Fast contour propagation for MR‐guided prostate radiotherapy using convolutional neural networks

Purpose To quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)‐guided prostate external‐beam radiotherapy. Methods Five prostate cancer patients underwent 20 fractions of image‐guided external‐beam radiotherapy on a 1.5 T MR‐Linac system...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical physics (Lancaster) Ročník 47; číslo 3; s. 1238 - 1248
Hlavní autori: Eppenhof, K.A.J., Maspero, M., Savenije, M.H.F., de Boer, J.C.J., van der Voort van Zyp, J.R.N., Raaymakers, B.W., Raaijmakers, A.J.E., Veta, M., van den Berg, C.A.T., Pluim, J.P.W.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States John Wiley and Sons Inc 01.03.2020
Predmet:
ISSN:0094-2405, 2473-4209, 2473-4209
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose To quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)‐guided prostate external‐beam radiotherapy. Methods Five prostate cancer patients underwent 20 fractions of image‐guided external‐beam radiotherapy on a 1.5 T MR‐Linac system. For each patient, a pretreatment T2‐weighted three‐dimensional (3D) MR imaging (MRI) scan was used to delineate the clinical target volume (CTV) contours. The same scan was repeated during each fraction, with the CTV contour being manually adapted if necessary. A convolutional neural network (CNN) was trained for combined image registration and contour propagation. The network estimated the propagated contour and a deformation field between the two input images. The training set consisted of a synthetically generated ground truth of randomly deformed images and prostate segmentations. We performed a leave‐one‐out cross‐validation on the five patients and propagated the prostate segmentations from the pretreatment to the fraction scans. Three variants of the CNN, aimed at investigating supervision based on optimizing segmentation overlap, optimizing the registration, and a combination of the two were compared to results of the open‐source deformable registration software package Elastix. Results The neural networks trained on segmentation overlap or the combined objective achieved significantly better Hausdorff distances between predicted and ground truth contours than Elastix, at the much faster registration speed of 0.5 s. The CNN variant trained to optimize both the prostate overlap and deformation field, and the variant trained to only maximize the prostate overlap, produced the best propagation results. Conclusions A CNN trained on maximizing prostate overlap and minimizing registration errors provides a fast and accurate method for deformable contour propagation for prostate MR‐guided radiotherapy.
AbstractList To quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)-guided prostate external-beam radiotherapy.PURPOSETo quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)-guided prostate external-beam radiotherapy.Five prostate cancer patients underwent 20 fractions of image-guided external-beam radiotherapy on a 1.5 T MR-Linac system. For each patient, a pretreatment T2-weighted three-dimensional (3D) MR imaging (MRI) scan was used to delineate the clinical target volume (CTV) contours. The same scan was repeated during each fraction, with the CTV contour being manually adapted if necessary. A convolutional neural network (CNN) was trained for combined image registration and contour propagation. The network estimated the propagated contour and a deformation field between the two input images. The training set consisted of a synthetically generated ground truth of randomly deformed images and prostate segmentations. We performed a leave-one-out cross-validation on the five patients and propagated the prostate segmentations from the pretreatment to the fraction scans. Three variants of the CNN, aimed at investigating supervision based on optimizing segmentation overlap, optimizing the registration, and a combination of the two were compared to results of the open-source deformable registration software package Elastix.METHODSFive prostate cancer patients underwent 20 fractions of image-guided external-beam radiotherapy on a 1.5 T MR-Linac system. For each patient, a pretreatment T2-weighted three-dimensional (3D) MR imaging (MRI) scan was used to delineate the clinical target volume (CTV) contours. The same scan was repeated during each fraction, with the CTV contour being manually adapted if necessary. A convolutional neural network (CNN) was trained for combined image registration and contour propagation. The network estimated the propagated contour and a deformation field between the two input images. The training set consisted of a synthetically generated ground truth of randomly deformed images and prostate segmentations. We performed a leave-one-out cross-validation on the five patients and propagated the prostate segmentations from the pretreatment to the fraction scans. Three variants of the CNN, aimed at investigating supervision based on optimizing segmentation overlap, optimizing the registration, and a combination of the two were compared to results of the open-source deformable registration software package Elastix.The neural networks trained on segmentation overlap or the combined objective achieved significantly better Hausdorff distances between predicted and ground truth contours than Elastix, at the much faster registration speed of 0.5 s. The CNN variant trained to optimize both the prostate overlap and deformation field, and the variant trained to only maximize the prostate overlap, produced the best propagation results.RESULTSThe neural networks trained on segmentation overlap or the combined objective achieved significantly better Hausdorff distances between predicted and ground truth contours than Elastix, at the much faster registration speed of 0.5 s. The CNN variant trained to optimize both the prostate overlap and deformation field, and the variant trained to only maximize the prostate overlap, produced the best propagation results.A CNN trained on maximizing prostate overlap and minimizing registration errors provides a fast and accurate method for deformable contour propagation for prostate MR-guided radiotherapy.CONCLUSIONSA CNN trained on maximizing prostate overlap and minimizing registration errors provides a fast and accurate method for deformable contour propagation for prostate MR-guided radiotherapy.
Purpose To quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)‐guided prostate external‐beam radiotherapy. Methods Five prostate cancer patients underwent 20 fractions of image‐guided external‐beam radiotherapy on a 1.5 T MR‐Linac system. For each patient, a pretreatment T2‐weighted three‐dimensional (3D) MR imaging (MRI) scan was used to delineate the clinical target volume (CTV) contours. The same scan was repeated during each fraction, with the CTV contour being manually adapted if necessary. A convolutional neural network (CNN) was trained for combined image registration and contour propagation. The network estimated the propagated contour and a deformation field between the two input images. The training set consisted of a synthetically generated ground truth of randomly deformed images and prostate segmentations. We performed a leave‐one‐out cross‐validation on the five patients and propagated the prostate segmentations from the pretreatment to the fraction scans. Three variants of the CNN, aimed at investigating supervision based on optimizing segmentation overlap, optimizing the registration, and a combination of the two were compared to results of the open‐source deformable registration software package Elastix. Results The neural networks trained on segmentation overlap or the combined objective achieved significantly better Hausdorff distances between predicted and ground truth contours than Elastix, at the much faster registration speed of 0.5 s. The CNN variant trained to optimize both the prostate overlap and deformation field, and the variant trained to only maximize the prostate overlap, produced the best propagation results. Conclusions A CNN trained on maximizing prostate overlap and minimizing registration errors provides a fast and accurate method for deformable contour propagation for prostate MR‐guided radiotherapy.
To quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)-guided prostate external-beam radiotherapy. Five prostate cancer patients underwent 20 fractions of image-guided external-beam radiotherapy on a 1.5 T MR-Linac system. For each patient, a pretreatment T2-weighted three-dimensional (3D) MR imaging (MRI) scan was used to delineate the clinical target volume (CTV) contours. The same scan was repeated during each fraction, with the CTV contour being manually adapted if necessary. A convolutional neural network (CNN) was trained for combined image registration and contour propagation. The network estimated the propagated contour and a deformation field between the two input images. The training set consisted of a synthetically generated ground truth of randomly deformed images and prostate segmentations. We performed a leave-one-out cross-validation on the five patients and propagated the prostate segmentations from the pretreatment to the fraction scans. Three variants of the CNN, aimed at investigating supervision based on optimizing segmentation overlap, optimizing the registration, and a combination of the two were compared to results of the open-source deformable registration software package Elastix. The neural networks trained on segmentation overlap or the combined objective achieved significantly better Hausdorff distances between predicted and ground truth contours than Elastix, at the much faster registration speed of 0.5 s. The CNN variant trained to optimize both the prostate overlap and deformation field, and the variant trained to only maximize the prostate overlap, produced the best propagation results. A CNN trained on maximizing prostate overlap and minimizing registration errors provides a fast and accurate method for deformable contour propagation for prostate MR-guided radiotherapy.
Author van der Voort van Zyp, J.R.N.
Pluim, J.P.W.
Raaijmakers, A.J.E.
Raaymakers, B.W.
van den Berg, C.A.T.
Eppenhof, K.A.J.
Savenije, M.H.F.
de Boer, J.C.J.
Veta, M.
Maspero, M.
AuthorAffiliation 3 Department of Radiotherapy University Medical Center Utrecht Utrecht The Netherlands
2 Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands
4 Image Sciences Institute University Medical Center Utrecht Utrecht The Netherlands
1 Medical Image Analysis Group, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
AuthorAffiliation_xml – name: 4 Image Sciences Institute University Medical Center Utrecht Utrecht The Netherlands
– name: 1 Medical Image Analysis Group, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
– name: 3 Department of Radiotherapy University Medical Center Utrecht Utrecht The Netherlands
– name: 2 Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences University Medical Center Utrecht Utrecht The Netherlands
Author_xml – sequence: 1
  givenname: K.A.J.
  surname: Eppenhof
  fullname: Eppenhof, K.A.J.
  email: k.a.j.eppenhof@tue.nl
  organization: Eindhoven University of Technology
– sequence: 2
  givenname: M.
  surname: Maspero
  fullname: Maspero, M.
  organization: University Medical Center Utrecht
– sequence: 3
  givenname: M.H.F.
  surname: Savenije
  fullname: Savenije, M.H.F.
  organization: University Medical Center Utrecht
– sequence: 4
  givenname: J.C.J.
  surname: de Boer
  fullname: de Boer, J.C.J.
  organization: University Medical Center Utrecht
– sequence: 5
  givenname: J.R.N.
  surname: van der Voort van Zyp
  fullname: van der Voort van Zyp, J.R.N.
  organization: University Medical Center Utrecht
– sequence: 6
  givenname: B.W.
  surname: Raaymakers
  fullname: Raaymakers, B.W.
  organization: University Medical Center Utrecht
– sequence: 7
  givenname: A.J.E.
  surname: Raaijmakers
  fullname: Raaijmakers, A.J.E.
  organization: University Medical Center Utrecht
– sequence: 8
  givenname: M.
  surname: Veta
  fullname: Veta, M.
  organization: Eindhoven University of Technology
– sequence: 9
  givenname: C.A.T.
  surname: van den Berg
  fullname: van den Berg, C.A.T.
  organization: University Medical Center Utrecht
– sequence: 10
  givenname: J.P.W.
  surname: Pluim
  fullname: Pluim, J.P.W.
  organization: University Medical Center Utrecht
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31876300$$D View this record in MEDLINE/PubMed
BookMark eNp1kctO3DAUhi1EBcNF4gmqLLvJ9PgyE2dTqUJcKoFaVWVtnTjOYJrYqe0wmh2PwDPyJM3MUGirdnUW5_v_c_kPyK7zzhByQmFKAdj7rp9SXpZih0yYKHguGJS7ZAJQipwJmO2TgxjvAGDOZ7BH9jmVxZwDTEh1jjFl2rvkh5D1wfe4wGS9yxofsuuvTw-Pi8HWpl73YsJksoC19enWBOxX2RCtW6z1974d1jpsM2eGsClp6cP3eETeNNhGc_xcD8nN-dm308v86vPFp9OPV7kWFEQ-Z01Ri7rSjFLJyprVmiMtUAqmKzGexzQyqYUUJQMhkFaymQmKkulZhRL5Ifmw9e2HqjO1Ni6Na6g-2A7DSnm06s-Os7dq4e9VAUUJpRwN3j0bBP9jMDGpzkZt2had8UNUjPORpKKAEX37-6yXIb8e--qlx7fFYJoXhIJaZ6a6Xm0yG9HpX6i2aZPBuKVt_yXIt4Klbc3qv8bq-suW_wkDEqoN
CitedBy_id crossref_primary_10_1016_j_radonc_2022_09_004
crossref_primary_10_3390_s21124085
crossref_primary_10_1002_mp_16056
crossref_primary_10_1002_mp_16397
crossref_primary_10_1007_s10278_023_00779_z
crossref_primary_10_1002_mp_17000
crossref_primary_10_1007_s11547_023_01708_4
crossref_primary_10_1259_bjro_20230030
crossref_primary_10_1016_j_ejmp_2022_08_011
crossref_primary_10_1177_15330338251350909
crossref_primary_10_1016_j_phro_2023_100483
crossref_primary_10_1088_1361_6560_ade8d0
crossref_primary_10_1016_j_radonc_2024_110345
crossref_primary_10_1088_1361_6560_ac60b9
crossref_primary_10_1109_ACCESS_2021_3090825
crossref_primary_10_1186_s13014_020_01524_4
crossref_primary_10_1186_s13014_020_01528_0
crossref_primary_10_1016_j_zemedi_2023_05_001
crossref_primary_10_3389_fonc_2021_634507
crossref_primary_10_1002_mp_15793
crossref_primary_10_1016_j_semradonc_2022_06_003
crossref_primary_10_1016_j_semradonc_2022_06_001
crossref_primary_10_1016_j_phro_2023_100498
crossref_primary_10_1016_j_zemedi_2025_04_008
crossref_primary_10_1007_s00066_024_02277_9
crossref_primary_10_1016_j_bspc_2023_104755
crossref_primary_10_1140_epjp_s13360_024_05660_8
crossref_primary_10_1016_j_semradonc_2022_06_007
crossref_primary_10_1186_s13014_023_02330_4
crossref_primary_10_1016_j_ejmp_2021_05_010
crossref_primary_10_1016_j_phro_2022_06_001
crossref_primary_10_1186_s13014_020_01571_x
crossref_primary_10_1016_j_radonc_2021_12_007
crossref_primary_10_1016_j_phro_2022_06_005
Cites_doi 10.1118/1.2965263
10.1118/1.2842076
10.1007/978-3-319-67558-9_24
10.1007/978-3-030-00928-1_82
10.1109/TMI.2019.2953788
10.1117/12.2292443
10.1016/j.ijrobp.2019.03.051
10.1117/1.JMI.4.4.041302
10.1117/1.JMI.5.2.021208
10.1109/TMI.2018.2878316
10.1016/j.media.2018.07.002
10.1023/A:1020830525823
10.1118/1.2222077
10.1088/0031-9155/60/22/R323
10.1088/0031-9155/60/7/2837
10.1109/TMI.2006.872745
10.1016/j.radonc.2019.01.024
10.1007/978-3-319-67558-9_28
10.1109/TBME.2018.2822826
10.1609/aaai.v31i1.10510
10.1007/978-3-030-00946-5_2
10.1117/12.2512824
10.1007/978-3-319-66182-7_27
10.1007/978-3-319-66182-7_35
10.1016/j.clon.2018.08.009
10.1117/12.2506962
10.1088/1361-6560/aa9517
10.1007/s11548-018-1841-4
10.1109/CVPR.2018.00964
10.1016/j.radonc.2016.04.014
10.1016/S1361-8415(01)80026-8
10.1109/TMI.2009.2035616
10.1117/12.2512428
10.1088/1361-6560/ab5539
10.1007/978-3-319-46723-8_49
10.1016/j.media.2018.11.010
10.1088/0031-9155/54/12/N01
10.1109/ICCV.2015.316
10.1016/j.semradonc.2014.02.008
10.1016/j.ijrobp.2019.08.007
10.1007/978-3-319-66182-7_31
10.1056/NEJMoa1606220
10.1002/mp.13416
ContentType Journal Article
Copyright 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Copyright_xml – notice: 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mp.13994
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Prostate contour propagation in MRgRT
EISSN 2473-4209
EndPage 1248
ExternalDocumentID PMC7079098
31876300
10_1002_mp_13994
MP13994
Genre article
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
24P
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4104-62f7d4dbc211829d2dc3a17a842cb41392ca28c48492044a1b8f541a82c5ba8a3
IEDL.DBID 24P
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508900600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 01:59:23 EST 2025
Thu Oct 02 06:53:10 EDT 2025
Mon Jul 21 06:00:02 EDT 2025
Sat Nov 29 06:02:41 EST 2025
Tue Nov 18 22:49:39 EST 2025
Wed Jan 22 16:34:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MR-guided radiotherapy
contour propagation
deep learning
prostate
image registration
Language English
License Attribution
2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-62f7d4dbc211829d2dc3a17a842cb41392ca28c48492044a1b8f541a82c5ba8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13994
PMID 31876300
PQID 2330791470
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7079098
proquest_miscellaneous_2330791470
pubmed_primary_31876300
crossref_primary_10_1002_mp_13994
crossref_citationtrail_10_1002_mp_13994
wiley_primary_10_1002_mp_13994_MP13994
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2020
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2017; 62
2017; 4
2019; 52
2002; 50
2006; 33
2019; 104
2019; 105
2019; 38
2014; 24
2008; 35
2003; 19
2018; 65
2018; 49
2009; 54
2018; 5
2015; 60
2019; 64
2016; 119
2010; 29
2019; 46
2006; 25
2019
2016; 375
2018
2017
2018; 30
2016
1998; 2
2015
2019; 134
2018; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Bol G (e_1_2_7_39_1) 2003; 19
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 49
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Weakly‐supervised convolutional neural networks for multimodal image registration
  publication-title: Med Image Anal
– volume: 13
  start-page: 1687
  year: 2018
  end-page: 1696
  article-title: Deep dense multi‐path neural network for prostate segmentation in magnetic resonance imaging
  publication-title: Int J Comput Assist Radiol Surg
– volume: 2
  start-page: 1
  year: 1998
  end-page: 36
  article-title: A survey of medical image registration
  publication-title: Med Image Anal
– volume: 134
  start-page: 50
  year: 2019
  end-page: 54
  article-title: Feasibility of stereotactic radiotherapy using a 1.5T MRlinac: multi‐fraction treatment of pelvic lymph node oligometastases
  publication-title: Radiother Oncol
– volume: 4
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks
  publication-title: J Med Imag
– volume: 30
  start-page: 692
  year: 2018
  end-page: 701
  article-title: Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer
  publication-title: Clin Oncol (R Coll Radiol)
– volume: 54
  start-page: N229
  year: 2009
  end-page: N237
  article-title: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept
  publication-title: Phys Med Biol
– volume: 60
  start-page: 2837
  year: 2015
  end-page: 2851
  article-title: An adaptive MR‐CT registration method for MRI‐guided prostate cancer radiotherapy
  publication-title: Phys Med Biol
– volume: 65
  start-page: 1900
  year: 2018
  end-page: 1911
  article-title: Deformable image registration using a cue‐aware deep regression network
  publication-title: IEEE Trans Biomed Eng
– volume: 119
  start-page: 371
  year: 2016
  end-page: 380
  article-title: MRI‐guided prostate adaptive radiotherapy: a systematic review
  publication-title: Radiother Oncol
– year: 2016
– volume: 33
  start-page: 3304
  year: 2006
  end-page: 3312
  article-title: A deformable image registration method to handle distended rectums in prostate cancer radiotherapy
  publication-title: Med Phys
– year: 2018
– volume: 64
  start-page: 235008
  year: 2019
  article-title: Soft‐tissue prostate intrafraction motion tracking in 3D cine‐MR for MR‐guided radiotherapy
  publication-title: Phys Med Biol
– volume: 104
  start-page: 778
  year: 2019
  end-page: 789
  article-title: Stereotactic body radiation therapy for localized prostate cancer: a systematic review and meta‐analysis of over 6,000 patients treated on prospective studies
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 35
  start-page: 4019
  year: 2008
  end-page: 4025
  article-title: Accuracy and sensitivity of finite element model‐based deformable registration of the prostate
  publication-title: Med Phys
– volume: 5
  start-page: 1
  year: 2018
  end-page: 6
  article-title: PSNet: prostate segmentation on MRI based on a convolutional neural network
  publication-title: J Med Imag
– volume: 52
  start-page: 128
  year: 2019
  end-page: 143
  article-title: A deep learning framework for unsupervised affine and deformable image registration
  publication-title: Med Image Anal
– volume: 35
  start-page: 1407
  year: 2008
  end-page: 1417
  article-title: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information
  publication-title: Med Phys
– year: 2019
  article-title: Progressively trained convolutional neural networks for deformable image registration
  publication-title: IEEE Trans Med Imaging
– volume: 60
  start-page: R323
  year: 2015
  end-page: R361
  article-title: Radiotherapy planning using MRI
  publication-title: Phys Med Biol
– volume: 375
  start-page: 1415
  year: 2016
  end-page: 1424
  article-title: 10‐Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer
  publication-title: N Engl J Med
– volume: 19
  start-page: 80
  year: 2003
  article-title: Volumetool: an image evaluation, registration, and delineation system for radiotherapy
  publication-title: Physica Med
– volume: 62
  start-page: L41
  year: 2017
  end-page: L50
  article-title: First patients treated with a 1.5 T MRI‐Linac: clinical proof of concept of a high‐precision, high‐field MRI guided radiotherapy treatment
  publication-title: Phys Med Biol
– volume: 24
  start-page: 196
  year: 2014
  end-page: 199
  article-title: The viewray system: magnetic resonance guided and controlled radiotherapy
  publication-title: Semin Radiat Oncol
– volume: 46
  start-page: 1707
  year: 2019
  end-page: 1718
  article-title: Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation
  publication-title: Med Phys
– volume: 50
  start-page: 329
  year: 2002
  end-page: 343
  article-title: Variational methods for multimodal image matching
  publication-title: Int J Comput Vision
– volume: 38
  start-page: 1097
  year: 2019
  end-page: 1105
  article-title: Registration through supervised learning with convolutional neural networks
  publication-title: IEEE Trans Med Imaging
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  article-title: : a toolbox for intensity‐based medical image registration
  publication-title: IEEE Trans Med Imaging
– year: 2017
– year: 2019
– volume: 25
  start-page: 626
  year: 2006
  end-page: 639
  article-title: Deformation‐based mapping of volume change from serial brain MRI in the presence of local tissue contrast change
  publication-title: IEEE Trans Med Imaging
– volume: 105
  start-page: 1086
  year: 2019
  end-page: 1094
  article-title: A prospective single‐arm phase II study of stereotactic magnetic‐resonance‐guided adaptive radiotherapy for prostate cancer: early toxicity results
  publication-title: Int J Radiat Oncol
– year: 2015
– ident: e_1_2_7_14_1
  doi: 10.1118/1.2965263
– ident: e_1_2_7_13_1
  doi: 10.1118/1.2842076
– ident: e_1_2_7_22_1
  doi: 10.1007/978-3-319-67558-9_24
– ident: e_1_2_7_25_1
  doi: 10.1007/978-3-030-00928-1_82
– ident: e_1_2_7_38_1
  doi: 10.1109/TMI.2019.2953788
– ident: e_1_2_7_33_1
  doi: 10.1117/12.2292443
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ijrobp.2019.03.051
– ident: e_1_2_7_17_1
  doi: 10.1117/1.JMI.4.4.041302
– ident: e_1_2_7_18_1
  doi: 10.1117/1.JMI.5.2.021208
– ident: e_1_2_7_37_1
  doi: 10.1109/TMI.2018.2878316
– ident: e_1_2_7_36_1
  doi: 10.1016/j.media.2018.07.002
– ident: e_1_2_7_45_1
  doi: 10.1023/A:1020830525823
– ident: e_1_2_7_12_1
  doi: 10.1118/1.2222077
– ident: e_1_2_7_40_1
– ident: e_1_2_7_3_1
  doi: 10.1088/0031-9155/60/22/R323
– ident: e_1_2_7_15_1
  doi: 10.1088/0031-9155/60/7/2837
– ident: e_1_2_7_44_1
  doi: 10.1109/TMI.2006.872745
– ident: e_1_2_7_10_1
  doi: 10.1016/j.radonc.2019.01.024
– ident: e_1_2_7_46_1
  doi: 10.1007/978-3-319-67558-9_28
– ident: e_1_2_7_34_1
  doi: 10.1109/TBME.2018.2822826
– ident: e_1_2_7_16_1
  doi: 10.1609/aaai.v31i1.10510
– ident: e_1_2_7_26_1
  doi: 10.1007/978-3-030-00946-5_2
– ident: e_1_2_7_28_1
  doi: 10.1117/12.2512824
– ident: e_1_2_7_32_1
  doi: 10.1007/978-3-319-66182-7_27
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-319-66182-7_35
– ident: e_1_2_7_4_1
  doi: 10.1016/j.clon.2018.08.009
– ident: e_1_2_7_27_1
  doi: 10.1117/12.2506962
– ident: e_1_2_7_8_1
  doi: 10.1088/1361-6560/aa9517
– ident: e_1_2_7_19_1
  doi: 10.1007/s11548-018-1841-4
– ident: e_1_2_7_23_1
  doi: 10.1109/CVPR.2018.00964
– ident: e_1_2_7_11_1
  doi: 10.1016/j.radonc.2016.04.014
– ident: e_1_2_7_21_1
  doi: 10.1016/S1361-8415(01)80026-8
– ident: e_1_2_7_43_1
  doi: 10.1109/TMI.2009.2035616
– ident: e_1_2_7_35_1
  doi: 10.1117/12.2512428
– ident: e_1_2_7_47_1
  doi: 10.1088/1361-6560/ab5539
– ident: e_1_2_7_41_1
  doi: 10.1007/978-3-319-46723-8_49
– ident: e_1_2_7_24_1
  doi: 10.1016/j.media.2018.11.010
– ident: e_1_2_7_6_1
  doi: 10.1088/0031-9155/54/12/N01
– ident: e_1_2_7_29_1
  doi: 10.1109/ICCV.2015.316
– ident: e_1_2_7_7_1
  doi: 10.1016/j.semradonc.2014.02.008
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ijrobp.2019.08.007
– ident: e_1_2_7_31_1
  doi: 10.1007/978-3-319-66182-7_31
– ident: e_1_2_7_2_1
  doi: 10.1056/NEJMoa1606220
– ident: e_1_2_7_42_1
– volume: 19
  start-page: 80
  year: 2003
  ident: e_1_2_7_39_1
  article-title: Volumetool: an image evaluation, registration, and delineation system for radiotherapy
  publication-title: Physica Med
– ident: e_1_2_7_20_1
  doi: 10.1002/mp.13416
SSID ssj0006350
Score 2.4933474
Snippet Purpose To quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)‐guided prostate external‐beam...
To quickly and automatically propagate organ contours from pretreatment to fraction images in magnetic resonance (MR)-guided prostate external-beam...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1238
SubjectTerms contour propagation
deep learning
Dose Fractionation, Radiation
EMERGING IMAGING AND THERAPY MODALITIES
Humans
Image Processing, Computer-Assisted - methods
image registration
Magnetic Resonance Imaging
Male
MR-guided radiotherapy
Neural Networks, Computer
prostate
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - radiotherapy
Radiotherapy, Image-Guided
Time Factors
Title Fast contour propagation for MR‐guided prostate radiotherapy using convolutional neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13994
https://www.ncbi.nlm.nih.gov/pubmed/31876300
https://www.proquest.com/docview/2330791470
https://pubmed.ncbi.nlm.nih.gov/PMC7079098
Volume 47
WOSCitedRecordID wos000508900600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VKBWX_lBK0x-USghOKbEz2dhHRLvqgUUrVKS9RY6T0JUgrDa7SNz6CDwjT8KMkw1dQaVKvcSKPE6szHhmHM98A7AreqawYSkDFo8ARY6BKkUcSFSGrF9Yxqp0xSaSkxM1GulhG1XJuTANPkT3w41XhtPXvMBNVh88gIZeTr6S96JxBdaEiBSXbZA47LQwGdIm_UQjnyDEC-DZUB4sRi6bokf-5eMwyT_dV2d_-q_-Z-av4WXrdfqHjZi8gWdFtQkvBu25-iasu0BQW7-FrG_qmc8B7DTGp9mSwnHM88m79Qend79vz-fjvMi5z2Uj-VOTj9s8rhuf4-jPefx1K9P0WsbMdI2LOK-34Kz__efRj6CtwxBYpN1a0JNlkmOeWcm7EZ3L3EZGJEahtBkZQS2tkcqiQi1DRCMyVcYojJI2zowy0TtYra6q4j34ZY_uY2VL1bNkFrWxSGbUxNpiXOhIe7C_YElqW5ByrpVxkTbwyjK9nKTu43nwpaOcNMAcT9EsuJrSquGjEFMVV_M6lRHpNi0wCT3YbrjcPYW0XMJAZB4kS_zvCBiRe7mnGv9yyNwMNxhq5cGe4_9fJ5YOhq798K-EH2FD8kbfBb99gtXZdF58huf2ejaupztO8umajNQOrH077Z8d3wMrKAq3
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xKLSXPigtaWmbSlV7CiTeycYWp6qwomJ3hRBI3CLHSWClElabXSRu_Qn9jfwSZpwHrGilSpysyOPEyjxtz3wG-BJ0dWb8XHgsHh4GKXoyD0JPoNTk_fw8lLm9bCIaDuXpqTpcgJ2mFqbCh2g33FgzrL1mBecN6e071NCL8RaFLwoXYRlJiki8l3ePeif91hCTL60qUBTyIULYYM_6YrsZO--NHoSYDzMl70ew1gX1Xjxq8i_heR15ut8rUXkFC1mxBquD-mx9DVZsMqgpX0PS0-XU5SR2GuPSdMnoWAa6FOG6g6Ob33_OZqM0S7nPViS5E52O6lqua5dz6c94_FUt1_RZxs20jc06L9fhpLd3_GPfq-9i8AzSis3rijxKMU2M4BWJSkVqOjqItERhEnKEShgtpEGJSviIOkhkHmKgpTBhoqXuvIGl4rLINsDNu_QcSpPLriHXqLRBcqU6VAbDTHWUA98ansSmBirn-zJ-xRXEsogvxrH9eQ58binHFTjH32gatsakOXwcoovsclbGokP2TQUY-Q68rdjcvoUsXcRgZA5EcwLQEjAq93xPMTq36NwMOegr6cBXKwD_nFg8OLTtu_8l_ARP948H_bj_c3jwHp4JXvjbZLhNWJpOZtkHeGKupqNy8rFWhFs6aA21
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_qVYsvrdaqqa1GEH1Km-xNLrv4JG2DYu84ioW-hc1utj2w6XG5K_jmR_Az9pN0Z_PHHlUQfFpCZpMl83ezM78BeBcNZKFCwwISjwAjjQE3URww5NJ6v9DE3LhmE8loxM_OxHgFPra1MDU-RPfDjTTD2WtS8GKqzf5v1NDL6Z4NXwQ-gFWkHjI9WD08SU-PO0NsfWldgSKQDhHiFns2ZPvt3GVvdC_EvJ8peTeCdS4o3fivxT-B9Sby9D_VovIUVopyE9aGzdn6JjxyyaCqegZ5Kqu5T0nsdo5vl2uNjmOgbyNcf3hy8_PX-WKiC033XEWSP5N60tRy_fApl_6c5l83cm1fS7iZbnBZ59UWnKZH3w4-B00vhkCh3bEFA2YSjTpXjHYkQjOt-jJKJEemcusIBVOScYUcBQsRZZRzE2MkOVNxLrnsP4deeVUWL8E3A3sdc2X4QFnXKKRC60plLBTGhegLDz60PMlUA1RO_TK-ZzXEMssup5n7eB687SinNTjHn2hatmZWc-g4RJbF1aLKWN_aNxFhEnrwomZz9xRr6RICI_MgWRKAjoBQuZfvlJMLh85NkIOh4B68dwLw14Vlw7Ebt_-V8A2sjQ_T7PjL6OsreMxo3-9y4XagN58til14qK7nk2r2utGDW7P7DTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+contour+propagation+for+MR%E2%80%90guided+prostate+radiotherapy+using+convolutional+neural+networks&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Eppenhof%2C+K.A.J.&rft.au=Maspero%2C+M.&rft.au=Savenije%2C+M.H.F.&rft.au=de+Boer%2C+J.C.J.&rft.date=2020-03-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=47&rft.issue=3&rft.spage=1238&rft.epage=1248&rft_id=info:doi/10.1002%2Fmp.13994&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_13994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon