Low‐Spin and High‐Spin Perferryl Intermediates in Non‐Heme Iron Catalyzed Oxidations of Aliphatic C−H Groups

The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal Jg. 27; H. 28; S. 7781 - 7788
Hauptverfasser: Zima, Alexandra M., Lyakin, Oleg Y., Bryliakov, Konstantin P., Talsi, Evgenii P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 17.05.2021
Schlagworte:
ISSN:0947-6539, 1521-3765, 1521-3765
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin (S=1/2) oxoiron(V) intermediates or high‐spin (S=3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners. Direct C−H activation: Investigation of the oxidation of aliphatic C−H groups in the presence of nonheme iron catalysts of the Fe(PDP) family exhibits no uniform correlation between the spin state and reactivity of the oxoiron(V) intermediates and the chemo‐ and regioselectivity of the corresponding catalyst systems, thus witnessing apparent violation of the common “reactivity‐selectivity” principle for this reaction.
AbstractList The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H O have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k and k . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners.
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H 2 O 2 have been studied (PDP= N , N ′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐ p ‐menthane, and cis ‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin ( S =1/2) oxoiron(V) intermediates or high‐spin ( S =3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k 1 and k 2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners.
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin (S=1/2) oxoiron(V) intermediates or high‐spin (S=3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners. Direct C−H activation: Investigation of the oxidation of aliphatic C−H groups in the presence of nonheme iron catalysts of the Fe(PDP) family exhibits no uniform correlation between the spin state and reactivity of the oxoiron(V) intermediates and the chemo‐ and regioselectivity of the corresponding catalyst systems, thus witnessing apparent violation of the common “reactivity‐selectivity” principle for this reaction.
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k1 and k2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners.The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k1 and k2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners.
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin (S=1/2) oxoiron(V) intermediates or high‐spin (S=3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners.
Author Bryliakov, Konstantin P.
Talsi, Evgenii P.
Zima, Alexandra M.
Lyakin, Oleg Y.
Author_xml – sequence: 1
  givenname: Alexandra M.
  orcidid: 0000-0001-6871-223X
  surname: Zima
  fullname: Zima, Alexandra M.
  organization: Boreskov Institute of Catalysis
– sequence: 2
  givenname: Oleg Y.
  orcidid: 0000-0001-8540-8707
  surname: Lyakin
  fullname: Lyakin, Oleg Y.
  organization: Boreskov Institute of Catalysis
– sequence: 3
  givenname: Konstantin P.
  orcidid: 0000-0002-7009-8950
  surname: Bryliakov
  fullname: Bryliakov, Konstantin P.
  email: bryliako@catalysis.ru
  organization: Boreskov Institute of Catalysis
– sequence: 4
  givenname: Evgenii P.
  orcidid: 0000-0003-0756-1401
  surname: Talsi
  fullname: Talsi, Evgenii P.
  email: talsi@catalysis.ru
  organization: Boreskov Institute of Catalysis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33780054$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFLUtkiU03GW78k8TLKirNSEOLBKwjx3EYV4kd7ERlumLJEvGIfRI8nbZIlRAr68rn2Fffd4QOrLMaodcpLFMA8k5t9LAkQAAYFfwZWqScpAnNM36AFiBYnmScikN0FMIVAIiM0hfokNK8AOBsgaa1u7798evTaCyWtsWV-bp5mD9q32nvtz1e2Un7QbdGTjrgeHXhbKQqPWi88s7iUk6y397oFl9-N62cjLMBuw6f9mbcxFHh8vbn7wqfezeP4SV63sk-6Ff35zH68v7sc1kl68vzVXm6ThRLgSeEEdmxvM0UVZ1sGmAAsutYxtqccQZNoQqiGypIwURLWUOkIikQkQsJhSL0GJ3s3x29-zbrMNWDCUr3vbTazaEmHDIOgqY79O0T9MrN3sbtIkUKyEmRsUi9uafmJsZRj94M0m_rhzwjsNwDyrsQvO4ekRTqXWH1rrD6sbAosCeCMtNdfpOXpv-3Jvbaten19j-f1GV19uGv-wcC_6zU
CitedBy_id crossref_primary_10_3390_catal12090949
crossref_primary_10_3390_catal13010121
crossref_primary_10_3390_inorganics11030105
crossref_primary_10_1039_D1CY01642C
crossref_primary_10_1002_tcr_202100334
crossref_primary_10_1002_cctc_202101430
crossref_primary_10_1002_cctc_202301128
Cites_doi 10.1021/acs.inorgchem.9b02543
10.1021/jacs.8b05195
10.1002/anie.201709280
10.1016/j.ccr.2019.01.010
10.1002/adsc.201300923
10.1021/jacs.7b09795
10.1016/B978-0-08-097774-4.00624-0
10.1039/C5CS00566C
10.1039/C8CC09328H
10.1016/j.mcat.2021.111403
10.1002/cctc.201800832
10.1021/ja00068a035
10.1002/ijch.202000002
10.1080/17460441.2019.1653850
10.1126/science.1183602
10.1126/science.1148597
10.1039/C8CC03990A
10.1002/anie.202003278
10.1016/j.jcat.2020.08.005
10.1002/anie.201906551
10.1002/cctc.201801476
10.1016/S0010-8545(00)00320-9
10.1021/acscatal.5b00169
10.1021/jacs.5b08707
10.1021/acs.accounts.9b00285
10.1038/s41467-019-08668-2
10.1007/s00775-016-1434-z
10.1002/anie.201600785
10.1002/ange.202003278
10.1016/j.catcom.2018.01.034
10.1016/j.ccr.2020.213443
10.1002/ange.201906551
10.1021/cs300205n
10.1021/ja308290r
10.1002/chem.201203281
10.1021/acs.accounts.8b00231
10.1038/s41570-020-0197-9
10.1016/S0898-8838(05)58002-4
10.1016/j.jmr.2005.08.013
10.1039/D0DT02247K
10.1002/ange.201600785
10.1201/9781420039863
10.1002/asia.201601170
10.1021/ja407388y
10.1021/jacs.5b09904
10.1002/ange.201709280
10.1002/cctc.201900842
10.1016/j.ccr.2012.04.005
10.1002/ijch.201900161
10.1021/acscatal.6b02851
10.1021/acscatal.9b05423
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202004395
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 7788
ExternalDocumentID 33780054
10_1002_chem_202004395
CHEM202004395
Genre article
Journal Article
GrantInformation_xml – fundername: Russian Science Foundation
  funderid: 17-13-01117
– fundername: Russian Science Foundation
  grantid: 17-13-01117
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4105-242af47d6c3cfabb0400aff464d74540b8c82eb392849d34b2ac2102979a08c23
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645494000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 18:40:13 EDT 2025
Tue Oct 07 06:44:59 EDT 2025
Thu Apr 03 06:59:21 EDT 2025
Sat Nov 29 07:13:36 EST 2025
Tue Nov 18 22:33:09 EST 2025
Wed Jan 22 16:29:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords selectivity
oxidation
iron
biomimetic chemistry
intermediates
mechanism
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-242af47d6c3cfabb0400aff464d74540b8c82eb392849d34b2ac2102979a08c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8540-8707
0000-0003-0756-1401
0000-0001-6871-223X
0000-0002-7009-8950
PMID 33780054
PQID 2528072864
PQPubID 986340
PageCount 8
ParticipantIDs proquest_miscellaneous_2506509312
proquest_journals_2528072864
pubmed_primary_33780054
crossref_primary_10_1002_chem_202004395
crossref_citationtrail_10_1002_chem_202004395
wiley_primary_10_1002_chem_202004395_CHEM202004395
PublicationCentury 2000
PublicationDate May 17, 2021
PublicationDateYYYYMMDD 2021-05-17
PublicationDate_xml – month: 05
  year: 2021
  text: May 17, 2021
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2000; 200–202
2017; 7
2015; 5
2018; 140
2010; 327
2019; 52
2019; 55
2018; 108
2019; 11
2010
2019; 10
2020; 60
2021; 502
2017; 22
2019; 14
2019; 58
2020 2020; 59 132
2020; 10
2020; 421
2017 2017; 56 129
2014; 356
2006; 178
2019; 384
2016; 11
2013; 19
2020; 4
2012; 2
2016 2016; 55 128
2012; 134
2012; 256
2015; 137
2020
2020; 390
2020; 49
2013; 135
2016; 138
2018; 51
2018; 10
2007; 318
2018; 54
1993; 115
2016; 45
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_30_2
Fan R. (e_1_2_6_34_2) 2018; 140
e_1_2_6_17_3
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_11_1
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_26_3
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_47_1
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
Liu Y. (e_1_2_6_10_2) 2020
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_33_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_14_3
e_1_2_6_16_1
e_1_2_6_37_1
Raynea S. (e_1_2_6_55_2) 2010
e_1_2_6_61_2
e_1_2_6_63_1
e_1_2_6_42_2
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_42_3
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 10
  start-page: 5323
  year: 2018
  end-page: 5330
  publication-title: ChemCatChem
– volume: 56 129
  start-page: 16347 16565
  year: 2017 2017
  end-page: 16351 16351
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 256
  start-page: 1418
  year: 2012
  end-page: 1434
  publication-title: Coord. Chem. Rev.
– volume: 10
  start-page: 4052
  year: 2018
  end-page: 4057
  publication-title: ChemCatChem.
– volume: 45
  start-page: 1197
  year: 2016
  end-page: 1210
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 1137
  year: 2019
  end-page: 1149
  publication-title: Expert Opin. Drug Discovery
– volume: 49
  start-page: 11150
  year: 2020
  end-page: 11156
  publication-title: Dalton Trans.
– volume: 55
  start-page: 917
  year: 2019
  end-page: 920
  publication-title: Chem. Commun.
– volume: 54
  start-page: 8701
  year: 2018
  end-page: 8704
  publication-title: Chem. Commun.
– volume: 421
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 19
  start-page: 1908
  year: 2013
  end-page: 1913
  publication-title: Chem. Eur. J.
– volume: 356
  start-page: 818
  year: 2014
  end-page: 830
  publication-title: Adv. Synth. Catal.
– volume: 4
  start-page: 404
  year: 2020
  end-page: 419
  publication-title: Nat. Rev. Chem.
– volume: 384
  start-page: 126
  year: 2019
  end-page: 139
  publication-title: Coord. Chem. Rev.
– volume: 59 132
  start-page: 7332 7400
  year: 2020 2020
  end-page: 7349 7349
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 390
  start-page: 170
  year: 2020
  end-page: 177
  publication-title: J. Catal.
– volume: 178
  start-page: 42
  year: 2006
  end-page: 55
  publication-title: J. Magn. Reson.
– volume: 10
  start-page: 4702
  year: 2020
  end-page: 4709
  publication-title: ACS Catal.
– volume: 140
  start-page: 30
  year: 2018
  end-page: 9544
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 13502 13604
  year: 2020 2020
  end-page: 13505 13505
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 5345
  year: 2019
  end-page: 5352
  publication-title: ChemCatChem.
– volume: 60
  start-page: 938
  year: 2020
  end-page: 956
  publication-title: Isr. J. Chem.
– volume: 318
  start-page: 783
  year: 2007
  end-page: 787
  publication-title: Science
– volume: 140
  start-page: 11
  year: 2018
  end-page: 3928
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 6746
  year: 1993
  end-page: 6757
  publication-title: J. Am. Chem. Soc.
– year: 2010
  publication-title: Nat Preced.
– volume: 135
  start-page: 14052
  year: 2013
  end-page: 14055
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 2370
  year: 2019
  end-page: 2381
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 901
  year: 2019
  publication-title: Nat. Commun.
– volume: 200–202
  start-page: 517
  year: 2000
  end-page: 544
  publication-title: Coord. Chem. Rev.
– volume: 58
  start-page: 14842
  year: 2019
  end-page: 14852
  publication-title: Inorg. Chem.
– volume: 60
  start-page: 1004
  year: 2020
  end-page: 1018
  publication-title: Isr. J. Chem.
– volume: 138
  start-page: 2
  year: 2016
  end-page: 24
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1196
  year: 2012
  end-page: 1202
  publication-title: ACS Catal.
– volume: 137
  start-page: 15833
  year: 2015
  end-page: 15842
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 13988
  year: 2018
  end-page: 14009
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3148
  year: 2016
  end-page: 3158
  publication-title: Chem. Asian J.
– volume: 55 128
  start-page: 5776 5870
  year: 2016 2016
  end-page: 5779 5779
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 1984
  year: 2018
  end-page: 1995
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 2702
  year: 2015
  end-page: 2707
  publication-title: ACS Catal.
– start-page: 49
  year: 2020
  end-page: 5358
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 60
  year: 2017
  end-page: 69
  publication-title: ACS Catal.
– volume: 327
  start-page: 566
  year: 2010
  end-page: 571
  publication-title: Science
– volume: 502
  year: 2021
  publication-title: Mol. Catal.
– volume: 134
  start-page: 20222
  year: 2012
  end-page: 20225
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 77
  year: 2018
  end-page: 81
  publication-title: Catal. Commun.
– volume: 22
  start-page: 425
  year: 2017
  end-page: 452
  publication-title: J. Biol. Inorg. Chem.
– ident: e_1_2_6_59_2
  doi: 10.1021/acs.inorgchem.9b02543
– ident: e_1_2_6_2_2
  doi: 10.1021/jacs.8b05195
– ident: e_1_2_6_17_2
  doi: 10.1002/anie.201709280
– start-page: 49
  year: 2020
  ident: e_1_2_6_10_2
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_6_25_2
  doi: 10.1016/j.ccr.2019.01.010
– ident: e_1_2_6_13_2
  doi: 10.1002/adsc.201300923
– ident: e_1_2_6_35_2
  doi: 10.1021/jacs.7b09795
– ident: e_1_2_6_40_1
– ident: e_1_2_6_50_2
  doi: 10.1016/B978-0-08-097774-4.00624-0
– ident: e_1_2_6_29_1
– ident: e_1_2_6_57_2
  doi: 10.1039/C5CS00566C
– ident: e_1_2_6_19_2
  doi: 10.1039/C8CC09328H
– ident: e_1_2_6_44_2
  doi: 10.1016/j.mcat.2021.111403
– ident: e_1_2_6_37_1
– ident: e_1_2_6_53_1
– ident: e_1_2_6_36_2
  doi: 10.1002/cctc.201800832
– year: 2010
  ident: e_1_2_6_55_2
  publication-title: Nat Preced.
– ident: e_1_2_6_46_2
  doi: 10.1021/ja00068a035
– ident: e_1_2_6_63_1
  doi: 10.1002/ijch.202000002
– ident: e_1_2_6_5_2
  doi: 10.1080/17460441.2019.1653850
– ident: e_1_2_6_22_2
  doi: 10.1126/science.1183602
– ident: e_1_2_6_21_2
  doi: 10.1126/science.1148597
– ident: e_1_2_6_38_2
  doi: 10.1039/C8CC03990A
– ident: e_1_2_6_42_2
  doi: 10.1002/anie.202003278
– ident: e_1_2_6_47_1
– ident: e_1_2_6_52_2
  doi: 10.1016/j.jcat.2020.08.005
– ident: e_1_2_6_26_2
  doi: 10.1002/anie.201906551
– ident: e_1_2_6_15_2
  doi: 10.1002/cctc.201801476
– volume: 140
  start-page: 11
  year: 2018
  ident: e_1_2_6_34_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_49_2
  doi: 10.1016/S0010-8545(00)00320-9
– ident: e_1_2_6_31_2
  doi: 10.1021/acscatal.5b00169
– ident: e_1_2_6_4_2
  doi: 10.1021/jacs.5b08707
– ident: e_1_2_6_8_2
  doi: 10.1021/acs.accounts.9b00285
– ident: e_1_2_6_39_2
  doi: 10.1038/s41467-019-08668-2
– ident: e_1_2_6_62_2
  doi: 10.1007/s00775-016-1434-z
– ident: e_1_2_6_20_1
– ident: e_1_2_6_14_2
  doi: 10.1002/anie.201600785
– ident: e_1_2_6_42_3
  doi: 10.1002/ange.202003278
– ident: e_1_2_6_1_1
– ident: e_1_2_6_32_2
  doi: 10.1016/j.catcom.2018.01.034
– ident: e_1_2_6_9_2
  doi: 10.1016/j.ccr.2020.213443
– ident: e_1_2_6_26_3
  doi: 10.1002/ange.201906551
– ident: e_1_2_6_30_2
  doi: 10.1021/cs300205n
– ident: e_1_2_6_58_2
  doi: 10.1021/ja308290r
– ident: e_1_2_6_11_1
– ident: e_1_2_6_12_2
  doi: 10.1002/chem.201203281
– ident: e_1_2_6_18_2
  doi: 10.1021/acs.accounts.8b00231
– ident: e_1_2_6_56_1
– ident: e_1_2_6_28_2
  doi: 10.1038/s41570-020-0197-9
– ident: e_1_2_6_48_2
  doi: 10.1016/S0898-8838(05)58002-4
– ident: e_1_2_6_60_1
– ident: e_1_2_6_45_2
  doi: 10.1016/j.jmr.2005.08.013
– ident: e_1_2_6_51_2
  doi: 10.1039/D0DT02247K
– ident: e_1_2_6_14_3
  doi: 10.1002/ange.201600785
– ident: e_1_2_6_54_2
  doi: 10.1201/9781420039863
– ident: e_1_2_6_24_1
– ident: e_1_2_6_7_2
  doi: 10.1002/asia.201601170
– ident: e_1_2_6_23_2
  doi: 10.1021/ja407388y
– ident: e_1_2_6_16_1
– ident: e_1_2_6_33_2
  doi: 10.1021/jacs.5b09904
– ident: e_1_2_6_43_1
– ident: e_1_2_6_17_3
  doi: 10.1002/ange.201709280
– ident: e_1_2_6_41_2
  doi: 10.1002/cctc.201900842
– ident: e_1_2_6_6_2
  doi: 10.1016/j.ccr.2012.04.005
– ident: e_1_2_6_27_2
  doi: 10.1002/ijch.201900161
– ident: e_1_2_6_61_2
  doi: 10.1021/acscatal.6b02851
– ident: e_1_2_6_3_2
  doi: 10.1021/acscatal.9b05423
SSID ssj0009633
Score 2.402909
Snippet The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied...
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H 2 O 2 have been studied (PDP= N , N...
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H O have been studied...
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7781
SubjectTerms Acetic acid
Aliphatic compounds
biomimetic chemistry
Catalysts
Chemistry
Congeners
Cyclohexane
Decay rate
Enantiomers
Epoxidation
Heme
Hydrogen peroxide
Intermediates
Iron
mechanism
Oxidation
Pyridines
Rate constants
Regioselectivity
Selectivity
Substrates
Title Low‐Spin and High‐Spin Perferryl Intermediates in Non‐Heme Iron Catalyzed Oxidations of Aliphatic C−H Groups
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202004395
https://www.ncbi.nlm.nih.gov/pubmed/33780054
https://www.proquest.com/docview/2528072864
https://www.proquest.com/docview/2506509312
Volume 27
WOSCitedRecordID wos000645494000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Ni9QwFMAf7qygF78_qusSQfBUdpqmSXpcRocRhnFRF-ZWkjTBgbEd2ll1PXn0KP6J-5eY1691EBH0GJK2aV6S9_KS_B7AMy41tV6Vhl45JSETnIeS6nHojeeIKW6odA1dfy4WC7lcpie_3OJv-RCDww1HRjNf4wBXuj66hIb6f8Kb5CjlOE32YJ_6zpuMYP_Fm-np_BK8y7tw8kyEiGHtwY1jerT7hl3F9Ju1uWu8NtpnevP_630LbnSWJzluu8ptuGKLO3Bt0gd8uwvbefnp4uv3t5tVQVSREzwC0qdPbOVsVZ2vSeNCbO6beCOV-KxFWfhSM_vBkldVWZAJOoTOv9icvP68aiM21aR05Hi92rxHPiyZXHz7MSON16u-B6fTl-8ms7ALyhAaPBGKW8jKMZFzExuntMZJQDnHOMsF0vy0NJL6FXrq9V6ax0xTZXBZmYpUjaWh8X0YFWVhHwKRURw5G7ncMT-P5LlWfKwinijNuFFpGkDYSyQzHbEcA2ess5a1TDNsy2xoywCeD-U3LavjjyUPegFn3ZitM5ogGYhKzgJ4OmR7GeAWiipseYZlGuRgHNEAHrQdY_hUHAuJFnAAtJH_X-qQIfNiSD36l4cew3WKR2wQJisOYLStzuwTuGo-bld1dQh7YikPu_HwE5gIC10
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61gEQv0NIHKZS6EhKniI3jdZwjWlgtarpFLUjcIsexxUrbZJVdoPTUI0fET-SX4MkLrSqEhHq0PEkcz4xnPB5_A7DNRUK1NaWuNU5dlwWcu4ImHdc6zx6TXFFhSnT9KBgOxelpeFRnE-JdmAofog24oWaU6zUqOAakdx9QQ-1P4VVyZLMfdl_CIrOyZIV8cf9H_yR6QN7ldT15FriIw9ogN3bo7vwb5i3TP-7mvPdamp_-6n8Y-GtYqX1PslcJyxt4obM1WO41Jd_ewizKL-_-3vycjDIis5RgEkjTPtKF0UVxNSZlELG8cWLdVGK7hnlmqQb6lyaHRZ6RHoaErv7olHz_PapqNk1JbsjeeDQ5Q4RY0ru7vh2QMu41fQcn_YPj3sCtyzK4CnNC8RBZGhakXPnKyCTBZUAawzhLA8TzS4QS1O7RQ2v5wtRnCZUKN5ZhEMqOUNR_DwtZnul1IMLzPaM9kxpmV5I0TSTvSI93ZcK4kmHogNuwJFY1ZjmWzhjHFdoyjXEu43YuHdhp6ScVWsejlJsNh-Naa6cx7SI2EBWcOfCl7bY8wEMUmen8HGlK0EHfow58qCSj_ZTvBwJ9YAdoKQBPjCFG1Iu29fE5D32G5cHxtyiODodfN-AVxYQbhJYNNmFhVpzrT7CkLmajabFVq8U9SvsOZQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NDjFeYHxsBMYwEhJP0RrHdZzHqaPqRNVVwKS9RY4_RKUuqdIOGE973OO0P3F_Cb58TRWakNAeLV8Sx-fznc93vwP4wEVKjVOlvlNOPZ9FnPuCpl3fGc8Bk1xRYUt0_VE0HouTk3hSRxNiLkyFD9E63FAyyv0aBdzMtd27RQ11P4Wp5MjmMO49gHWGlWQ6sH7wZXA8ukXe5XU9eRb5iMPaIDd26d7qG1Y101_m5qr1WqqfwdN7GPgmPKltT7JfLZZnsGay57DRb0q-vYDlKP95c3H1dT7NiMw0wSCQpj0xhTVFcT4jpROxzDhxZipxXeM8c1RDc2rIYZFnpI8uofPfRpOjX9OqZtOC5Jbsz6bz74gQS_o3l9dDUvq9Fi_hePDpW3_o12UZfIUxoXiJLC2LNFehsjJNcRuQ1jLOdIR4fqlQgrozeuw0X6xDllKp8GAZR7HsCkXDLehkeWZeARFBGFgTWG2Z20m0TiXvyoD3ZMq4knHsgd-wJFE1ZjmWzpglFdoyTXAuk3YuPfjY0s8rtI47KXcaDie11C4S2kNsICo48-B92-14gJcoMjP5GdKUoINhQD3YrlZG-6kwjATawB7QcgH8YwwJol60rdf_89A7eDQ5GCSjw_HnN_CYYrwNIstGO9BZFmfmLTxUP5bTRbFbS8UfwGoN4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Spin+and+High-Spin+Perferryl+Intermediates+in+Non-Heme+Iron+Catalyzed+Oxidations+of+Aliphatic+C-H+Groups&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zima%2C+Alexandra+M&rft.au=Lyakin%2C+Oleg+Y&rft.au=Bryliakov%2C+Konstantin+P&rft.au=Talsi%2C+Evgenii+P&rft.date=2021-05-17&rft.eissn=1521-3765&rft.volume=27&rft.issue=28&rft.spage=7781&rft_id=info:doi/10.1002%2Fchem.202004395&rft_id=info%3Apmid%2F33780054&rft.externalDocID=33780054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon