Low‐Spin and High‐Spin Perferryl Intermediates in Non‐Heme Iron Catalyzed Oxidations of Aliphatic C−H Groups
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethyl...
Gespeichert in:
| Veröffentlicht in: | Chemistry : a European journal Jg. 27; H. 28; S. 7781 - 7788 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
17.05.2021
|
| Schlagworte: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin (S=1/2) oxoiron(V) intermediates or high‐spin (S=3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners.
Direct C−H activation: Investigation of the oxidation of aliphatic C−H groups in the presence of nonheme iron catalysts of the Fe(PDP) family exhibits no uniform correlation between the spin state and reactivity of the oxoiron(V) intermediates and the chemo‐ and regioselectivity of the corresponding catalyst systems, thus witnessing apparent violation of the common “reactivity‐selectivity” principle for this reaction. |
|---|---|
| AbstractList | The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H
O
have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k
and k
. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners. The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H 2 O 2 have been studied (PDP= N , N ′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐ p ‐menthane, and cis ‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin ( S =1/2) oxoiron(V) intermediates or high‐spin ( S =3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k 1 and k 2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners. The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin (S=1/2) oxoiron(V) intermediates or high‐spin (S=3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners. Direct C−H activation: Investigation of the oxidation of aliphatic C−H groups in the presence of nonheme iron catalysts of the Fe(PDP) family exhibits no uniform correlation between the spin state and reactivity of the oxoiron(V) intermediates and the chemo‐ and regioselectivity of the corresponding catalyst systems, thus witnessing apparent violation of the common “reactivity‐selectivity” principle for this reaction. The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k1 and k2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners.The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied (PDP=N,N'-bis(pyridine-2-ylmethyl)-2,2'-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (-)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k1 and k2 . Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners. The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin (S=1/2) oxoiron(V) intermediates or high‐spin (S=3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners. |
| Author | Bryliakov, Konstantin P. Talsi, Evgenii P. Zima, Alexandra M. Lyakin, Oleg Y. |
| Author_xml | – sequence: 1 givenname: Alexandra M. orcidid: 0000-0001-6871-223X surname: Zima fullname: Zima, Alexandra M. organization: Boreskov Institute of Catalysis – sequence: 2 givenname: Oleg Y. orcidid: 0000-0001-8540-8707 surname: Lyakin fullname: Lyakin, Oleg Y. organization: Boreskov Institute of Catalysis – sequence: 3 givenname: Konstantin P. orcidid: 0000-0002-7009-8950 surname: Bryliakov fullname: Bryliakov, Konstantin P. email: bryliako@catalysis.ru organization: Boreskov Institute of Catalysis – sequence: 4 givenname: Evgenii P. orcidid: 0000-0003-0756-1401 surname: Talsi fullname: Talsi, Evgenii P. email: talsi@catalysis.ru organization: Boreskov Institute of Catalysis |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33780054$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAURi1URKeFLUtkiU03GW78k8TLKirNSEOLBKwjx3EYV4kd7ERlumLJEvGIfRI8nbZIlRAr68rn2Fffd4QOrLMaodcpLFMA8k5t9LAkQAAYFfwZWqScpAnNM36AFiBYnmScikN0FMIVAIiM0hfokNK8AOBsgaa1u7798evTaCyWtsWV-bp5mD9q32nvtz1e2Un7QbdGTjrgeHXhbKQqPWi88s7iUk6y397oFl9-N62cjLMBuw6f9mbcxFHh8vbn7wqfezeP4SV63sk-6Ff35zH68v7sc1kl68vzVXm6ThRLgSeEEdmxvM0UVZ1sGmAAsutYxtqccQZNoQqiGypIwURLWUOkIikQkQsJhSL0GJ3s3x29-zbrMNWDCUr3vbTazaEmHDIOgqY79O0T9MrN3sbtIkUKyEmRsUi9uafmJsZRj94M0m_rhzwjsNwDyrsQvO4ekRTqXWH1rrD6sbAosCeCMtNdfpOXpv-3Jvbaten19j-f1GV19uGv-wcC_6zU |
| CitedBy_id | crossref_primary_10_3390_catal12090949 crossref_primary_10_3390_catal13010121 crossref_primary_10_3390_inorganics11030105 crossref_primary_10_1039_D1CY01642C crossref_primary_10_1002_tcr_202100334 crossref_primary_10_1002_cctc_202101430 crossref_primary_10_1002_cctc_202301128 |
| Cites_doi | 10.1021/acs.inorgchem.9b02543 10.1021/jacs.8b05195 10.1002/anie.201709280 10.1016/j.ccr.2019.01.010 10.1002/adsc.201300923 10.1021/jacs.7b09795 10.1016/B978-0-08-097774-4.00624-0 10.1039/C5CS00566C 10.1039/C8CC09328H 10.1016/j.mcat.2021.111403 10.1002/cctc.201800832 10.1021/ja00068a035 10.1002/ijch.202000002 10.1080/17460441.2019.1653850 10.1126/science.1183602 10.1126/science.1148597 10.1039/C8CC03990A 10.1002/anie.202003278 10.1016/j.jcat.2020.08.005 10.1002/anie.201906551 10.1002/cctc.201801476 10.1016/S0010-8545(00)00320-9 10.1021/acscatal.5b00169 10.1021/jacs.5b08707 10.1021/acs.accounts.9b00285 10.1038/s41467-019-08668-2 10.1007/s00775-016-1434-z 10.1002/anie.201600785 10.1002/ange.202003278 10.1016/j.catcom.2018.01.034 10.1016/j.ccr.2020.213443 10.1002/ange.201906551 10.1021/cs300205n 10.1021/ja308290r 10.1002/chem.201203281 10.1021/acs.accounts.8b00231 10.1038/s41570-020-0197-9 10.1016/S0898-8838(05)58002-4 10.1016/j.jmr.2005.08.013 10.1039/D0DT02247K 10.1002/ange.201600785 10.1201/9781420039863 10.1002/asia.201601170 10.1021/ja407388y 10.1021/jacs.5b09904 10.1002/ange.201709280 10.1002/cctc.201900842 10.1016/j.ccr.2012.04.005 10.1002/ijch.201900161 10.1021/acscatal.6b02851 10.1021/acscatal.9b05423 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/chem.202004395 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 7788 |
| ExternalDocumentID | 33780054 10_1002_chem_202004395 CHEM202004395 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Russian Science Foundation funderid: 17-13-01117 – fundername: Russian Science Foundation grantid: 17-13-01117 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION O8X NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4105-242af47d6c3cfabb0400aff464d74540b8c82eb392849d34b2ac2102979a08c23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645494000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Thu Jul 10 18:40:13 EDT 2025 Tue Oct 07 06:44:59 EDT 2025 Thu Apr 03 06:59:21 EDT 2025 Sat Nov 29 07:13:36 EST 2025 Tue Nov 18 22:33:09 EST 2025 Wed Jan 22 16:29:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28 |
| Keywords | selectivity oxidation iron biomimetic chemistry intermediates mechanism |
| Language | English |
| License | 2021 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4105-242af47d6c3cfabb0400aff464d74540b8c82eb392849d34b2ac2102979a08c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8540-8707 0000-0003-0756-1401 0000-0001-6871-223X 0000-0002-7009-8950 |
| PMID | 33780054 |
| PQID | 2528072864 |
| PQPubID | 986340 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2506509312 proquest_journals_2528072864 pubmed_primary_33780054 crossref_primary_10_1002_chem_202004395 crossref_citationtrail_10_1002_chem_202004395 wiley_primary_10_1002_chem_202004395_CHEM202004395 |
| PublicationCentury | 2000 |
| PublicationDate | May 17, 2021 |
| PublicationDateYYYYMMDD | 2021-05-17 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 17, 2021 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2000; 200–202 2017; 7 2015; 5 2018; 140 2010; 327 2019; 52 2019; 55 2018; 108 2019; 11 2010 2019; 10 2020; 60 2021; 502 2017; 22 2019; 14 2019; 58 2020 2020; 59 132 2020; 10 2020; 421 2017 2017; 56 129 2014; 356 2006; 178 2019; 384 2016; 11 2013; 19 2020; 4 2012; 2 2016 2016; 55 128 2012; 134 2012; 256 2015; 137 2020 2020; 390 2020; 49 2013; 135 2016; 138 2018; 51 2018; 10 2007; 318 2018; 54 1993; 115 2016; 45 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_30_2 Fan R. (e_1_2_6_34_2) 2018; 140 e_1_2_6_17_3 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_26_3 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 Liu Y. (e_1_2_6_10_2) 2020 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_33_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_14_3 e_1_2_6_16_1 e_1_2_6_37_1 Raynea S. (e_1_2_6_55_2) 2010 e_1_2_6_61_2 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_42_3 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
| References_xml | – volume: 10 start-page: 5323 year: 2018 end-page: 5330 publication-title: ChemCatChem – volume: 56 129 start-page: 16347 16565 year: 2017 2017 end-page: 16351 16351 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 256 start-page: 1418 year: 2012 end-page: 1434 publication-title: Coord. Chem. Rev. – volume: 10 start-page: 4052 year: 2018 end-page: 4057 publication-title: ChemCatChem. – volume: 45 start-page: 1197 year: 2016 end-page: 1210 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 1137 year: 2019 end-page: 1149 publication-title: Expert Opin. Drug Discovery – volume: 49 start-page: 11150 year: 2020 end-page: 11156 publication-title: Dalton Trans. – volume: 55 start-page: 917 year: 2019 end-page: 920 publication-title: Chem. Commun. – volume: 54 start-page: 8701 year: 2018 end-page: 8704 publication-title: Chem. Commun. – volume: 421 year: 2020 publication-title: Coord. Chem. Rev. – volume: 19 start-page: 1908 year: 2013 end-page: 1913 publication-title: Chem. Eur. J. – volume: 356 start-page: 818 year: 2014 end-page: 830 publication-title: Adv. Synth. Catal. – volume: 4 start-page: 404 year: 2020 end-page: 419 publication-title: Nat. Rev. Chem. – volume: 384 start-page: 126 year: 2019 end-page: 139 publication-title: Coord. Chem. Rev. – volume: 59 132 start-page: 7332 7400 year: 2020 2020 end-page: 7349 7349 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 390 start-page: 170 year: 2020 end-page: 177 publication-title: J. Catal. – volume: 178 start-page: 42 year: 2006 end-page: 55 publication-title: J. Magn. Reson. – volume: 10 start-page: 4702 year: 2020 end-page: 4709 publication-title: ACS Catal. – volume: 140 start-page: 30 year: 2018 end-page: 9544 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 13502 13604 year: 2020 2020 end-page: 13505 13505 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 5345 year: 2019 end-page: 5352 publication-title: ChemCatChem. – volume: 60 start-page: 938 year: 2020 end-page: 956 publication-title: Isr. J. Chem. – volume: 318 start-page: 783 year: 2007 end-page: 787 publication-title: Science – volume: 140 start-page: 11 year: 2018 end-page: 3928 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 6746 year: 1993 end-page: 6757 publication-title: J. Am. Chem. Soc. – year: 2010 publication-title: Nat Preced. – volume: 135 start-page: 14052 year: 2013 end-page: 14055 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 2370 year: 2019 end-page: 2381 publication-title: Acc. Chem. Res. – volume: 10 start-page: 901 year: 2019 publication-title: Nat. Commun. – volume: 200–202 start-page: 517 year: 2000 end-page: 544 publication-title: Coord. Chem. Rev. – volume: 58 start-page: 14842 year: 2019 end-page: 14852 publication-title: Inorg. Chem. – volume: 60 start-page: 1004 year: 2020 end-page: 1018 publication-title: Isr. J. Chem. – volume: 138 start-page: 2 year: 2016 end-page: 24 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1196 year: 2012 end-page: 1202 publication-title: ACS Catal. – volume: 137 start-page: 15833 year: 2015 end-page: 15842 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 13988 year: 2018 end-page: 14009 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3148 year: 2016 end-page: 3158 publication-title: Chem. Asian J. – volume: 55 128 start-page: 5776 5870 year: 2016 2016 end-page: 5779 5779 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 1984 year: 2018 end-page: 1995 publication-title: Acc. Chem. Res. – volume: 5 start-page: 2702 year: 2015 end-page: 2707 publication-title: ACS Catal. – start-page: 49 year: 2020 end-page: 5358 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 60 year: 2017 end-page: 69 publication-title: ACS Catal. – volume: 327 start-page: 566 year: 2010 end-page: 571 publication-title: Science – volume: 502 year: 2021 publication-title: Mol. Catal. – volume: 134 start-page: 20222 year: 2012 end-page: 20225 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 77 year: 2018 end-page: 81 publication-title: Catal. Commun. – volume: 22 start-page: 425 year: 2017 end-page: 452 publication-title: J. Biol. Inorg. Chem. – ident: e_1_2_6_59_2 doi: 10.1021/acs.inorgchem.9b02543 – ident: e_1_2_6_2_2 doi: 10.1021/jacs.8b05195 – ident: e_1_2_6_17_2 doi: 10.1002/anie.201709280 – start-page: 49 year: 2020 ident: e_1_2_6_10_2 publication-title: Chem. Soc. Rev. – ident: e_1_2_6_25_2 doi: 10.1016/j.ccr.2019.01.010 – ident: e_1_2_6_13_2 doi: 10.1002/adsc.201300923 – ident: e_1_2_6_35_2 doi: 10.1021/jacs.7b09795 – ident: e_1_2_6_40_1 – ident: e_1_2_6_50_2 doi: 10.1016/B978-0-08-097774-4.00624-0 – ident: e_1_2_6_29_1 – ident: e_1_2_6_57_2 doi: 10.1039/C5CS00566C – ident: e_1_2_6_19_2 doi: 10.1039/C8CC09328H – ident: e_1_2_6_44_2 doi: 10.1016/j.mcat.2021.111403 – ident: e_1_2_6_37_1 – ident: e_1_2_6_53_1 – ident: e_1_2_6_36_2 doi: 10.1002/cctc.201800832 – year: 2010 ident: e_1_2_6_55_2 publication-title: Nat Preced. – ident: e_1_2_6_46_2 doi: 10.1021/ja00068a035 – ident: e_1_2_6_63_1 doi: 10.1002/ijch.202000002 – ident: e_1_2_6_5_2 doi: 10.1080/17460441.2019.1653850 – ident: e_1_2_6_22_2 doi: 10.1126/science.1183602 – ident: e_1_2_6_21_2 doi: 10.1126/science.1148597 – ident: e_1_2_6_38_2 doi: 10.1039/C8CC03990A – ident: e_1_2_6_42_2 doi: 10.1002/anie.202003278 – ident: e_1_2_6_47_1 – ident: e_1_2_6_52_2 doi: 10.1016/j.jcat.2020.08.005 – ident: e_1_2_6_26_2 doi: 10.1002/anie.201906551 – ident: e_1_2_6_15_2 doi: 10.1002/cctc.201801476 – volume: 140 start-page: 11 year: 2018 ident: e_1_2_6_34_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_49_2 doi: 10.1016/S0010-8545(00)00320-9 – ident: e_1_2_6_31_2 doi: 10.1021/acscatal.5b00169 – ident: e_1_2_6_4_2 doi: 10.1021/jacs.5b08707 – ident: e_1_2_6_8_2 doi: 10.1021/acs.accounts.9b00285 – ident: e_1_2_6_39_2 doi: 10.1038/s41467-019-08668-2 – ident: e_1_2_6_62_2 doi: 10.1007/s00775-016-1434-z – ident: e_1_2_6_20_1 – ident: e_1_2_6_14_2 doi: 10.1002/anie.201600785 – ident: e_1_2_6_42_3 doi: 10.1002/ange.202003278 – ident: e_1_2_6_1_1 – ident: e_1_2_6_32_2 doi: 10.1016/j.catcom.2018.01.034 – ident: e_1_2_6_9_2 doi: 10.1016/j.ccr.2020.213443 – ident: e_1_2_6_26_3 doi: 10.1002/ange.201906551 – ident: e_1_2_6_30_2 doi: 10.1021/cs300205n – ident: e_1_2_6_58_2 doi: 10.1021/ja308290r – ident: e_1_2_6_11_1 – ident: e_1_2_6_12_2 doi: 10.1002/chem.201203281 – ident: e_1_2_6_18_2 doi: 10.1021/acs.accounts.8b00231 – ident: e_1_2_6_56_1 – ident: e_1_2_6_28_2 doi: 10.1038/s41570-020-0197-9 – ident: e_1_2_6_48_2 doi: 10.1016/S0898-8838(05)58002-4 – ident: e_1_2_6_60_1 – ident: e_1_2_6_45_2 doi: 10.1016/j.jmr.2005.08.013 – ident: e_1_2_6_51_2 doi: 10.1039/D0DT02247K – ident: e_1_2_6_14_3 doi: 10.1002/ange.201600785 – ident: e_1_2_6_54_2 doi: 10.1201/9781420039863 – ident: e_1_2_6_24_1 – ident: e_1_2_6_7_2 doi: 10.1002/asia.201601170 – ident: e_1_2_6_23_2 doi: 10.1021/ja407388y – ident: e_1_2_6_16_1 – ident: e_1_2_6_33_2 doi: 10.1021/jacs.5b09904 – ident: e_1_2_6_43_1 – ident: e_1_2_6_17_3 doi: 10.1002/ange.201709280 – ident: e_1_2_6_41_2 doi: 10.1002/cctc.201900842 – ident: e_1_2_6_6_2 doi: 10.1016/j.ccr.2012.04.005 – ident: e_1_2_6_27_2 doi: 10.1002/ijch.201900161 – ident: e_1_2_6_61_2 doi: 10.1021/acscatal.6b02851 – ident: e_1_2_6_3_2 doi: 10.1021/acscatal.9b05423 |
| SSID | ssj0009633 |
| Score | 2.402909 |
| Snippet | The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied... The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H 2 O 2 have been studied (PDP= N , N... The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H O have been studied... The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C-H oxidation with H2 O2 have been studied... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7781 |
| SubjectTerms | Acetic acid Aliphatic compounds biomimetic chemistry Catalysts Chemistry Congeners Cyclohexane Decay rate Enantiomers Epoxidation Heme Hydrogen peroxide Intermediates Iron mechanism Oxidation Pyridines Rate constants Regioselectivity Selectivity Substrates |
| Title | Low‐Spin and High‐Spin Perferryl Intermediates in Non‐Heme Iron Catalyzed Oxidations of Aliphatic C−H Groups |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202004395 https://www.ncbi.nlm.nih.gov/pubmed/33780054 https://www.proquest.com/docview/2528072864 https://www.proquest.com/docview/2506509312 |
| Volume | 27 |
| WOSCitedRecordID | wos000645494000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Ni9QwFMAf7qygF78_qusSQfBUdpqmSXpcRocRhnFRF-ZWkjTBgbEd2ll1PXn0KP6J-5eY1691EBH0GJK2aV6S9_KS_B7AMy41tV6Vhl45JSETnIeS6nHojeeIKW6odA1dfy4WC7lcpie_3OJv-RCDww1HRjNf4wBXuj66hIb6f8Kb5CjlOE32YJ_6zpuMYP_Fm-np_BK8y7tw8kyEiGHtwY1jerT7hl3F9Ju1uWu8NtpnevP_630LbnSWJzluu8ptuGKLO3Bt0gd8uwvbefnp4uv3t5tVQVSREzwC0qdPbOVsVZ2vSeNCbO6beCOV-KxFWfhSM_vBkldVWZAJOoTOv9icvP68aiM21aR05Hi92rxHPiyZXHz7MSON16u-B6fTl-8ms7ALyhAaPBGKW8jKMZFzExuntMZJQDnHOMsF0vy0NJL6FXrq9V6ax0xTZXBZmYpUjaWh8X0YFWVhHwKRURw5G7ncMT-P5LlWfKwinijNuFFpGkDYSyQzHbEcA2ess5a1TDNsy2xoywCeD-U3LavjjyUPegFn3ZitM5ogGYhKzgJ4OmR7GeAWiipseYZlGuRgHNEAHrQdY_hUHAuJFnAAtJH_X-qQIfNiSD36l4cew3WKR2wQJisOYLStzuwTuGo-bld1dQh7YikPu_HwE5gIC10 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61gEQv0NIHKZS6EhKniI3jdZwjWlgtarpFLUjcIsexxUrbZJVdoPTUI0fET-SX4MkLrSqEhHq0PEkcz4xnPB5_A7DNRUK1NaWuNU5dlwWcu4ImHdc6zx6TXFFhSnT9KBgOxelpeFRnE-JdmAofog24oWaU6zUqOAakdx9QQ-1P4VVyZLMfdl_CIrOyZIV8cf9H_yR6QN7ldT15FriIw9ogN3bo7vwb5i3TP-7mvPdamp_-6n8Y-GtYqX1PslcJyxt4obM1WO41Jd_ewizKL-_-3vycjDIis5RgEkjTPtKF0UVxNSZlELG8cWLdVGK7hnlmqQb6lyaHRZ6RHoaErv7olHz_PapqNk1JbsjeeDQ5Q4RY0ru7vh2QMu41fQcn_YPj3sCtyzK4CnNC8RBZGhakXPnKyCTBZUAawzhLA8TzS4QS1O7RQ2v5wtRnCZUKN5ZhEMqOUNR_DwtZnul1IMLzPaM9kxpmV5I0TSTvSI93ZcK4kmHogNuwJFY1ZjmWzhjHFdoyjXEu43YuHdhp6ScVWsejlJsNh-Naa6cx7SI2EBWcOfCl7bY8wEMUmen8HGlK0EHfow58qCSj_ZTvBwJ9YAdoKQBPjCFG1Iu29fE5D32G5cHxtyiODodfN-AVxYQbhJYNNmFhVpzrT7CkLmajabFVq8U9SvsOZQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NDjFeYHxsBMYwEhJP0RrHdZzHqaPqRNVVwKS9RY4_RKUuqdIOGE973OO0P3F_Cb58TRWakNAeLV8Sx-fznc93vwP4wEVKjVOlvlNOPZ9FnPuCpl3fGc8Bk1xRYUt0_VE0HouTk3hSRxNiLkyFD9E63FAyyv0aBdzMtd27RQ11P4Wp5MjmMO49gHWGlWQ6sH7wZXA8ukXe5XU9eRb5iMPaIDd26d7qG1Y101_m5qr1WqqfwdN7GPgmPKltT7JfLZZnsGay57DRb0q-vYDlKP95c3H1dT7NiMw0wSCQpj0xhTVFcT4jpROxzDhxZipxXeM8c1RDc2rIYZFnpI8uofPfRpOjX9OqZtOC5Jbsz6bz74gQS_o3l9dDUvq9Fi_hePDpW3_o12UZfIUxoXiJLC2LNFehsjJNcRuQ1jLOdIR4fqlQgrozeuw0X6xDllKp8GAZR7HsCkXDLehkeWZeARFBGFgTWG2Z20m0TiXvyoD3ZMq4knHsgd-wJFE1ZjmWzpglFdoyTXAuk3YuPfjY0s8rtI47KXcaDie11C4S2kNsICo48-B92-14gJcoMjP5GdKUoINhQD3YrlZG-6kwjATawB7QcgH8YwwJol60rdf_89A7eDQ5GCSjw_HnN_CYYrwNIstGO9BZFmfmLTxUP5bTRbFbS8UfwGoN4A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Spin+and+High-Spin+Perferryl+Intermediates+in+Non-Heme+Iron+Catalyzed+Oxidations+of+Aliphatic+C-H+Groups&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zima%2C+Alexandra+M&rft.au=Lyakin%2C+Oleg+Y&rft.au=Bryliakov%2C+Konstantin+P&rft.au=Talsi%2C+Evgenii+P&rft.date=2021-05-17&rft.eissn=1521-3765&rft.volume=27&rft.issue=28&rft.spage=7781&rft_id=info:doi/10.1002%2Fchem.202004395&rft_id=info%3Apmid%2F33780054&rft.externalDocID=33780054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |