue: 8–9
  year: 2007
  end-page: 518
  article-title: Discrete quadratic curvature energies
  publication-title: Comput. Aided Geom. Des.
– start-page: 165
  year: 2003
  end-page: 171
– volume: 28
  issue: 2
  year: 2009
  article-title: A part‐aware surface metric for shape analysis
  publication-title: Computer Graphics Forum (Eurographics)
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computation
– year: 2001
– start-page: 1
  year: June 2001
  end-page: 8
– volume: 26
  start-page: 385
  year: 2007
  end-page: 394
  article-title: Mesh segmentation via spectral embedding and contour analysis
  publication-title: Computer Graphics Forum (Eurographics)
– volume: 390
  start-page: 155
  year: 2004
  end-page: 174
  article-title: Graph Laplacians, nodal domains, and hyperplane arrangements
  publication-title: Linear Algebra and Its Applications
– volume: 3559
  start-page: 486
  year: 2005
  end-page: 500
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pat. Ana. & Mach. Int.
– volume: 10
  start-page: 695
  issue: 5
  year: 1988
  end-page: 703
  article-title: An eigendecomposition approach to weighted graph matching problems
  publication-title: IEEE Trans. Pat. Ana. & Mach. Int.
– start-page: 225
  year: 1997
  end-page: 275
– volume: 27
  start-page: 1341
  issue: 5
  year: 2008
  end-page: 1348
  article-title: Global intrinsic symmetries of shapes
  publication-title: Computer Graphics Forum (Symposium on Geometry Processing)
– year: 1994
– year: June 2007
  publication-title: An Investigation of the Spectral Robustness of Mesh Laplacians
– volume: 17
  start-page: 857
  year: 2005
  end-page: 864
– start-page: 107
  year: 1993
  end-page: 151
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  end-page: 2326
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 22
  start-page: 358
  issue: 3
  year: 2003
  end-page: 363
  article-title: Fundamentals of spherical parameterization for 3d meshes
  publication-title: ACM Trans. on Graphics
– year: 2004
– year: 1997
– volume: 13
  start-page: 101
  issue: 1
  year: 2007
  end-page: 124
  article-title: Non‐rigid spectral correspondence of triangle meshes
  publication-title: Int. J. on Shape Modeling
– volume: 11
  start-page: 229
  year: 1948
  end-page: 233
  article-title: On straight line representations of planar graphs
  publication-title: Acta Sci. Math.
– start-page: 317
  year: 1999
  end-page: 324
– volume: 38
  start-page: 342
  year: 2006
  end-page: 366
  article-title: Laplacian‐Beltrami spectra as ‘shape‐DNA’ for shapes and solids
  publication-title: Computer Aided Geometric Design
– volume: 336
  start-page: 51
  year: 2001
  end-page: 60
  article-title: Discrete nodal domain theorems
  publication-title: Lin. Alg. Appl.
– volume: 17
  start-page: 219
  issue: 8
  year: 1970
  end-page: 229
  article-title: An r‐dimensional quadratic placement algorithm
  publication-title: Manage. Sci.
– volume: 27
  start-page: 1349
  issue: 5
  year: 2008
  end-page: 1356
  article-title: A hierarchical segmentation of articulated bodies
  publication-title: Computer Graphics Forum (Symposium on Geometry Processing)
– volume: 21
  start-page: 767
  issue: 8
  year: 2004
  end-page: 784
  article-title: Discrete Laplace‐Beltrami operators and their convergence
  publication-title: Comput. Aided Geom. Des.
– volume: 8
  start-page: 198
  issue: 2
  year: 2002
  end-page: 207
  article-title: Texture mapping using surface flattening via multidimensional scaling
  publication-title: IEEE Trans. Vis. & Comp. Graphics
– volume: 24
  start-page: 60
  issue: 1
  year: 2005
  end-page: 80
  article-title: On the optimality of spectral compression of mesh data
  publication-title: ACM Trans. on Graphics
– year: May 2006
– year: 2003
– start-page: 231
  year: 2005
  end-page: 238
– year: 2000
– volume: 13
  start-page: 743
  year: 1963
  end-page: 768
  article-title: How to draw a graph
  publication-title: Proc. London Math. Society
– volume: 2
  start-page: 1482
  year: October 2005
  end-page: 1489
– volume: 21
  start-page: 373
  issue: 3
  year: 2002
  end-page: 382
  article-title: A frequency‐domain approach to watermarking 3D shapes
  publication-title: Computer Graphics Forum
– start-page: 118
  year: 2006
  end-page: 129
– start-page: 731
  year: 1997
  end-page: 737
– volume: 39
  start-page: 398
  year: 2007
  end-page: 407
  article-title: A spectral approach to shape‐based retrieval of articulated 3D models
  publication-title: Computer Aided Design
– start-page: 13
  year: 2006
  end-page: 20
– volume: 21
  start-page: 269
  issue: 3
  year: 1972
  end-page: 281
  article-title: Fourier descriptors for plane closed curves
  publication-title: IEEE Trans. on Computers
– volume: 34
  start-page: 313
  issue: 3
  year: 2002
  end-page: 356
  article-title: A survey of graph layout problems
  publication-title: ACM Computing Survey
– start-page: 367
  year: 2000
  end-page: 377
– start-page: 371
  year: 2004
  end-page: 383
– start-page: 298
  year: 2004
  end-page: 305
– start-page: 975
  year: 1999
  end-page: 983
– start-page: 42
  year: 2003
  end-page: 51
– start-page: 9
  year: 2001
  end-page: 18
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  end-page: 2323
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– start-page: 195
  year: 2004
  end-page: 204
– ident: e_1_2_13_27_2
  doi: 10.1109/TPAMI.2003.1233902
– ident: e_1_2_13_70_2
– ident: e_1_2_13_59_2
  doi: 10.1109/SFCS.2000.892125
– ident: e_1_2_13_28_2
  doi: 10.1007/BF02288367
– start-page: 1057
  volume-title: SIGGRAPH
  year: 2006
  ident: e_1_2_13_17_2
– ident: e_1_2_13_71_2
  doi: 10.1007/978-3-662-05105-4_2
– ident: e_1_2_13_97_2
  doi: 10.1109/TPAMI.2005.142
– ident: e_1_2_13_100_2
  doi: 10.1109/SMI.2003.1199609
– ident: e_1_2_13_118_2
– ident: e_1_2_13_83_2
  doi: 10.1007/BFb0055696
– start-page: 203
  volume-title: SIGGRAPH
  year: 2001
  ident: e_1_2_13_43_2
– ident: e_1_2_13_8_2
  doi: 10.1162/089976603321780317
– ident: e_1_2_13_52_2
– ident: e_1_2_13_127_2
  doi: 10.1145/1057432.1057439
– ident: e_1_2_13_31_2
  doi: 10.21136/CMJ.1973.101168
– ident: e_1_2_13_34_2
  doi: 10.1145/882262.882276
– ident: e_1_2_13_85_2
  doi: 10.1080/10586458.1993.10504266
– start-page: 351
  volume-title: SIGGRAPH
  year: 1995
  ident: e_1_2_13_105_2
– ident: e_1_2_13_35_2
– ident: e_1_2_13_54_2
– ident: e_1_2_13_44_2
  doi: 10.1111/j.1467-8659.2009.01380.x
– ident: e_1_2_13_21_2
  doi: 10.1145/1185657.1185665
– ident: e_1_2_13_38_2
  doi: 10.1287/mnsc.17.3.219
– ident: e_1_2_13_49_2
– ident: e_1_2_13_65_2
– ident: e_1_2_13_37_2
  doi: 10.1109/SMI.2003.1199613
– ident: e_1_2_13_109_2
  doi: 10.1112/plms/s3-13.1.743
– ident: e_1_2_13_3_2
  doi: 10.1145/1037957.1037961
– ident: e_1_2_13_79_2
  doi: 10.1145/571647.571648
– ident: e_1_2_13_57_2
  doi: 10.1111/j.1467-8659.2005.00854.x
– start-page: 107
  volume-title: Eigenvalues in Combinatorial Optimization, vol. 50 of IMA Volumes in Mathematics and Its Applications
  year: 1993
  ident: e_1_2_13_75_2
– ident: e_1_2_13_110_2
  doi: 10.1109/34.6778
– volume-title: Fundamentals of Digital Image Processing
  year: 1989
  ident: e_1_2_13_47_2
– ident: e_1_2_13_123_2
– start-page: 371
  volume-title: The Principal Components Analysis of a Graph, and its Relationship to Spectral Clustering, vol. 3201 of Lecture Notes in Artificial Intelligence
  year: 2004
  ident: e_1_2_13_94_2
– ident: e_1_2_13_104_2
  doi: 10.1109/TIT.2005.850052
– ident: e_1_2_13_42_2
  doi: 10.1016/S0010-0277(96)00791-3
– ident: e_1_2_13_124_2
  doi: 10.1109/2945.998671
– ident: e_1_2_13_122_2
– start-page: 849
  volume-title: Advances in Neural Information Processing Systems (NIPS)
  year: 2002
  ident: e_1_2_13_78_2
– ident: e_1_2_13_11_2
  doi: 10.1145/169627.169790
– ident: e_1_2_13_101_2
  doi: 10.1162/089976698300017467
– volume-title: A comparison of spectral clustering algorithms
  year: 2003
  ident: e_1_2_13_114_2
– ident: e_1_2_13_120_2
  doi: 10.1016/j.cagd.2004.07.007
– ident: e_1_2_13_117_2
  doi: 10.1109/ICCV.1999.790354
– volume-title: Spectral Graph Theory
  year: 1997
  ident: e_1_2_13_14_2
– ident: e_1_2_13_72_2
  doi: 10.1137/1.9780898719512
– ident: e_1_2_13_119_2
– volume-title: Multidimensional Scaling
  year: 1994
  ident: e_1_2_13_12_2
– volume-title: Discrete Exterior Calculus
  year: 2003
  ident: e_1_2_13_39_2
– ident: e_1_2_13_80_2
  doi: 10.1111/1467-8659.t01-1-00597
– year: 2007
  ident: e_1_2_13_26_2
  publication-title: An Investigation of the Spectral Robustness of Mesh Laplacians
– volume-title: Eigenvalues in Riemannian Geometry
  year: 1984
  ident: e_1_2_13_13_2
– ident: e_1_2_13_107_2
  doi: 10.1137/1.9780898719574
– ident: e_1_2_13_116_2
  doi: 10.1016/j.cagd.2007.07.006
– ident: e_1_2_13_10_2
  doi: 10.1007/978-1-4612-0619-4
– ident: e_1_2_13_46_2
  doi: 10.1109/VISUAL.2005.1532800
– ident: e_1_2_13_2_2
  doi: 10.1016/S0166-218X(98)00083-3
– ident: e_1_2_13_20_2
– ident: e_1_2_13_40_2
  doi: 10.1145/1015330.1015417
– ident: e_1_2_13_25_2
  doi: 10.1016/0095-8956(90)90093-F
– ident: e_1_2_13_113_2
– ident: e_1_2_13_60_2
  doi: 10.1109/SMI.2006.21
– ident: e_1_2_13_58_2
  doi: 10.1145/1057432.1057434
– ident: e_1_2_13_48_2
  doi: 10.1070/RM2001v056n06ABEH000453
– ident: e_1_2_13_77_2
  doi: 10.1111/j.1467-8659.2008.01289.x
– ident: e_1_2_13_51_2
  doi: 10.1142/S0218654307000968
– ident: e_1_2_13_45_2
– ident: e_1_2_13_41_2
  doi: 10.1007/s10711-006-9109-5
– ident: e_1_2_13_6_2
  doi: 10.1007/978-1-4612-0653-8
– ident: e_1_2_13_128_2
  doi: 10.5244/C.19.69
– ident: e_1_2_13_61_2
  doi: 10.1109/ICCV.2005.20
– start-page: 379
  volume-title: SIGGRAPH
  year: 2001
  ident: e_1_2_13_84_2
– ident: e_1_2_13_112_2
  doi: 10.1111/j.1467-8659.2008.01122.x
– ident: e_1_2_13_125_2
– volume-title: Eurographics State‐of‐the‐Art Report
  year: 2005
  ident: e_1_2_13_98_2
– ident: e_1_2_13_96_2
  doi: 10.1109/34.868688
– ident: e_1_2_13_36_2
  doi: 10.1137/S0895479897329825
– ident: e_1_2_13_18_2
  doi: 10.1111/j.1467-8659.2008.01274.x
– ident: e_1_2_13_32_2
  doi: 10.1016/S0167-8396(03)00002-5
– ident: e_1_2_13_89_2
– ident: e_1_2_13_108_2
  doi: 10.1126/science.290.5500.2319
– ident: e_1_2_13_56_2
  doi: 10.1007/3-540-45071-8_50
– ident: e_1_2_13_23_2
  doi: 10.1145/568522.568523
– volume-title: A Tutorial on Spectral Clustering
  year: 2006
  ident: e_1_2_13_111_2
– ident: e_1_2_13_86_2
  doi: 10.1021/ci9900938
– ident: e_1_2_13_33_2
  doi: 10.1090/S0002-9939-1995-1257106-5
– ident: e_1_2_13_102_2
  doi: 10.1162/089976698300017467
– ident: e_1_2_13_69_2
  doi: 10.1109/ICCV.2007.4408833
– volume-title: Learning with Kernels
  year: 2002
  ident: e_1_2_13_99_2
– ident: e_1_2_13_103_2
  doi: 10.1109/SFCS.1996.548468
– start-page: 353
  volume-title: Combinatorics, Paul Erdös is eighty
  year: 1993
  ident: e_1_2_13_63_2
– ident: e_1_2_13_92_2
– ident: e_1_2_13_5_2
– ident: e_1_2_13_73_2
– ident: e_1_2_13_30_2
  doi: 10.1109/TPAMI.2004.1262185
– ident: e_1_2_13_81_2
  doi: 10.1111/j.1467-8659.2008.01273.x
– ident: e_1_2_13_19_2
  doi: 10.1016/S0024-3795(01)00313-5
– ident: e_1_2_13_95_2
– ident: e_1_2_13_50_2
  doi: 10.1016/j.cad.2007.02.009
– ident: e_1_2_13_74_2
  doi: 10.1007/978-94-015-8937-6_6
– ident: e_1_2_13_87_2
  doi: 10.1017/CBO9780511623783
– ident: e_1_2_13_62_2
  doi: 10.1007/11784203_15
– start-page: 317
  volume-title: SIGGRAPH
  year: 1999
  ident: e_1_2_13_22_2
– ident: e_1_2_13_91_2
  doi: 10.1016/0262-8856(92)90043-3
– ident: e_1_2_13_7_2
  doi: 10.1016/j.laa.2004.04.024
– ident: e_1_2_13_82_2
– ident: e_1_2_13_115_2
– volume: 21
  start-page: 649
  issue: 8
  year: 2005
  ident: e_1_2_13_55_2
  article-title: Mesh segmentation using feature point and core extraction
  publication-title: The Visual Computer (Special Issue of Pacific Graphics)
– ident: e_1_2_13_9_2
  doi: 10.1007/11503415_33
– volume-title: Sparse Multidimensional Scaling using Landmark Points
  year: 2004
  ident: e_1_2_13_24_2
– ident: e_1_2_13_66_2
  doi: 10.1111/j.1467-8659.2007.01061.x
– ident: e_1_2_13_67_2
  doi: 10.1111/j.1467-8659.2009.01379.x
– ident: e_1_2_13_53_2
  doi: 10.1145/344779.344924
– ident: e_1_2_13_64_2
  doi: 10.5802/aif.1703
– ident: e_1_2_13_126_2
  doi: 10.1109/TC.1972.5008949
– ident: e_1_2_13_15_2
  doi: 10.1109/TPAMI.2004.1265866
– volume-title: Eurographics State‐of‐the‐Art Report
  year: 2000
  ident: e_1_2_13_106_2
– start-page: 1601
  volume-title: Advances in Neural Information Processing Systems (NIPS)
  year: 2004
  ident: e_1_2_13_76_2
– volume-title: An Investigation into Spectral Sequencing using Graph Distance
  year: 2006
  ident: e_1_2_13_68_2
– ident: e_1_2_13_4_2
  doi: 10.1162/0899766041732396
– volume: 11
  start-page: 229
  year: 1948
  ident: e_1_2_13_29_2
  article-title: On straight line representations of planar graphs
  publication-title: Acta Sci. Math.
– volume-title: An Analysis of the Finite Element Method
  year: 1973
  ident: e_1_2_13_93_2
– ident: e_1_2_13_88_2
  doi: 10.1126/science.290.5500.2323
– ident: e_1_2_13_16_2
  doi: 10.1111/1467-8659.00669
– ident: e_1_2_13_90_2
  doi: 10.1016/j.cad.2005.10.011
– ident: e_1_2_13_121_2
SSID ssj0004765
Score 2.40506
Snippet Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh...
AbstractSpectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1865
SubjectTerms Aids
Combinatorial analysis
Computer based modeling
Computer graphics
Computer Graphics [I.3.5]: Computational Geometry and Object Modeling
Computer vision
Eigenvalues
Eigenvectors
Filtering
Focusing
Geometry
geometry processing
Graph theory
High performance computing
Linear algebra
Lists
Machine learning
Operators
Spectra
Studies
Title Spectral Mesh Processing
URI https://api.istex.fr/ark:/67375/WNG-6H5RF29R-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2010.01655.x
https://www.proquest.com/docview/750565371
https://www.proquest.com/docview/831152759
Volume 29
WOSCitedRecordID wos000281853800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH4x4EEP_jZM1OxgvM2wlf7Y0aCDAxJCJHJrutFGowHDwPDn2zfGZNGDMd6WNG_Z6-vr-9p9_QpwZVDULSFNTytDvSZpNjylFPNiQYjFH7qhTaau3-W9nhiNwn7Of8KzMCt9iGLDDTMjm68xwVWcfk9ywWiYM7R8RumNxZPVwA5jWoHq3SAadr9OSXJG10rfqCFT5vX8-K5Ssapivy9LSHQTz2YFKdr_T1cOYC-Hpe7tahwdwpaeHMHuhljhMdTwqnrcF3EfdPrs5icMbNMJDKP7x1bHy-9V8BIkddo5peELFfqJMLZCjmkgjLBBsmspMiZC2SmQMsMTC_00twU90T5vJBbGhNyiPUI0OYXKZDrRNXDj0Jg4IMZnxtb6eKxMoIk_jg2nShPGHODrDpRJLjqOd1-8ydLig0v0XaLvMvNdLh3wC8v3lfDGL2yusxgVBmr2isQ1TuVTry1Zhw6iIBzIvgP1dRBlnrOp5AgGKeG-A27RapMN_6CoiZ4uUilQmyjgNHSAZQH99afJVjvCp7O_GtZhZ0VcQHrbOVTms4W-gO3kY_6Szi7zsf4JNxP3Pg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4YMVEPvg0VHz0YbzW0yz56NGjBCIQQiNw227IbjQYMD8PPd6cUhOiBGG9NNtN0dmZ2vt3OfgNwbZDULSElTytDvRIpFT2lFPNiQYjFH7qoTcquX-ONhuh2w2bWDgjvwsz4IRYHbhgZ6XqNAY4H0j-jXDAaZiVaPqP01gLKXMl6lXX33H0r6tS-r0lyRudU30gis1rY8-u7VrJVDid-ugJFlwFtmpGi_X_V5QD2MmDq3s086RA2dP8IdpfoCo8hj83q8WTErevRi5vdMbBDJ9CJHtrlqpd1VvASLOu0q0rRFyr0E2FsjuzRQBhhzWR3U6RHhLKLIGWGJxb8aW5TeqJ9XkwskAm5xXuEaHIKm_1BX-fBjUNj4oAYnxmb7eOeMoEmfi82nCpNGHOAz2dQJhntOHa_eJcr2w8uUXeJustUdzl1wF9IfsyoN9aQuUmNtBBQwzcsXeNUPjcqklVpKwrClmw6UJhbUWZRO5Ic4SAl3HfAXYzacMN_KKqvB5ORFMhOFHAaOsBSi679abJcifDp7K-CV7BdbddrsvbYeCrAzqyMAYvdzmFzPJzoC9hKPsevo-Fl5vhfKdD7Lg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kFdGDb2l85iDeIk22-8hRrKliLaUoels2yS6Kkpa2ij_fnTSNBj2IeAssEzI7OzPfbma_ATg2SOqWkJanlaFei7SanlKKebEgxOIP3dQmZ9fv8l5PPDyE_aIdEN6FmfFDlAdu6Bl5vEYH16PUfPdywWhYlGj5jNJTCyjrLewpU4N6exDddT-vSXJG51TfSCJTLez58V2VbFXHiX-vQNGvgDbPSNHav-qyDqsFMHXPZitpAxZ0tgkrX-gKt6CBzerxZMS90ZNHt7hjYIe24S66uD2_9IrOCl6CZZ02qjR9oUI_EcbmyJQGwghrJrubIikRygZBygxPLPjT3Kb0RPu8mVggE3KL9wjRZAdq2TDTDXDj0Jg4IMZnxmb7OFUm0MRPY8Op0oQxB_h8BmVS0I5j94sXWdl-cIm6S9Rd5rrLdwf8UnI0o974hcxJbqRSQI2fsXSNU3nf60h2SQdREA5k34G9uRVl4bUTyREOUsJ9B9xy1Lob_kNRmR6-TqRAdqKA09ABllv0158mzzsRPu3-VfAIlvrtSHavetd7sDyrYsBat32oTcev-gAWk7fp02R8WKz7D7cc-qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Mesh+Processing&rft.jtitle=Computer+graphics+forum&rft.au=Zhang%2C+H&rft.au=van+Kaick%2C+O&rft.au=Dyer%2C+R&rft.date=2010-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=29&rft.issue=6&rft.spage=1865&rft_id=info:doi/10.1111%2Fj.1467-8659.2010.01655.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2138355141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon